1
|
Ohama N, Moo TL, Chung K, Mitsuda N, Boonyaves K, Urano D, Chua NH. MEDIATOR15 destabilizes DELLA protein to promote gibberellin-mediated plant development. THE NEW PHYTOLOGIST 2025; 245:2665-2680. [PMID: 39807571 DOI: 10.1111/nph.20397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors. MED15 was found to interact with DELLA proteins, which negatively regulate gibberellic acid (GA) signaling and positively regulate GA biosynthesis. Mutants and overexpressors of MED15 exhibited multiple GA-related growth phenotypes, which resembled the phenotypes of the DELLA overexpressor and mutant, respectively. Consistent with this observation, DELLA protein levels were inversely correlated with MED15 protein levels, suggesting that MED15 activates GA signaling through DELLA degradation. MED15 was required not only for DELLA-mediated induction of GA-biosynthesis gene expression but also for GA-mediated degradation of DELLA. Therefore, MED15 facilitates DELLA destruction not only by promoting GA biosynthesis but also by accelerating DELLA turnover. Furthermore, MED15-mediated GA signaling was required for timely developmental responses to dark and warm conditions. Our results provide insight into developmental control by Mediator via precise regulation of DELLA stability. These findings are potentially useful for the generation of new crop cultivars with ideal body architecture.
Collapse
Affiliation(s)
- Naohiko Ohama
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Teck Lim Moo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - KwiMi Chung
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
2
|
Mao J, Shen B, Li W, Liu L, Li J. Post-translational Regulation of BRI1-EMS Suppressor 1 and Brassinazole-Resistant 1. PLANT & CELL PHYSIOLOGY 2024; 65:1544-1551. [PMID: 38896040 DOI: 10.1093/pcp/pcae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Brassinosteroid-insensitive 1 (BRI1)-EMS suppressor 1 (BES1) and Brassinazole-resistant 1 (BZR1) are two highly similar master transcription factors of the brassinosteroid (BR) signaling pathway that regulates a variety of plant growth and development processes as well as stress responses. Previous genetic and biochemical analyses have established a complex regulatory network to control the two transcription factors. This network includes coordination with other transcription factors and interactors, multiple post-translational modifications (PTMs) and differential subcellular localizations. In this review, we systematically detail the functions and regulatory mechanisms of various PTMs: phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation/deSUMOylation and oxidation/reduction, in regulating the subcellular localization, protein stability and the transcriptional activity of BES1/BZR1. We also discuss the current knowledge about the BES1/BZR1 interactors mediating the dynamic nucleocytoplasmic shuttling of BES1 and BZR1.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Biaodi Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Wenxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|
3
|
Zhao Y, Han Q, Zhang D. Recent Advances in the Crosstalk between Brassinosteroids and Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2024; 65:1552-1567. [PMID: 38578169 DOI: 10.1093/pcp/pcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Due to their sessile lifestyle, plants need to optimize their growth in order to adapt to ever-changing environments. Plants receive stimuli from the environment and convert them into cellular responses. Brassinosteroids (BRs), as growth-promoting steroid hormones, play a significant role in the tradeoff between growth and environmental responses. Here, we provide a comprehensive summary for understanding the crosstalk between BR and various environmental stresses, including water availability, temperature fluctuations, salinization, nutrient deficiencies and diseases. We also highlight the bottlenecks that need to be addressed in future studies. Ultimately, we suppose to improve plant environmental adaptability and crop yield by excavating natural BR mutants or modifying BR signaling and its targets.
