1
|
Dayo Owoyemi BC, Zeller M, Pereira da Silva B, Akinyemi AO, Ando RA, de Araujo GLB, Byrn SR. Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine. Mol Pharm 2025; 22:1042-1060. [PMID: 39804247 DOI: 10.1021/acs.molpharmaceut.4c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of Plasmodium spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites. Modifying the structure of a drug through the formation of a pharmaceutical cocrystal or salt presents an avenue through which its physicochemical properties can be optimized. In this work, we report the design/synthesis and solid-state characterization of four new salts and cocrystal-salt forms of LMF; an LMF-ADP salt, monoclinic space group P21/n; an LMF-FUM cocrystal-salt, monoclinic space group P21/c; an LMF-TAR solvate salt, monoclinic space group P21/n; and an LMF-SUC salt, triclinic, space group P1̅ (ADP, dianion of adipic acid; FUM, monoanion of fumaric acid; TAR, dianion of tartaric acid; SUC, dianion of succinic acid). These salts can be obtained by solution as well as by mechanochemical cocrystallization methods. The multicomponent systems gain their stability from hydrogen and partial ionic bonding interactions (N-H···O, O-H···O, N+-H···O-, and O-H+···O-) originating from both the dibutyl ammonium (N+-H) site and the alcohol hydroxyl (-OH) site of LMF toward the carboxylate (-C(O-)═O) functional groups of the coformer anions. SCXRD indicates for LMF-ADP, LMF-TAR, and LMF-SUC complete transfer of all carboxylic acid protons (H+) toward the LMF nitrogen, while for LMF-FUM, one of the protons is transferred (leaving a hydrofumarate monoanion). Using salicylic and acetylsalicylic acids as coformers yielded coamorphous solids. Solid-state characterization using powder X-ray diffraction (XRD) and thermal techniques (DSC and TGA) support and confirm the structures obtained from single-crystal XRD. LMF-ADP and LMF-FUM present superior stability under standard conditions (40 ± 2 °C, 75 ± 5% RH, and 3 months) compared to the amorphous samples and the other two salts. LMF-SUC showed poor thermal stability by DSC/TGA, and powder XRD patterns for LMF-TAR showed substantial change after the 3-month stability test. Finally, the calculated equilibrium solubilities for the cocrystal salts indicate an increase of more than twofold compared to LMF's solubility.
Collapse
Affiliation(s)
- Bolaji C Dayo Owoyemi
- Department of Pharmaceutical Science, University of São Paulo - USP, Av. Professor Lineu Prestes, 580 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Brenda Pereira da Silva
- Department of Pharmaceutical Science, University of São Paulo - USP, Av. Professor Lineu Prestes, 580 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
| | - Amos O Akinyemi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington 40536-0298, United States
| | - Romulo A Ando
- Institute of Chemistry, University of São Paulo - USP, Av. Professor Lineu Prestes, 748 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
| | - Gabriel L Barros de Araujo
- Department of Pharmaceutical Science, University of São Paulo - USP, Av. Professor Lineu Prestes, 580 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
| | - Stephen R Byrn
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Hu C, Zhong X, Li C, Yan H. Supersaturated drug delivery system of albendazole salt-polymer complex for improving oral bioavailability and efficacy anti-secondary E. multilocularis. Acta Trop 2024; 260:107464. [PMID: 39536888 DOI: 10.1016/j.actatropica.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Based on the supersaturation theory, this study devised two albendazole (ABZ) salt-polymer complexes that enhance the oral bioavailability and efficacy of secondary hepatic alveolar echinococcosis (HAE) in rats. Solid characteristics, microstructure, and stability of ABZ benzenesulfonate (ABZ-BSA) and ABZ methanesulfonate (ABZ-MSA) were evaluated. The equilibrium solubility and intrinsic dissolution rate of salt were measured across different pH environments to determine its potential for generating supersaturation. Polymer crystallization inhibitors were subsequently introduced to assess their impact on sustaining supersaturation. The pharmacokinetics and anti-echinococcosis effects of ABZ were evaluated in healthy SD and HAE rats. The characteristic peaks corresponding to amino acid esters and benzimidazole in the ABZ salt structure either shifted or disappeared, corroborated by PXRD, signifying successful ABZ salt preparation. Furthermore, reductions in the melting point and enthalpy of the salts were observed, along with discernible differences in microstructure compared to ABZ. The drug salts exhibited a significant increase in apparent solubility and intrinsic dissolution rate of ABZ, thus laying the groundwork for supersaturation. Stability assessments indicated that salts were susceptible to moisture absorption, necessitating stringent humidity control measures. Notably, HPMC-AS demonstrated promising capabilities in sustaining supersaturation. Finally, pharmacokinetic analyses revealed a substantial increase in the AUC of ABZ-BSA-H and ABZ-MSA-H by 7.6 and 20.3 times, respectively, compared to ABZ in vivo. After a 30-day once-daily oral administration of the Salts and ABZ to SD rats with hepatic alveolar echinococcosis, the ABZ-BSA-H and ABZ-MSA-H formulation demonstrated a cysts inhibition effect 9.2-fold and 15.3-fold greater than that of ABZ. The salt-HPMC-AS complex could potentially be developed into an improved anti-AE drug therapy. Therefore, the salt-HPMC-AS complex could be developed into an enhanced anti-AE drug therapy.
