1
|
Willis LF, Kapur N, Radford SE, Brockwell DJ. Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline. Biologics 2024; 18:413-432. [PMID: 39723199 PMCID: PMC11669289 DOI: 10.2147/btt.s486345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The successful progression of therapeutic antibodies and other biologics from the laboratory to the clinic depends on their possession of "drug-like" biophysical properties. The techniques and the resultant biophysical and biochemical parameters used to characterize their ease of manufacture can be broadly defined as developability. Focusing on antibodies, this review firstly discusses established and emerging biophysical techniques used to probe the early-stage developability of biologics, aimed towards those new to the field. Secondly, we describe the inter-relationships and redundancies amongst developability assays and how in silico methods aid the efficient deployment of developability to bring a new generation of cost-effective therapeutic proteins from bench to bedside more quickly and sustainably.
Collapse
Affiliation(s)
- Leon F Willis
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
2
|
Melo EP, El-Guendouz S, Correia C, Teodoro F, Lopes C, Martel PJ. A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity. Antioxid Redox Signal 2024; 41:181-200. [PMID: 38497737 DOI: 10.1089/ars.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Aims: Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, a and a', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. Results: Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H2O2-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal a active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal a' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The a' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. Innovation and Conclusions: The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.
Collapse
Affiliation(s)
- Eduardo P Melo
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | | - Cátia Correia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Fernando Teodoro
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Carlos Lopes
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | |
Collapse
|
3
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
4
|
Rodrigues MA, Duarte A, Geraldes V, Kingsbury JS, Sanket P, Filipe V, Nakach M, Authelin JR. Native and Non-Native aggregation pathways of antibodies anticipated by cold-accelerated studies. Eur J Pharm Biopharm 2023; 192:174-184. [PMID: 37832611 DOI: 10.1016/j.ejpb.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Assessment of cold stability is essential for manufacture and commercialization of biotherapeutics. Storage stability is often estimated by measuring accelerated rates at elevated temperature and using mathematical models (as the Arrhenius equation). Although, this strategy often leads to an underestimation of protein aggregation during storage. In this work, we measured the aggregation rates of two antibodies in a broad temperature range (from 60 °C to -25 °C), using an isochoric cooling method to prevent freezing of the formulations below 0 °C. Both antibodies evidenced increasing aggregation rates when approaching extreme temperatures, because of hot and cold denaturation. This behavior was modelled using Arrhenius and Gibbs-Helmholtz equations, which enabled to deconvolute the contribution of unfolding from the protein association kinetics. This approach made possible to model the aggregation rates at refrigeration temperature (5 °C) in a relatively short timeframe (1-2 weeks) and using standard characterization techniques (SEC-HPLC and DLS).
Collapse
Affiliation(s)
- Miguel A Rodrigues
- SmartFreeZ, Ed. Inovação II, Incubadora Taguspark, Porto Salvo, Portugal; CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Andreia Duarte
- SmartFreeZ, Ed. Inovação II, Incubadora Taguspark, Porto Salvo, Portugal
| | - Vitor Geraldes
- SmartFreeZ, Ed. Inovação II, Incubadora Taguspark, Porto Salvo, Portugal; CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Patke Sanket
- Biologics Drug Product Development, Sanofi, Framingham, MA, USA; Current address: Commercial Drug Product Manufacturing Science and Technology, Moderna, Norwood, MA, USA
| | - Vasco Filipe
- Biologics Drug Product Development, Sanofi, Vitry-sur-Seine, France
| | - Mostafa Nakach
- Biologics Drug Product Development, Sanofi, Vitry-sur-Seine, France
| | | |
Collapse
|
5
|
Elsayed A, Jaber N, Al-Remawi M, Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int J Pharm 2023; 645:123360. [PMID: 37657507 DOI: 10.1016/j.ijpharm.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Active ingredients of biopharmaceuticals consist of a wide array of biomolecular structures, including those of enzymes, monoclonal antibodies, nucleic acids, and recombinant proteins. Recently, these molecules have dominated the pharmaceutical industry owing to their safety and efficacy. However, their manufacturing is hindered by high cost, inadequate batch-to-batch equivalence, inherent instability, and other quality issues. This article is an up-to-date review of the challenges encountered during different stages of biopharmaceutical production and mitigation of problems arising during their development, formulation, manufacturing, and administration. It is a broad overview discussion of stability issues encountered during product life cycle i.e., upstream processing (aggregation, solubility, host cell proteins, color change), downstream bioprocessing (aggregation, fragmentation), formulation, manufacturing, and delivery to patients.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman 1196, Jordan.