Collapse
Affiliation(s)
- Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Jarvis RP, Li J, Lin R, Ling Q, Lyu Y, Sun Y, Yao Z. Reply: Does the polyubiquitination pathway operate inside intact chloroplasts to remove proteins? THE PLANT CELL 2024; 36:2990-2996. [PMID: 38738499 PMCID: PMC11371133 DOI: 10.1093/plcell/koae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Affiliation(s)
- R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuping Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yi Sun
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Zujie Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Vogel K, Isono E. Erasing marks: Functions of plant deubiquitylating enzymes in modulating the ubiquitin code. THE PLANT CELL 2024; 36:3057-3073. [PMID: 38656977 PMCID: PMC11371157 DOI: 10.1093/plcell/koae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Plant cells need to respond to environmental stimuli and developmental signals accurately and promptly. Ubiquitylation is a reversible posttranslational modification that enables the adaptation of cellular proteostasis to internal or external factors. The different topologies of ubiquitin linkages serve as the structural basis for the ubiquitin code, which can be interpreted by ubiquitin-binding proteins or readers in specific processes. The ubiquitylation status of target proteins is regulated by ubiquitylating enzymes or writers, as well as deubiquitylating enzymes (DUBs) or erasers. DUBs can remove ubiquitin molecules from target proteins. Arabidopsis (A. thaliana) DUBs belong to 7 protein families and exhibit a wide range of functions and play an important role in regulating selective protein degradation processes, including proteasomal, endocytic, and autophagic protein degradation. DUBs also shape the epigenetic landscape and modulate DNA damage repair processes. In this review, we summarize the current knowledge on DUBs in plants, their cellular functions, and the molecular mechanisms involved in the regulation of plant DUBs.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| |
Collapse
|
6
|
Wang X, Liu X, Song K, Du L. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1396634. [PMID: 38993940 PMCID: PMC11236618 DOI: 10.3389/fpls.2024.1396634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.
Collapse
Affiliation(s)
- Xiuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Zhang S, Hu N, Yu F. Insights into a functional model of key deubiquitinases UBP12/13 in plants. THE NEW PHYTOLOGIST 2024; 242:424-430. [PMID: 38406992 DOI: 10.1111/nph.19639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Understanding the complexities of protein ubiquitination is crucial, as it plays a multifaceted role in controlling protein stability, activity, subcellular localization, and interaction, which are central to diverse biological processes. Deubiquitinases (DUBs) serve to reverse ubiquitination, but research progress in plant DUBs is noticeably limited. Among existing studies, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13 have garnered attention for their extensive role in diverse biological processes in plants. This review systematically summarizes the recent advancements in UBP12/13 studies, emphasizing their function, and their substrate specificity, their relationship with E3 ubiquitin ligases, and the similarities and differences with their mammalian orthologue, USP7. By unraveling the molecular mechanisms of UBP12/13, this review offers in-depth insights into the ubiquitin-proteasome system (UPS) in plants and aims to catalyze further explorations and comprehensive understanding in this field.
Collapse
Affiliation(s)
- Shiqi Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Ningning Hu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
8
|
Chen Y, Vermeersch M, Van Leene J, De Jaeger G, Li Y, Vanhaeren H. A dynamic ubiquitination balance of cell proliferation and endoreduplication regulators determines plant organ size. SCIENCE ADVANCES 2024; 10:eadj2570. [PMID: 38478622 PMCID: PMC10936951 DOI: 10.1126/sciadv.adj2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Ubiquitination plays a crucial role throughout plant growth and development. The E3 ligase DA2 has been reported to activate the peptidase DA1 by ubiquitination, hereby limiting cell proliferation. However, the molecular mechanisms that regulate DA2 remain elusive. Here, we demonstrate that DA2 has a very high turnover and auto-ubiquitinates with K48-linkage polyubiquitin chains, which is counteracted by two deubiquitinating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13. Unexpectedly, we found that auto-ubiquitination of DA2 does not influence its stability but determines its E3 ligase activity. We also demonstrate that impairing the protease activity of DA1 abolishes the growth-reducing effect of DA2. Last, we show that synthetic, constitutively activated DA1-ubiquitin fusion proteins overrule this complex balance of ubiquitination and deubiquitination and strongly restrict growth and promote endoreduplication. Our findings highlight a nonproteolytic function of K48-linked polyubiquitination and reveal a mechanism by which DA2 auto-ubiquitination levels, in concert with UBP12 and UBP13, precisely monitor the activity of DA1 and fine-tune plant organ size.