Collapse
Affiliation(s)
- Chunhui Hu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, Qinghai, People's Republic of China.
| | - Xueping Zhong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, Qinghai, People's Republic of China
| | - Chaoqun Li
- Medical College, Qinghai University, Xining, 810001, Qinghai, People's Republic of China
| | - Haiying Yan
- Medical College, Qinghai University, Xining, 810001, Qinghai, People's Republic of China
| |
Collapse
|
3
|
Li S, Zhang Z, Gu W, Gallas M, Jones D, Boulet P, Johnson LM, de Margerie V, Andrews GP. Hot Melt Extruded High-Dose Amorphous Solid Dispersions Containing Lumefantrine and Soluplus. Int J Pharm 2024; 665:124676. [PMID: 39255876 DOI: 10.1016/j.ijpharm.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Over the last 15 years, a small number of paediatric artemisinin-based combination therapy products have been marketed. These included Riamet® and Coartem® dispersible tablets, a combination of artemether and lumefantrine, co-developed by the Medicines for Malaria Venture and Novartis. Disappointingly, patient compliance, requirement for high-fat meal, and sporadic drug dissolution behaviours following administration still result in considerable challenges for these products. The first and foremost barrier that needs addressed for successful delivery of the artemether/lumefantrine combination is the poor solubility of lumefantrine within the gastrointestinal fluids. In this work, amorphous solid dispersions of lumefantrine within Soluplus®-based matrices have been manufactured using hot melt extrusion as a potential formulation strategy to achieve enhanced dissolution and apparent solubility. The drug loading capacity of Soluplus® to accommodate amorphous lumefantrine, whilst ensuring improved in-vitro dissolution performance, was investigated. The extrusion process employed a variety of processing parameters, including various temperature profiles and different production scales. The influence of variation in extrusion conditions upon the physical stability of manufactured amorphous solid dispersions was also examined. This allowed for a greater understanding of the role of extrusion processing conditions on the performance of supersaturated amorphous solid dispersions during dissolution and storage. This may allow for the design and manufacture of drug enabled formulations with lower drug dosing and thus a lower risk of adverse effects.
Collapse
Affiliation(s)
- Shu Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Zi'an Zhang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Wenjie Gu
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Maël Gallas
- Institut Jean Lamour, 2 allée André Guinier 54011 Nancy, France; Rondol Industrie, 2 allée André Guinier 54011 Nancy, France
| | - David Jones
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Pascal Boulet
- Institut Jean Lamour, 2 allée André Guinier 54011 Nancy, France
| | | | | | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK.
| |
Collapse
|
4
|
Yan H, Zhong X, Liu Y. Improving the Solubility, Stability, and Bioavailability of Albendazole through Synthetic Salts. Molecules 2024; 29:3571. [PMID: 39124976 PMCID: PMC11314343 DOI: 10.3390/molecules29153571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Albendazole (ABZ) is a highly effective yet poorly water-soluble antiparasitic drug known to form salts (ABZ-FMA, ABZ-DTA, and ABZ-HCl) with fumaric acid (FMA), D-tartaric acid (DTA), and hydrochloric acid (HCl). This research utilized a range of analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), powder X-ray diffraction (PXRD), dynamic vapor sorption (DVS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), to validate and characterize the solid-state properties of these drug salts. This study also assessed the solubility and intrinsic dissolution rate (IDR) of these salts under different pH conditions compared to the active pharmaceutical ingredient (API) and conducted stability studies. Moreover, the in vivo pharmacokinetic performance of ABZ salt was evaluated. The results of this study reveal that the new solid form of ABZ is primarily associated with amino acid esters and benzimidazole groups, forming intermolecular interactions. All three ABZ salts significantly improved the solubility and dissolution rate of ABZ, with ABZ-HCl demonstrating the optimal performance. Importantly, the drug salt exhibited robust physical stability when exposed to adverse conditions, including strong light irradiation (4500 ± 500 lux), high humidity (92.5 ± 5% relative humidity), elevated temperatures (50 ± 2 °C), and accelerated test conditions (40 °C/75 ± 5% relative humidity). Lastly, the in vivo pharmacokinetic analysis demonstrated that ABZ salt led to a substantial increase in AUC(0-24) and Cmax compared to ABZ. This elevation in solubility in aqueous solvents signifies that ABZ salt exhibits characteristics that can enhance oral bioavailability and pharmacokinetics. These findings provide potential solutions for the development of more effective and innovative drug formulations.