| | - Khalid Abu-Salah
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Rolle K, Okotrub KA, Zaytseva IV, Babin SA, Surovtsev NV. Self-pressurised rapid freezing at arbitrary cryoprotectant concentrations. J Microsc 2023; 292:27-36. [PMID: 37615208 DOI: 10.1111/jmi.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Self-pressurised rapid freezing (SPRF) has been proposed as a simple alternative to traditional high-pressure freezing (HPF) protocols for vitrification of biological samples in electron microscopy and cryopreservation applications. Both methods exploit the circumstance that the melting point of ice reaches a minimum when subjected to pressure of around 210 MPa, however, in SPRF its precise quantity depends on sample properties and hence, is generally unknown. In particular, cryoprotective agents (CPAs) are expected to be a factor; though eschewed by many SPRF experiments, vitrification of larger samples notably cannot be envisaged without them. Thus, in this study, we address the question of how CPA concentration affects pressure inside sealed capillaries, and how to design SPRF experiments accordingly. By embedding a fibre-optic probe in samples and performing Raman spectroscopy after freezing, we first present a direct assessment of pressure build-up during SPRF, enabled by the large pressure sensitivity of the Raman shift of hexagonal ice. Choosing dimethyl sulphoxide (DMSO) as a model CPA, this approach allows us to demonstrate that average pressure drops to zero when DMSO concentrations of 15 wt% are exceeded. Since a trade-off between pressure and DMSO concentration represents an impasse with regard to vitrification of larger samples, we introduce a sample architecture with two chambers, separated by a partition that allows for equilibration of pressure but not DMSO concentrations. We show that pressure and concentration in the fibre-facing chamber can be tuned independently, and present differential scanning calorimetry (DSC) data supporting the improved vitrification performance of two-chamber designs. Lay version of abstract for 'Self-pressurised rapid freezing at arbitrary cryoprotectant concentrations' Anyone is familiar with pipes bursting in winter because the volume of ice is greater than that of liquid water. Less well known is the fact that inside a thick-walled container, sealed and devoid of air bubbles, this pressure build-up will allow a fraction of water to remain unfrozen if the sample is also cooled sufficiently rapidly far below the freezing point. This phenomenon has already been harnessed for specimen preparation in microscopy, where low temperatures are useful to immobilise the sample, but harmful if ice formation occurs. However, specimen preparation cannot always rely on this pressure-based effect alone, but sometimes requires addition of chemicals to inhibit ice formation. Not enough is known directly about how these chemicals affect pressure build-up: Indeed, rapid cooling below the freezing point is only possible for small sample volumes, typically placed inside sealed capillaries, so that space is generally insufficient to accommodate a pressure sensor. By means of a compact sensor, based on an optical fibre, laser and spectrometer, we present the first direct assessment of pressure inside sealed capillaries. We show that addition of chemicals reduces pressure build-up and present a two-chambered capillary to circumvent the resulting trade-off. Also, we present evidence showing that the two-chambered capillary design can avoid ice formation more readily than a single-chambered one.
Collapse
Affiliation(s)
- Konrad Rolle
- Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia
| | | | - Irina V Zaytseva
- Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia
| | - Sergei A Babin
- Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
7
|
Thakur S, Jha B, Bhardwaj N, Singh A, Sawale PD, Kumar A. Isochoric freezing of foods; a review of instrumentation, mechanism, physico‐chemical influence and applications. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sheetal Thakur
- Department of Food Science and Technology, MMICT & BH, MMDU Ambala India
| | - Bhavya Jha
- Department of Food Science and Technology Gautam Buddha University Noida India
| | - Naman Bhardwaj
- Department of Food Science and Technology Gautam Buddha University Noida India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh India
| | - Pravin D. Sawale
- Department of Dairy Technology College of Dairy Technology Yavatmal India
| | - Ashish Kumar
- Department of Food Science and Technology Gautam Buddha University Noida India
| |
Collapse
|
8
|
Beşchea GA, Câmpean SI, Tăbăcaru MB, Vuţoiu BG, Şerban A, Năstase G. A State of the Art Review of Isochoric Cryopreservation and Cryoprotectants. CRYOLETTERS 2022. [DOI: 10.54680/fr22410110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is a developing enthusiasm for discovering new methods, cryoprotectants, systems and devices for cells, tissues, and organ preservation in medicine, in sub-zero temperature conditions and a growing interest in developing more efficient and economical methods for long-term preservation
of food in a frozen state. Most of the preservation protocols currently used in medicine and food preservation involve the use of atmospheric pressure, and temperatures lower than normal body temperature in medicine, or lower than room temperature in the food industry. In this state of the
art review, we analyzed the results of a new preservation method that uses an isochoric system. We aimed to offer a clear overview of the potential of this new technology. Firstly, to study the origins of isochoric preservation, we searched using the WoS Database. A search with the world "isochoric"
returned 488 results. A more specific search of the term "isochoric freezing" returned 94 results. From these searches, we selected the 12 most relevant articles and discuss them here in detail. We present an overall characterization and criticism of the current use and potential of this new
preservation method that can be used in the medicine and food industry. The main findings indicate encouraging results for the tested biological matter, including for the preservation of food products (e.g.cherries, spinach, potatoes), biological organisms (e. g. Caenorhabditis elegans,
Escherichia coli, Listeria, Salmonella typhimurium), organs (e.g. rat hearts), tissues (e. g., tilapia fish filets) or cells (e. g., mammalian cells, pancreatic cells). Accordingly, we conclude that the isochoric system holds huge potential as a new technique in the
field of preservation.