Collapse
Affiliation(s)
- Ying Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Jelle Van Leene
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hannes Vanhaeren
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Feng H, Tan J, Deng Z. Decoding plant adaptation: deubiquitinating enzymes UBP12 and UBP13 in hormone signaling, light response, and developmental processes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:721-732. [PMID: 37904584 DOI: 10.1093/jxb/erad429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023]
Abstract
Ubiquitination, a vital post-translational modification in plants, plays a significant role in regulating protein activity, localization, and stability. This process occurs through a complex enzyme cascade that involves E1, E2, and E3 enzymes, leading to the covalent attachment of ubiquitin molecules to substrate proteins. Conversely, deubiquitinating enzymes (DUBs) work in opposition to this process by removing ubiquitin moieties. Despite extensive research on ubiquitination in plants, our understanding of the function of DUBs is still emerging. UBP12 and UBP13, two plant DUBs, have received much attention recently and are shown to play pivotal roles in hormone signaling, light perception, photoperiod responses, leaf development, senescence, and epigenetic transcriptional regulation. This review summarizes current knowledge of these two enzymes, highlighting the central role of deubiquitination in regulating the abundance and activity of critical regulators such as receptor kinases and transcription factors during phytohormone and developmental signaling.
Collapse
Affiliation(s)
- Hanqian Feng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
10
|
Liu L, Xie Y, Yahaya BS, Wu F. GIGANTEA Unveiled: Exploring Its Diverse Roles and Mechanisms. Genes (Basel) 2024; 15:94. [PMID: 38254983 PMCID: PMC10815842 DOI: 10.3390/genes15010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
GIGANTEA (GI) is a conserved nuclear protein crucial for orchestrating the clock-associated feedback loop in the circadian system by integrating light input, modulating gating mechanisms, and regulating circadian clock resetting. It serves as a core component which transmits blue light signals for circadian rhythm resetting and overseeing floral initiation. Beyond circadian functions, GI influences various aspects of plant development (chlorophyll accumulation, hypocotyl elongation, stomatal opening, and anthocyanin metabolism). GI has also been implicated to play a pivotal role in response to stresses such as freezing, thermomorphogenic stresses, salinity, drought, and osmotic stresses. Positioned at the hub of complex genetic networks, GI interacts with hormonal signaling pathways like abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), and brassinosteroids (BRs) at multiple regulatory levels. This intricate interplay enables GI to balance stress responses, promoting growth and flowering, and optimize plant productivity. This review delves into the multifaceted roles of GI, supported by genetic and molecular evidence, and recent insights into the dynamic interplay between flowering and stress responses, which enhance plants' adaptability to environmental challenges.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China;
| | - Yuxin Xie
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| |
Collapse
|
11
|
An JP, Liu ZY, Zhang XW, Wang DR, Zeng F, You CX, Han Y. Brassinosteroid signaling regulator BIM1 integrates brassinolide and jasmonic acid signaling during cold tolerance in apple. PLANT PHYSIOLOGY 2023; 193:1652-1674. [PMID: 37392474 DOI: 10.1093/plphys/kiad371] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Although brassinolide (BR) and jasmonic acid (JA) play essential roles in the regulation of cold stress responses, the molecular basis of their crosstalk remains elusive. Here, we show a key component of BR signaling in apple (Malus × domestica), BR INSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1)-INTERACTING MYC-LIKE PROTEIN1 (MdBIM1), increases cold tolerance by directly activating expression of C-REPEAT BINDING FACTOR1 (MdCBF1) and forming a complex with C-REPEAT BINDING FACTOR2 (MdCBF2) to enhance MdCBF2-activated transcription of cold-responsive genes. Two repressors of JA signaling, JAZMONATE ZIM-DOMAIN1 (MdJAZ1) and JAZMONATE ZIM-DOMAIN2 (MdJAZ2), interact with MdBIM1 to integrate BR and JA signaling under cold stress. MdJAZ1 and MdJAZ2 reduce MdBIM1-promoted cold stress tolerance by attenuating transcriptional activation of MdCBF1 expression by MdBIM1 and interfering with the formation of the MdBIM1-MdCBF2 complex. Furthermore, the E3 ubiquitin ligase ARABIDOPSIS TÓXICOS en LEVADURA73 (MdATL73) decreases MdBIM1-promoted cold tolerance by targeting MdBIM1 for ubiquitination and degradation. Our results not only reveal crosstalk between BR and JA signaling mediated by a JAZ-BIM1-CBF module but also provide insights into the posttranslational regulatory mechanism of BR signaling.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Zhi-Ying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fanchang Zeng
- College of Agriculture, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
12
|
Han C, Wang L, Lyu J, Shi W, Yao L, Fan M, Bai MY. Brassinosteroid signaling and molecular crosstalk with nutrients in plants. J Genet Genomics 2023; 50:541-553. [PMID: 36914050 DOI: 10.1016/j.jgg.2023.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
As sessile organisms, plants have evolved sophisticated mechanisms to optimize their growth and development in response to fluctuating nutrient levels. Brassinosteroids (BRs) are a group of plant steroid hormones that play critical roles in plant growth and developmental processes as well as plant responses to environmental stimuli. Recently, multiple molecular mechanisms have been proposed to explain the integration of BRs with different nutrient signaling processes to coordinate gene expression, metabolism, growth, and survival. Here, we review recent advances in understanding the molecular regulatory mechanisms of the BR signaling pathway and the multifaceted roles of BR in the intertwined sensing, signaling, and metabolic processes of sugar, nitrogen, phosphorus, and iron. Further understanding and exploring these BR-related processes and mechanisms will facilitate advances in crop breeding for higher resource efficiency.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
13
|
Raffeiner M, Zhu S, González-Fuente M, Üstün S. Interplay between autophagy and proteasome during protein turnover. TRENDS IN PLANT SCIENCE 2023; 28:698-714. [PMID: 36801193 DOI: 10.1016/j.tplants.2023.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.