Collapse
Affiliation(s)
- Haiying Yan
- Medical College, Qinghai University, Xining 810001, China; (X.Z.); (Y.L.)
| | | | | |
Collapse
|
5
|
Neusaenger AL, Fatina C, Yu J, Yu L. Effect of Polymer Architecture and Acidic Group Density on the Degree of Salt Formation in Amorphous Solid Dispersions. Mol Pharm 2024; 21:3375-3382. [PMID: 38885189 DOI: 10.1021/acs.molpharmaceut.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.
Collapse
Affiliation(s)
- Amy Lan Neusaenger
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Caroline Fatina
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Zhang HJ, Chiang CW, Maschmeyer-Tombs T, Conklin B, Napolitano JG, Lubach JW, Nagapudi K, Mao C, Chen Y. Generality of Enhancing the Dissolution Rates of Free Acid Amorphous Solid Dispersions by the Incorporation of Sodium Hydroxide. Mol Pharm 2024; 21:3395-3406. [PMID: 38836777 DOI: 10.1021/acs.molpharmaceut.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The incorporation of a counterion into an amorphous solid dispersion (ASD) has been proven to be an attractive strategy to improve the drug dissolution rate. In this work, the generality of enhancing the dissolution rates of free acid ASDs by incorporating sodium hydroxide (NaOH) was studied by surface-area-normalized dissolution. A set of diverse drug molecules, two common polymer carriers (copovidone or PVPVA and hydroxypropyl methylcellulose acetate succinate or HPMCAS), and two sample preparation methods (rotary evaporation and spray drying) were investigated. When PVPVA was used as the polymer carrier for the drugs in this study, enhancements of dissolution rates from 7 to 78 times were observed by the incorporation of NaOH into the ASDs at a 1:1 molar ratio with respect to the drug. The drugs having lower amorphous solubilities showed greater enhancement ratios, providing a promising path to improve the drug release performance from their ASDs. Samples generated by rotary evaporation and spray drying demonstrated comparable dissolution rates and enhancements when NaOH was added, establishing a theoretical foundation to bridge the ASD dissolution performance for samples prepared by different solvent-removal processes. In the comparison of polymer carriers, when HPMCAS was applied in the selected system (indomethacin ASD), a dissolution rate enhancement of 2.7 times by the incorporated NaOH was observed, significantly lower than the enhancement of 53 times from the PVPVA-based ASD. This was attributed to the combination of a lower dissolution rate of HPMCAS and the competition for NaOH between IMC and HPMCAS. By studying the generality of enhancing ASD dissolution rates by the incorporation of counterions, this study provides valuable insights into further improving drug release from ASD formulations of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Helen J Zhang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Weill Hall #3200, Berkeley, California 94720, United States
| | - Cheng W Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tristan Maschmeyer-Tombs
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Breanna Conklin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jose G Napolitano
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W Lubach
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Helmy AM, Lu A, Duggal I, Rodrigues KP, Maniruzzaman M. Electromagnetic drop-on-demand (DoD) technology as an innovative platform for amorphous solid dispersion production. Int J Pharm 2024; 658:124185. [PMID: 38703932 DOI: 10.1016/j.ijpharm.2024.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Production of amorphous solid dispersions (ASDs) is an effective strategy to promote the solubility and bioavailability of poorly water soluble medicinal substances. In general, ASD is manufactured using a variety of classic and modern techniques, most of which rely on either melting or solvent evaporation. This proof-of-concept study is the first ever to introduce electromagnetic drop-on-demand (DoD) technique as an alternative solvent evaporation-based method for producing ASDs. Herein 3D printing of ASDs for three drug-polymer combinations (efavirenz-Eudragit L100-55, lumefantrine-hydroxypropyl methylcellulose acetate succinate, and favipiravir-polyacrylic acid) was investigated to ascertain the reliability of this technique. Polarized light microscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Fourier Transform Infrared (FTIR) spectroscopy results supported the formation of ASDs for the three drugs by means of DoD 3D printing, which significantly increases the equilibrium solubility of efavirenz from 0.03 ± 0.04 µg/ml to 21.18 ± 4.20 µg/ml, and the equilibrium solubility of lumefantrine from 1.26 ± 1.60 µg/ml to 20.21 ± 6.91 µg/ml. Overall, the reported findings show how this new electromagnetic DoD technology can have a potential to become a cutting-edge 3D printing solvent-evaporation technique for on-demand and continuous manufacturing of ASDs for a variety of drugs.
