1
|
Hamed R, Aburayya R, Alkilani AZ, Hammad AM, Abusara OH, Abo-Zour H. Thermo-Responsive Niosomal In Situ Gels for Topical Delivery of Prednisolone. AAPS PharmSciTech 2025; 26:116. [PMID: 40301190 DOI: 10.1208/s12249-025-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/01/2025] [Indexed: 05/01/2025] Open
Abstract
Prednisolone (PRD) is known for its anti-inflammatory effect on the skin. The study aimed to encapsulate PRD into niosomes and then load them into thermo-responsive in situ gels for skin inflammation to enhance drug stability, skin permeability, and patient compliance while minimizing systemic exposure. PRD was encapsulated into non-PEGylated and PEGylated niosomes and then loaded into thermo-responsive in situ gels. The non-PEGylated PRD niosomes exhibited a particle size (PS) of 354.3 ± 1.9 nm, a polydispersity index (PDI) of 0.3 ± 0.0, and a ζ-potential of - 19.4 ± 1.0 mV. While the PEGylated attained PS, PDI, and ζ-potential of 314.9 ± 4.2 nm, 0.1 ± 0.0, and - 34.6 ± 2.2 mV, respectively. In addition, PEGylated niosomes exhibited higher entrapment efficiency and drug loading than non-PEGylated niosomes. The loading of the non-PEGylated and PEGylated PRD niosomes into thermo-responsive in situ gel showed a phase transition (Tsol→gel) at 34.1 ± 0.4 and 33.2 ± 0.9°C, respectively. The in situ gels showed a pseudoplastic flow with viscoelastic properties. The PRD niosomes and their corresponding in situ gels were biocompatible against human gingival fibroblasts. A decrease in rat paw inflammation was observed after applying the PRD niosomal gels. Stability studies for 3 months at 4°C showed that the PEGylated PRD niosomes and their corresponding in situ gel were more stable than the non-PEGylated PRD niosomes and their corresponding in situ gel. In conclusion, PEGylated PRD niosomal in situ gel demonstrated superior stability and sustained release, making it a promising candidate for topical corticosteroid therapy.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
| | - Rafa Aburayya
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, 13110, Jordan
| | - Alaa M Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, 13110, Jordan
| |
Collapse
|
2
|
Alharthi S, Alrashidi AA, Ziora Z, Ebrahimi Shahmabadi H, Alavi SE. Innovative PEGylated chitosan nanocarriers for co-delivery of doxorubicin and CpG in breast cancer therapy: Preparation, characterization, and immunotherapeutic potential. Med Oncol 2025; 42:176. [PMID: 40266471 DOI: 10.1007/s12032-025-02714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/30/2025] [Indexed: 04/24/2025]
Abstract
This study aimed to design polyethylene glycol (PEG)ylated chitosan (CS, PEG-CS) nanoparticles for the co-delivery of doxorubicin (DOX), cytosine-phosphate-guanine oligodeoxynucleotide (CpG), and ovalbumin (OVA) to enhance breast cancer therapy. PEG-CS nanoparticles were synthesized using the ionotropic gelation method and characterized for size, zeta potential (ZP), entrapment efficiency, and drug release. In vitro and in vivo studies were conducted to assess cytotoxicity, immune activation, and antitumor efficacy. The optimized nanoparticles had a mean diameter of 156.4 ± 8.9 nm, a ZP of +18 mV, and demonstrated 75.3% DOX and 68.3% CpG release over 72 h. PEG-CS-DOX/CpG/OVA enhanced tumor reduction by 2.6-fold in vivo, with no significant toxicity. PEG-CS-DOX/CpG/OVA nanoparticles showed promise as a co-delivery platform for cancer therapy, combining cytotoxic and immune-stimulating effects with minimal toxicity.