Collapse
Affiliation(s)
- George-Andrei Beşchea
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Stefan-Ioan Câmpean
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Maria-Bianca Tăbăcaru
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Beatrice-Georgiana Vuţoiu
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Alexandru Şerban
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Gabriel Năstase
- University Politehnica of Bucharest, Faculty of Mechanical Mechatornics, Thermotechnics, engines, thermal and refrigeration equipment Department, Bucharest, Romania
| |
Collapse
|
9
|
Berger JE, Teixeira SCM, Reed K, Razinkov VI, Sloey CJ, Qi W, Roberts CJ. High-Pressure, Low-Temperature Induced Unfolding and Aggregation of Monoclonal Antibodies: Role of the Fc and Fab Fragments. J Phys Chem B 2022; 126:4431-4441. [PMID: 35675067 DOI: 10.1021/acs.jpcb.1c10528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of high pressure and low temperature on the stability of two different monoclonal antibodies (MAbs) were examined in this work. Fluorescence and small-angle neutron scattering were used to monitor the in situ effects of pressure to infer shifts in tertiary structure and characterize aggregation prone intermediates. Partial unfolding was observed for both MAbs, to different extents, under a range of pressure/temperature conditions. Fourier transform infrared spectroscopy was also used to monitor ex situ changes in secondary structure. Preservation of native secondary structure after incubation at elevated pressures and subzero ° C temperatures was independent of the extent of tertiary unfolding and reversibility. Several combinations of pressure and temperature were also used to discern the respective contributions of the isolated Ab fragments (Fab and Fc) to unfolding and aggregation. The fragments for each antibody showed significantly different partial unfolding profiles and reversibility. There was not a simple correlation between stability of the full MAb and either the Fc or Fab fragment stabilities across all cases, demonstrating a complex relationship to full MAb unfolding and aggregation behavior. That notwithstanding, the combined use of spectroscopic and scattering techniques provides insights into MAb conformational stability and hysteresis in high-pressure, low-temperature environments.
Collapse
Affiliation(s)
- Jordan E Berger
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kaelan Reed
- PharmBIO Products, W. L. Gore & Associates, Elkton, Maryland 21921, United States
| | - Vladimir I Razinkov
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Sloey
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Wei Qi
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Bluemel O, Rodrigues MA, Buecheler JW, Geraldes V, Hoelzl G, Hauptmann A, Bechtold-Peters K, Friess W. Evaluation of Two Novel Scale-Down Devices for Testing Monoclonal Antibody Aggregation During Large-Scale Freezing. J Pharm Sci 2022; 111:1973-1983. [PMID: 35007568 DOI: 10.1016/j.xphs.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
There is a need for representative small volume devices that reflect monoclonal antibody (mAb) aggregation during freezing and thawing (FT) in large containers. We characterised two novel devices that aim to mimic the stress in rectangular 2 L bottles. The first scale-down device (SDD) consists of a 125 mL bottle surrounded by a 3D printed cover that manipulates heat exchange. The second device, a micro scale-down device (mSDD), adapts cooling and heating of 10 mL vials to extend stress time. MAb aggregation upon repeated FT was evaluated considering formation of higher molecular weight species, subvisible particles, and the increase in hydrodynamic radius, polydispersity index, and optical density at 350 nm. Three different mAb solutions were processed. Both an unshielded 125 mL bottle and the SDD can be used to predict aggregation during FT in 2 L bottles. In specific cases the unshielded 125 mL bottle underestimates whereas the SDD slightly overestimates soluble aggregate formation. The mSDD increases aggregation compared to 10 mL vials but is less representative than the SDD. Ultimately, both SDDs enable characterisation of protein sensitivity to large-scale FT with two orders of magnitude less volume and are superior to simply using smaller bottles.