Collapse
Affiliation(s)
- Abdelrahman M Helmy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kristina P Rodrigues
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, USA.
| |
Collapse
|
8
|
Chen Z, Nie H, Benmore CJ, Smith PA, Du Y, Byrn S, Templeton AC, Su Y. Probing Molecular Packing of Amorphous Pharmaceutical Solids Using X-ray Atomic Pair Distribution Function and Solid-State NMR. Mol Pharm 2023; 20:5763-5777. [PMID: 37800667 DOI: 10.1021/acs.molpharmaceut.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural investigation of amorphous pharmaceuticals is of paramount importance in comprehending their physicochemical stability. However, it has remained a relatively underexplored realm primarily due to the limited availability of high-resolution analytical tools. In this study, we utilized the combined power of X-ray pair distribution functions (PDFs) and solid-state nuclear magnetic resonance (ssNMR) techniques to probe the molecular packing of amorphous posaconazole and its amorphous solid dispersion at the molecular level. Leveraging synchrotron X-ray PDF data and employing the empirical potential structure refinement (EPSR) methodology, we unraveled the existence of a rigid conformation and discerned short-range intermolecular C-F contacts within amorphous posaconazole. Encouragingly, our ssNMR 19F-13C distance measurements offered corroborative evidence supporting these findings. Furthermore, employing principal component analysis on the X-ray PDF and ssNMR data sets enabled us to gain invaluable insights into the chemical nature of the intermolecular interactions governing the drug-polymer interplay. These outcomes not only furnish crucial structural insights facilitating the comprehension of the underlying mechanisms governing the physicochemical stability but also underscore the efficacy of synergistically harnessing X-ray PDF and ssNMR techniques, complemented by robust modeling strategies, to achieve a high-resolution exploration of amorphous structures.
Collapse
Affiliation(s)
- Zhenxuan Chen
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chris J Benmore
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pamela A Smith
- Improved Pharma, West Lafayette, Indiana 47906, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen Byrn
- Improved Pharma, West Lafayette, Indiana 47906, United States
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
9
|
Huang H, Zhang Y, Liu Y, Guo Y, Hu C. Influence of Intermolecular Interactions on Crystallite Size in Crystalline Solid Dispersions. Pharmaceutics 2023; 15:2493. [PMID: 37896253 PMCID: PMC10610461 DOI: 10.3390/pharmaceutics15102493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Crystalline solid dispersions (CSDs) represent a thermodynamically stable system capable of effectively reducing the crystallite size of drugs, thereby enhancing their solubility and bioavailability. This study uses flavonoid drugs with the same core structures but varying numbers of hydroxyl groups as model drugs and poloxamer 188 as a carrier to explore the intrinsic relationships between drug-polymer interactions, crystallite size, and in vitro dissolution behavior in CSDs. Initially, we investigate the interactions between flavonoid drugs and P188 by calculating Hansen solubility parameters, determination of Flory-Huggins interaction parameters, and other methods. Subsequently, we explore the crystallization kinetics of flavonoid drugs and P188 in CSD systems using polarized optical microscopy and powder X-ray diffraction. We monitor the domain size and crystallite size of flavonoids in CSDs through powder X-ray diffraction and a laser-particle-size analyzer. Finally, we validate the relationship between crystallite size and in vitro dissolution behavior through powder dissolution. The results demonstrate that, as the number of hydroxyl groups increases, the interactions between drugs and polymers become stronger, making drug crystallization in the CSD system less likely. Consequently, reductions in crystalline domain size and crystallite size become more pronounced, leading to a more significant enhancement in drug dissolution.