Collapse
Affiliation(s)
- Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, 11961, Al-Dawadmi, Saudi Arabia
| | - Amal Abdullah Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Zyta Ziora
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, 4067, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| | - Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| |
Collapse
|
3
|
Alharthi S, Alrashidi AA, Almawash S, Ebrahimi Shahmabadi H, Alavi SE. Targeted antibacterial and anticancer therapeutics: PEGylated liposomal delivery of turmeric and cinnamon extracts- in vitro and in vivo efficacy. Drug Dev Ind Pharm 2025; 51:231-243. [PMID: 39901813 DOI: 10.1080/03639045.2025.2463395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVE This study presents the characterization and evaluation of polyethylene glycol (PEG)-coated liposomal formulations loaded with turmeric (TUR) and cinnamon (CINN) extracts for the treatment of bacterial infections. SIGNIFICANCE TUR/CINN-loaded PEGylated liposomes enhance the antibacterial effects of TUR and CINN both in vitro and in vivo. METHODS PEGylated liposomes loaded with TUR and CINN were synthesized using the reverse-phase evaporation method and characterized by dynamic light scattering and spectrophotometry. The formulations were also evaluated for biocompatibility, permeability, and antibacterial efficacy in both in vitro and in vivo environments. RESULTS The nanoparticles, with dimensions ranging from 155 to 164 nm, exhibited consistent size distribution (polydispersity index (PDI) of 0.219 to 0.23), stable zeta potentials (-20 to -13 mV), and effective drug encapsulation rates (86.8% to 93.6%), suggesting their potential for targeted drug delivery. In vitro experiments demonstrated their biocompatibility (cell viability exceeding 75% at 40 µg/mL), permeability (transfer rates of 20.2% to 21.5%), antibacterial activity (minimum inhibitory concentrations of 8 to 64 µg/mL), and their ability to generate reactive oxygen species (1.2- to 2-fold increase compared to the control). In an in vivo murine model of Pseudomonas aeruginosa skin infections, significant reductions in viable bacterial counts were observed, with PEG-Lip-TUR/CINN leaving only 102 colony-forming units/mL. Additionally, this formulation displayed anti-metastatic properties, inhibiting cancer cell migration by 99%. CONCLUSIONS This study highlights the potential of PEGylated liposomal formulations loaded with TUR and CINN as versatile therapeutic platforms for the treatment of antibiotic-resistant infections and cancer metastasis.
Collapse
Affiliation(s)
- Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Amal Abdullah Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Alyami H, Alharthi S, Alqahtani AJ, Ebrahimi Shahmabadi H, Alavi SE. Enhanced antitumor efficacy of nanostructured lipid carrier co-loaded with docetaxel and 5-fluorouracil for targeted gastric cancer therapy. Med Oncol 2025; 42:53. [PMID: 39841333 DOI: 10.1007/s12032-025-02603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
This study presents nanostructured lipid carrier (NLC) co-loaded with Docetaxel (DCT) and 5-Fluorouracil (5-FU) as a targeted therapeutic approach for gastric cancer (GC). Using nanoprecipitation, NLC-DCT/5-FU were synthesized and exhibited an average particle size of 215.3 ± 10.4 nm, a polydispersity index (PDI) of 0.29, and a zeta potential of - 17.1 mV. Encapsulation efficiency reached 95.9% for DCT and 5-FU, with a loading efficiency of 11.2%. In vitro release studies demonstrated a biphasic release profile, with an initial burst and sustained release, achieving 85.6% DCT and 75.8% 5-FU release over 72 h. Cytotoxicity assays in MKN45 cells showed a significantly lower half-maximal inhibitory concentration (IC50) for NLC-DCT/5-FU (0.3 µM) compared to free DCT (3.9 µM) and free 5-FU (19.5 µM), indicating enhanced efficacy. In vivo evaluation in a GC mouse model confirmed substantial tumor volume reduction to 213 mm3 with NLC-DCT/5-FU treatment, compared to 432 mm3 with the free-drug combination. Systemic safety assessment showed minimal adverse effects, suggesting the nanoparticles' enhanced therapeutic index. These results demonstrate that NLC-based co-delivery systems could substantially improve the clinical outcomes of GC therapy.