Collapse
Affiliation(s)
- Oliver Bluemel
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| | - Miguel A Rodrigues
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Lisboa 1049-001, Portugal
| | - Jakob W Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Vitor Geraldes
- CeFEMA, Department of Chemical Engineering, Instituto Superior Técnico, Lisboa 1049-001, Portugal
| | | | | | | | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| |
Collapse
|
11
|
Glucose and glycerol temperature-pressure correlations for the design of cryopreservation protocols in an isochoric system at subfreezing temperature. Biochem Biophys Res Commun 2021; 559:42-47. [PMID: 33933991 DOI: 10.1016/j.bbrc.2021.04.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
There is growing interest in the use of isochoric (constant volume) freezing for cryopreservation of biological matter. The goal of this study is to generate fundamental experimental data on the pressure temperature relation during the freezing of an isochoric system of aqueous solutions of two compounds, glucose and glycerol. Glucose and glycerol are commonly used as cryoprotectants in conventional isobaric (constant pressure) cryopreservation protocols. Earlier studies have shown that the increase in pressure during isochoric freezing is detrimental to biological matter and limits the range of temperatures in which isochoric freezing can be used for preservation to temperatures corresponding to pressures below 40 MPa. In physiological saline solution this pressure corresponds to a temperature of - 4 °C. Our new experimental data shows that the addition of 2 M glycerol to the saline solution lowers the temperature at which the isochoric freezing pressure is 40 MPa to -11 °C, 3 M glycerol to - 16.5 °C, and 4 M glycerol to - 24.5 °C, thereby substantially expending the range of temperatures in which cryopreservation by isochoric freezing can be practiced.
Collapse
|
12
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
13
|
A New Perspective on Scale-Down Strategies for Freezing of Biopharmaceutics by Means of Computational Fluid Dynamics. J Pharm Sci 2020; 109:1978-1989. [DOI: 10.1016/j.xphs.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 11/19/2022]
|
14
|
Authelin JR, Rodrigues MA, Tchessalov S, Singh SK, McCoy T, Wang S, Shalaev E. Freezing of Biologicals Revisited: Scale, Stability, Excipients, and Degradation Stresses. J Pharm Sci 2019; 109:44-61. [PMID: 31705870 DOI: 10.1016/j.xphs.2019.10.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023]
Abstract
Although many biotech products are successfully stored in the frozen state, there are cases of degradation of biologicals during freeze storage. These examples are discussed in the Perspective to emphasize the fact that stability of frozen biologicals should not be taken for granted. Frozen-state degradation (predominantly, aggregation) has been linked to crystallization of a cryoprotector in many cases. Other factors, for example, protein unfolding (either due to cold denaturation or interaction of protein molecules with ice crystals), could also contribute to the instability. As a hypothesis, additional freezing-related destabilization pathways are introduced in the paper, that is, air bubbles formed on the ice crystallization front, and local pressure and mechanical stresses due to volume expansion during water-to-ice transformation. Furthermore, stability of frozen biologicals can depend on the sample size, via its impact on the freezing kinetics (i.e., cooling rates and freezing time) and cryoconcentration effects, as well as on the mechanical stresses associated with freezing. We conclude that, although fundamentals of freezing processes are fairly well described in the current literature, there are important gaps to be addressed in both scientific foundations of the freezing-related manufacturing processes and implementation of the available knowledge in practice.
Collapse
Affiliation(s)
| | - Miguel A Rodrigues
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | | | - Satish K Singh
- Drug Product Development, Moderna Therapeutics, Cambridge, Massachusetts 02139
| | - Timothy McCoy
- Biologics Drug Product Development, Sanofi, Framingham, Massachusetts 01701
| | - Stuart Wang
- Drug Product Development, Moderna Therapeutics, Cambridge, Massachusetts 02139; WuXi AppTec, Cambridge, Massachusetts 02142
| | - Evgenyi Shalaev
- Pharmaceutical Development, Allergan Inc., Irvine, California 92612.
| |
Collapse
|