Collapse
Affiliation(s)
- Hua Huang
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Yong Zhang
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Yao Liu
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Yufei Guo
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Chunhui Hu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810001, China
| |
Collapse
|
10
|
Li J, Wang Y, Yu D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 2023; 24:175. [PMID: 37603110 DOI: 10.1208/s12249-023-02622-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer-polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yihan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA.
| |
Collapse
|
11
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Kelsall KN, Foroughi LM, Frank DS, Schenck L, LaBuda A, Matzger AJ. Structural Modifications of Polyethylenimine to Control Drug Loading and Release Characteristics of Amorphous Solid Dispersions. Mol Pharm 2023; 20:1779-1787. [PMID: 36719910 DOI: 10.1021/acs.molpharmaceut.2c00970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crystalline drugs with low solubility have the potential to benefit from delivery in the amorphous form. The polymers used in amorphous solid dispersions (ASDs) influence their maximum drug loading, solubility, dissolution rate, and physical stability. Herein, the influence of hydrophobicity of crosslinked polyethylenimine (PEI) is investigated for the delivery of the BCS class II nonsteroidal anti-inflammatory drug flufenamic acid (ffa). Several synthetic variables for crosslinking PEI with terephthaloyl chloride were manipulated: solvent, crosslinking density, reactant concentration, solution viscosity, reaction temperature, and molecular weight of the hyperbranched polymer. Benzoyl chloride was employed to cap amine groups to increase the hydrophobicity of the crosslinked materials. Amorphous deprotonated ffa was present in all ASDs; however, the increased hydrophobicity and reduced basicity from benzoyl functionalization led to a combination of amorphous deprotonated ffa and amorphous neutral ffa in the materials at high drug loadings (50 and 60 wt %). All ASDs demonstrated enhanced drug delivery in acidic media compared to crystalline ffa. Physical stability testing showed no evidence of crystallization after 29 weeks under various relative humidity conditions. These findings motivate the broadening of polymer classes employed in ASD formation to include polymers with very high functional group concentrations to enable loadings not readily achieved with existing polymers.
Collapse
Affiliation(s)
- Kristen N Kelsall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leila M Foroughi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Derek S Frank
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Anthony LaBuda
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam J Matzger
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Neusaenger AL, Yao X, Yu J, Kim S, Hui HW, Huang L, Que C, Yu L. Amorphous Drug-Polymer Salts: Maximizing Proton Transfer to Enhance Stability and Release. Mol Pharm 2023; 20:1347-1356. [PMID: 36668815 PMCID: PMC9906740 DOI: 10.1021/acs.molpharmaceut.2c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An amorphous drug-polymer salt (ADPS) can be remarkably stable against crystallization at high temperature and humidity (e.g., 40°C/75% RH) and provide fast release. Here, we report that process conditions strongly influence the degree of proton transfer (salt formation) between a drug and a polymer and in turn the product's stability and release. For lumefantrine (LMF) formulated with poly(acrylic acid) (PAA), we first show that the amorphous materials prepared by slurry conversion and antisolvent precipitation produce a single trend in which the degree of drug protonation increases with PAA concentration from 0% for pure LMF to ∼100% above 70 wt % PAA, independent of PAA's molecular weight (1.8, 450, and 4000 kg/mol). This profile describes the equilibrium for salt formation and can be modeled as a chemical equilibrium in which the basic molecules compete for the acidic groups on the polymer chain. Relative to this equilibrium, the literature methods of hot-melt extrusion (HME) and rotary evaporation (RE) reached much lower degrees of salt formation. For example, at 40 wt % drug loading, HME reached 5% salt formation and RE 15%, both well below the equilibrium value of 85%. This is noteworthy given the common use of HME and RE in manufacturing amorphous formulations, indicating a need for careful control of process conditions to ensure the full interaction between the drug and the polymer. This need arises due to the low mobility of macromolecules and the mutual hindrance of adjacent reaction sites. We find that a high degree of salt formation enhances drug stability and release. For example, at 50% drug loading, an HME-like formulation with 19% salt formation crystallized faster and released only 20% of the drug relative to a slurry-prepared formulation with 70% salt formation. Based on this work, we recommend slurry conversion as the method for preparing ADPS for its ability to enhance salt formation and continuously adjust drug loading. While this work focused on salt formation, the impact of process conditions on the molecular-level interactions between a drug and a polymer is likely a general issue for amorphous solid dispersions, with consequences on product stability and drug release.