Collapse
Affiliation(s)
- Hanan Alyami
- Department of Medical & Surgical Nursing, College of Nursing, Princess Norah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi, 11961, Saudi Arabia.
| | - Ali Jaber Alqahtani
- Faculty of Medical and Health Sciences, Emergency Medical Care, Liwa College, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| | - Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| |
Collapse
|
5
|
Haghighat ZA, Safekordi A, Ardjmand M, Akbarzadeh A. Exploring the Antitumor Efficacy of PEGylated Liposomes Loaded with Licorice Extract for Cancer Therapy. Curr Cancer Drug Targets 2025; 25:357-369. [PMID: 38685810 DOI: 10.2174/0115680096292153240416115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Glycyrrhizic Acid (GA), a compound derived from licorice, has exhibited promising anticancer properties against several cancer types, including Prostate Cancer (PCa) and Gastric Cancer (GCa). OBJECTIVE This study has introduced a novel approach involving the encapsulation of GA and Licorice extract (Lic) into Polyethylene Glycol Liposomes (PEG-Lip) and assessed their efficacy against AGS (human gastric cancer) and PC-3 (human prostate cancer) cells, marking the first report of this endeavor. METHODS We synthesized GA-loaded PEG-Lip (GA PEG-Lip) and Lic-loaded PEG-Lip (Lic PEG-Lip) through the reverse-phase evaporation method. RESULTS Characterization of these liposomal formulations revealed their size, drug encapsulation, and loading efficiencies to be 110 ± 2.05 nm, 117 ± 1.24 nm; 61 ± 0.81%, 34 ± 0.47%; and 8 ± 0.41% and 4.6 ± 0.21%, respectively. Importantly, the process has retained the chemical structure of both GA and Lic. Furthermore, GA and Lic have been released from the PEG-Lip formulations in a controlled manner. In our experiments, both nanoformulations exhibited enhanced cytotoxic effects against AGS and PC-3 cells. Notably, GA PEG-Lip outperformed Lic PEG-Lip, reducing the viability of PC-3 and AGS cells by 12.5% and 15.9%, respectively. CONCLUSION These results have been corroborated by apoptosis assays, which have demonstrated GA PEG-Lip and Lic PEG-Lip to induce stronger apoptotic effects compared to free GA and Lic on both PC-3 and AGS cells. This study has underscored the potential of encapsulating GA and Lic in PEG-Lip as a promising strategy to augment their anticancer efficacy against prostate and gastric cancers.
Collapse
Affiliation(s)
- Zeinab Azizi Haghighat
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Safekordi
- Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Ao H, Song H, Li J, Wang X. Enhanced anti-glioma activity of annonaceous acetogenins based on a novel liposomal co-delivery system with ginsenoside Rh2. Drug Deliv 2024; 31:2324716. [PMID: 38555735 PMCID: PMC10984232 DOI: 10.1080/10717544.2024.2324716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024] Open
Abstract
Annonaceous acetogenins (ACGs) have potent anti-tumor activity, and the problems of their low solubility, hemolysis, and in vivo delivery have been solved by encapsulation into nanoparticles. However, the high toxicity still limits their application in clinic. In this paper, the co-delivery strategy was tried to enhance the in vivo anti-tumor efficacy and reduce the toxic effects of ACGs. Ginsenoside Rh2, a naturally derived biologically active compound, which was reported to have synergistic effect with paclitaxel, was selected to co-deliver with ACGs. And due to its similarity with cholesterol in chemical structure, the co-loading liposomes, (ACGs + Rh2)-Lipo, were successfully constructed using Rh2 instead of cholesterol as the membrane material. The obtained (ACGs + Rh2)-Lipo and ACGs-Lipo had similar mean particle size (about 80 nm), similar encapsulation efficiency (EE, about 97%) and good stability. The MTS assay indicated that (ACGs + Rh2)-Lipo had stronger toxicity in vitro. In the in vivo study, in contrast to ACGs-Lipo, (ACGs + Rh2)-Lipo demonstrated an improved tumor targetability (3.3-fold in relative tumor targeting index) and significantly enhanced the antitumor efficacy (tumor inhibition rate, 72.9 ± 5.4% vs. 60.5 ± 5.4%, p < .05). The body weight change, liver index, and spleen index of tumor-bearing mice showed that Rh2 can attenuate the side effects of ACGs themselves. In conclusion, (ACGs + Rh2)-Lipo not only alleviated the toxicity of ACGs to the organism, but also enhanced their anti-tumor activity, which is expected to break through their bottleneck.
Collapse
Affiliation(s)
- Hui Ao
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| | - Huizhu Song
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| | - Jing Li
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
7
|
Almutairy B, Alharthi S, Ziora ZM, Ebrahimi Shahmabadi H. Synthesis, radiolabeling, and biodistribution of 99 m-technetium-labeled zif-8 nanoparticles for targeted imaging applications. 3 Biotech 2024; 14:293. [PMID: 39525365 PMCID: PMC11549264 DOI: 10.1007/s13205-024-04145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the synthesis and radiolabeling of zeolitic imidazolate frameworks (ZIF-8) with the radioisotope technetium-99 m (99mTc) using a solvothermal method in methanol. The methanolic medium facilitated the formation of nanoparticles with favorable characteristics, including a smaller particle size (198 ± 9.8 nm) and a low polydispersity index (PDI = 0.219 ± 0.011). Radiolabeling efficiency (RE%) and radiochemical purity (RCP%) were optimized by employing SnCl2 as a reducing agent, resulting in an RE% of 95.2 ± 1.9% and an RCP% of 96.1 ± 1.7% in triplicate (n = 3) at 65 °C. The nanoparticles exhibited high serum stability, retaining 99.05% of RCP% after 24 h, and demonstrated hemocompatibility, with hemolysis rates below 5% across all tested concentrations. In vitro biocompatibility assessments using NIH-3T3 cells indicated cell viability above 70% at concentrations up to 40 μg/mL. Biodistribution studies in rabbits (n = 6) revealed predominant accumulation in the bladder, with radiotracer uptake in the bladder being 6.3, 7.2, and 36.2 times higher than in the liver, kidneys, and heart (p < 0.0001), respectively, suggesting renal clearance. These results underscore the potential of 99mTc-(ZIF-8) nanoparticles for biomedical applications, particularly in targeted imaging and drug delivery. Future research will focus on improving targeting specificity and enhancing therapeutic efficacy in disease models. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04145-w.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, 11961 Shaqra, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi, 11961 Shaqra, Saudi Arabia
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911 Iran
| |
Collapse
|
8
|
Alharthi S, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H, Alavi SE. Developing Engineered Nano-Immunopotentiators for the Stimulation of Dendritic Cells and Inhibition and Prevention of Melanoma. Pharm Res 2024; 41:1163-1181. [PMID: 38839718 DOI: 10.1007/s11095-024-03722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAFV600E peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice. METHODS PEG-PLGA-IMQ-BRAFV600E nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAFV600E, and IMQ. Characterization included size measurement and drug release profiling. Efficacy was assessed in inhibiting BPD6 melanoma cell growth and activating immature bone marrow DCs, T cells, macrophages, and splenocyte cells through MTT and ELISA assays. In vivo, therapeutic and immunogenic effects potential was evaluated, comparing it to IMQ + BRAFV600E and PLGA-IMQ-BRAFV600E nanoparticles in inhibiting subcutaneous BPD6 tumor growth. RESULTS The results highlight the successful synthesis of PEG-PLGA-IMQ-BRAFV600E nanoparticles (203 ± 11.1 nm), releasing 73.4% and 63.2% of IMQ and BARFV600E, respectively, within the initial 48 h. In vitro, these nanoparticles demonstrated a 1.3-fold increase in potency against BPD6 cells, achieving ~ 2.8-fold enhanced cytotoxicity compared to PLGA-IMQ-BRAFV600E. Moreover, PEG-PLGA-IMQ-BRAFV600E exhibited a 1.3-fold increase in potency for enhancing IMQ cytotoxic effects and a 1.1- to ~ 2.4-fold increase in activating DCs, T cells, macrophages, and splenocyte cells compared to IMQ-BRAFV600E and PLGA-IMQ-BRAFV600E. In vivo, PEG-PLGA-IMQ-BRAFV600E displayed a 1.3- to 7.5-fold increase in potency for inhibiting subcutaneous BPD6 tumor growth compared to the other formulations. CONCLUSIONS The findings suggest that PEG-PLGA nanoparticles effectively promote DC maturation, T cell activation, and potentially macrophage activation. The study highlights the promising role of this nanocomposite in vaccine development.