Collapse
Affiliation(s)
- Amy Lan Neusaenger
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Xin Yao
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Soojin Kim
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Ho-Wah Hui
- Drug
Product Development, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | - Lian Huang
- Drug
Product Development, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | - Chailu Que
- Drug
Product Development, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | - Lian Yu
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States,Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States,
| |
Collapse
|
14
|
Frank DS, Prasad P, Iuzzolino L, Schenck L. Dissolution Behavior of Weakly Basic Pharmaceuticals from Amorphous Dispersions Stabilized by a Poly(dimethylaminoethyl Methacrylate) Copolymer. Mol Pharm 2022; 19:3304-3313. [PMID: 35985017 DOI: 10.1021/acs.molpharmaceut.2c00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amorphous solid dispersions (ASDs) are a well-documented formulation approach to improve the rate and extent of dissolution for hydrophobic pharmaceuticals. However, weakly basic compounds can complicate standard approaches to ASDs due to pH-dependent solubility, resulting in uncontrolled drug release in gastric conditions and unstabilized supersaturated solutions prone to precipitation at neutral pH. This work examines the release mechanisms of amorphous dispersions containing model weakly basic pharmaceuticals posaconazole and lumefantrine from a basic poly(dimethylaminoethyl methacrylate) copolymer (Eudragit EPO) and compares their dissolution behavior with ASDs stabilized by acidic and neutral polymers to understand potential benefits to release from a basic polymeric stabilizer. It was found that dissolution of Eudragit EPO ASDs resulted in supersaturation under gastric conditions, which could be sustained upon adjustment to neutral pH. However, the dissolution behavior of Eudragit EPO ASDs was sensitive to the initial pH of the gastric media. For lumefantrine, elevated initial gastric pH resulted in precipitation of amorphous nanoparticles; for posaconazole, elevated gastric pH led to crystallization of the pharmaceutical from solution. This sensitivity to gastric pH was found to originate from the impact of Eudragit EPO on gastric pH and the solubility of each pharmaceutical in the first stage of dissolution. In total, these data illustrate benefits and liabilities for the use of Eudragit EPO for ASDs containing weak pharmaceutical bases to guide the design of robust pharmaceutical formulations.
Collapse
Affiliation(s)
- Derek S Frank
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Prateek Prasad
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luca Iuzzolino
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
15
|
Lalge R, Kaur N, Duggirala NK, Suryanarayanan R. Dual Functionality of Bile Acid: Physical Stabilization of Drugs in the Amorphous Form and Solubility Enhancement in Solution. Mol Pharm 2022; 19:2595-2606. [PMID: 35687125 DOI: 10.1021/acs.molpharmaceut.2c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs containing an amino aromatic nitrogen moiety were stabilized in the amorphous form by the surfactant cholic acid (CA). Coamorphous systems of lamotrigine (LAM), pyrimethamine (PYR), and trimethoprim (TRI) were each prepared with CA. Drug-CA interactions, investigated by IR and solid-sate NMR spectroscopy, revealed deprotonation of the carboxylic acid group in CA and the protonation of the most basic nitrogen of the drug. The coamorphous systems exhibited exceptional physical stability and resisted crystallization at (i) elevated temperatures (>100 °C) and (ii) accelerated storage conditions, 40 °C/75% relative humidity for 15 months. The dissolution performance of each coamorphous system was compared with the respective crystalline drug based on the area under the curve (AUC) of the concentration-time profiles. A 25-fold increase in AUC was observed in the PYR-CA coamorphous system. The solubility enhancement is attributed not only due to drug amorphization but also due to solubilization by CA. The supramolecular synthon approach, through a drug-CA interaction, yielded physically stable coamorphous systems with enhanced aqueous drug solubility.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Navpreet Kaur
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Naga Kiran Duggirala
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Yao X, Neusaenger AL, Yu L. Amorphous Drug-Polymer Salts. Pharmaceutics 2021; 13:pharmaceutics13081271. [PMID: 34452231 PMCID: PMC8401805 DOI: 10.3390/pharmaceutics13081271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Amorphous formulations provide a general approach to improving the solubility and bioavailability of drugs. Amorphous medicines for global health should resist crystallization under the stressful tropical conditions (high temperature and humidity) and often require high drug loading. We discuss the recent progress in employing drug–polymer salts to meet these goals. Through local salt formation, an ultra-thin polyelectrolyte coating can form on the surface of amorphous drugs, immobilizing interfacial molecules and inhibiting fast crystal growth at the surface. The coated particles show improved wetting and dissolution. By forming an amorphous drug–polymer salt throughout the bulk, stability can be vastly enhanced against crystallization under tropical conditions without sacrificing the dissolution rate. Examples of these approaches are given, along with suggestions for future work.
Collapse
|