Collapse
Affiliation(s)
- Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi, 11961, Saudi Arabia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan, 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| | - Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| |
Collapse
|
9
|
Pusta A, Tertis M, Ardusadan C, Mirel S, Cristea C. Electrochemical Sensing Device for Carboplatin Monitoring in Proof-of-Concept Drug Delivery Nanosystems. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:793. [PMID: 38727386 PMCID: PMC11085464 DOI: 10.3390/nano14090793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
(1) Background: Carboplatin (CBP) is a chemotherapeutic drug widely used in the treatment of a variety of cancers. Despite its efficiency, CBP is associated with side effects that greatly limit its clinical use. To mitigate these effects, CBP can be encapsulated in targeted delivery systems, such as liposomes. Ensuring the adequate loading and release of CBP from these carriers requires strict control in pharmaceutical formulation development, demanding modern, rapid, and robust analytical methods. The aim of this study was the development of a sensor for the fast and accurate quantification of CBP and its application on proof-of-concept CBP-loaded nanosomes. (2) Methods: Screen-printed electrodes were obtained in-lab and the electrochemical behavior of CBP was tested on the obtained electrodes. (3) Results: The in-lab screen-printed electrodes demonstrated superior properties compared to commercial ones. The novel sensors demonstrated accurate detection of CBP on a dynamic range from 5 to 500 μg/mL (13.5-1350 μM). The method was successfully applied on CBP loaded and released from nanosomes, with strong correlations with a spectrophotometric method used as control. (4) Conclusions: This study demonstrates the viability of electrochemical techniques as alternative options during the initial phases of pharmaceutical formulation development.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.P.); (C.A.); (C.C.)
- Department of Medical Devices, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Mihaela Tertis
- Department of Analytical Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.P.); (C.A.); (C.C.)
| | - Catalina Ardusadan
- Department of Analytical Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.P.); (C.A.); (C.C.)
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.P.); (C.A.); (C.C.)
| |
Collapse
|
10
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
11
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
12
|
Alavi SE, Gholami M, Shahmabadi HE, Reher P. Resorbable GBR Scaffolds in Oral and Maxillofacial Tissue Engineering: Design, Fabrication, and Applications. J Clin Med 2023; 12:6962. [PMID: 38002577 PMCID: PMC10672220 DOI: 10.3390/jcm12226962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Guided bone regeneration (GBR) is a promising technique in bone tissue engineering that aims to replace lost or injured bone using resorbable scaffolds. The promotion of osteoblast adhesion, migration, and proliferation is greatly aided by GBR materials, and surface changes are critical in imitating the natural bone structure to improve cellular responses. Moreover, the interactions between bioresponsive scaffolds, growth factors (GFs), immune cells, and stromal progenitor cells are essential in promoting bone regeneration. This literature review comprehensively discusses various aspects of resorbable scaffolds in bone tissue engineering, encompassing scaffold design, materials, fabrication techniques, and advanced manufacturing methods, including three-dimensional printing. In addition, this review explores surface modifications to replicate native bone structures and their impact on cellular responses. Moreover, the mechanisms of bone regeneration are described, providing information on how immune cells, GFs, and bioresponsive scaffolds orchestrate tissue healing. Practical applications in clinical settings are presented to underscore the importance of these principles in promoting tissue integration, healing, and regeneration. Furthermore, this literature review delves into emerging areas of metamaterials and artificial intelligence applications in tissue engineering and regenerative medicine. These interdisciplinary approaches hold immense promise for furthering bone tissue engineering and improving therapeutic outcomes, leading to enhanced patient well-being. The potential of combining material science, advanced manufacturing, and cellular biology is showcased as a pathway to advance bone tissue engineering, addressing a variety of clinical needs and challenges. By providing this comprehensive narrative, a detailed, up-to-date account of resorbable scaffolds' role in bone tissue engineering and their transformative potential is offered.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran;
| | - Peter Reher
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| |
Collapse
|
13
|
Alavi SE, Alavi SZ, Gholami M, Sharma A, Sharma LA, Ebrahimi Shahmabadi H. Biocomposite-based strategies for dental bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:554-568. [PMID: 37612166 DOI: 10.1016/j.oooo.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Because of the anatomical complexity of the oral and maxillofacial sites, repairing bone defects in these regions is very difficult. This review article aims to consider the application of biocomposites-based strategies for dental bone regeneration. STUDY DESIGN Research papers related to the topic, published over the last 20 years, were selected using the Web of Science, Pubmed, Scopus, and Google Scholar databases. RESULTS The strategies of monophasic, biphasic/multiphasic scaffolds, and biopolymer-based nanocomposite scaffolds containing nanomaterials compared with traditional methods used for bone regeneration, such as autografts, allografts, xenografts, and alloplasts are found to be superior because of their ability to overcome the issues (e.g., limited bone sources, pain, immune responses, high cost) related to the applications of the traditional methods. CONCLUSIONS In addition, additive manufacturing technologies were found to be highly advantageous for improving the efficacy of biocomposite scaffolds for treating dental bone defects.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Ajay Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Lavanya A Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia.
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
14
|
Impact of PEGylated Liposomal Doxorubicin and Carboplatin Combination on Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14102183. [PMID: 36297618 PMCID: PMC9609487 DOI: 10.3390/pharmaceutics14102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is an incurable cancer with a 5-year survival chance of less than 5%. Chemotherapy is a therapeutic approach to treating the disease; however, due to the presence of the blood–brain barrier (BBB), the probability of success is low. To overcome this issue, nanoparticles are promising carriers for crossing the BBB and delivering drugs to the tumor. In this study, the anticancer efficacy of doxorubicin (DOX) and carboplatin (CB) loaded into polyethylene glycol (PEG)ylated liposome nanoparticles (PEG-Lip) and in treating brain cancer was evaluated in vitro and in vivo. The results demonstrated that PEG-Lip-DOX/CB with a size of 212 ± 10 nm was synthesized that could release the loaded drugs in a controlled manner, from which 56.3% of the loaded drugs were released after 52 h. In addition, PEG-Lip-DOX/CB could significantly increase the cytotoxicity effects of the drugs against rat glioma C6 cells (IC50: 8.7 and 12.9 µM for the drugs-loaded nanoparticles and DOX + CB, respectively). The in vivo results also demonstrated that PEGylated liposomes, compared to non-PEGylated liposomes (Lip) and DOX + CB, were more efficient in increasing the therapeutic effects and decreasing the side effects of the drugs, in which the survival times of the glioblastoma-bearing rats were 39, 35, and 30 days in the PEG-Lip-DOX/CB, Lip-DOX/CB, and DOX + CB receiver groups, respectively. In addition, the weight loss was found to be 8.7, 10.5, and 13%, respectively, in the groups. The results of the toxicity evaluation were also confirmed by histopathological studies. Overall, the results of this study demonstrated that the encapsulation of DOX and CB into PEG-Lip is a promising approach to improving the properties of DOX and CB in terms of their therapeutic effects and drug side effects for the treatment of glioblastoma.
Collapse
|
15
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
16
|
A PEGylated Nanostructured Lipid Carrier for Enhanced Oral Delivery of Antibiotics. Pharmaceutics 2022; 14:pharmaceutics14081668. [PMID: 36015294 PMCID: PMC9415149 DOI: 10.3390/pharmaceutics14081668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is a major concern for public health throughout the world that severely restricts available treatments. In this context, methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a high percentage of S. aureus infections and mortality. To overcome this challenge, nanoparticles are appropriate tools as drug carriers to improve the therapeutic efficacy and decrease the toxicity of drugs. In this study, a polyethylene glycol (PEG)ylated nanostructured lipid carrier (PEG-NLC) was synthesized to improve the oral delivery of trimethoprim/sulfamethoxazole (TMP/SMZ) for the treatment of MRSA skin infection in vitro and in vivo. The nanoformulation (PEG-TMP/SMZ-NLC) was synthesized with size and drug encapsulation efficiencies of 187 ± 9 nm and 93.3%, respectively, which could release the drugs in a controlled manner at intestinal pH. PEG-TMP/SMZ-NLC was found efficient in decreasing the drugs’ toxicity by 2.4-fold in vitro. In addition, the intestinal permeability of TMP/SMZ was enhanced by 54%, and the antibacterial effects of the drugs were enhanced by 8-fold in vitro. The results of the stability study demonstrated that PEG-TMP/SMZ-NLC was stable for three months. In addition, the results demonstrated that PEG-TMP/SMZ-NLC after oral administration could decrease the drugs’ side-effects such as renal and hepatic toxicity by ~5-fold in MRSA skin infection in Balb/c mice, while it could improve the antibacterial effects of TMP/SMZ by 3 orders of magnitude. Overall, the results of this study suggest that the application of PEGylated NLC nanoparticles is a promising approach to improving the oral delivery of TMP/SMZ for the treatment of MRSA skin infection.
Collapse
|
17
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|