Collapse
Affiliation(s)
- Margot Raffeiner
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Shanshuo Zhu
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Manuel González-Fuente
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Suayib Üstün
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany.
| |
Collapse
|
14
|
Zhu L, Wang H, Zhu J, Wang X, Jiang B, Hou L, Xiao G. A conserved brassinosteroid-mediated BES1-CERP-EXPA3 signaling cascade controls plant cell elongation. Cell Rep 2023; 42:112301. [PMID: 36952343 DOI: 10.1016/j.celrep.2023.112301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/05/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Continuous plant growth is achieved by cell division and cell elongation. Brassinosteroids control cell elongation and differentiation throughout plant life. However, signaling cascades underlying BR-mediated cell elongation are unknown. In this study, we introduce cotton fiber, one of the most representative single-celled tissues, to decipher cell-specific BR signaling. We find that gain of function of GhBES1, a key transcriptional activator in BR signaling, enhances fiber elongation. The chromatin immunoprecipitation sequencing analysis identifies a cell-elongation-related protein, GhCERP, whose transcription is directly activated by GhBES1. GhCERP, a downstream target of GhBES1, transmits the GhBES1-mediated BR signaling to its target gene, GhEXPA3-1. Ultimately, GhEXPA3-1 promotes fiber cell elongation. In addition, inter-species functional analysis of the BR-mediated BES1-CERP-EXPA3 signaling cascade also promotes Arabidopsis root and hypocotyl growth. We propose that the BES1-CERP-EXPA3 module may be a broad-spectrum pathway that is universally exploited by diverse plant species to regulate BR-promoted cell elongation.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jiaojie Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaosi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Liyong Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
15
|
Park SH, Jeong JS, Huang CH, Park BS, Chua NH. Inositol polyphosphates-regulated polyubiquitination of PHR1 by NLA E3 ligase during phosphate starvation response in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:1215-1228. [PMID: 36377104 DOI: 10.1111/nph.18621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phosphate (Pi) availability is a major factor limiting plant growth and development. The key transcription factor controlling Pi-starvation response (PSR) is PHOSPHATE STARVATION RESPONSE 1 (PHR1) whose transcript levels do not change with changes in Pi levels. However, how PHR1 stability is regulated at the post-translational level is relatively unexplored in Arabidopsis thaliana. Inositol polyphosphates (InsPn) are important signal molecules that promote the association of stand-alone SPX domain proteins with PHR1 to regulate PSR. Here, we show that NITROGEN LIMITATION ADAPTATION (NLA) E3 ligase can associate with PHR1 through its conserved SPX domain and polyubiquitinate PHR1 in vitro. The association with PHR1 and its ubiquitination is enhanced by InsP6 but not by InsP5. Analysis of InsPn-related mutants and an overexpression plant shows PHR1 levels are more stable in itpk4-1 and vih2-4/VIH1amiRNA but less stable in ITPK4 overexpression plants. Under Pi-deficient conditions, nla seedlings contain high PHR1 levels, display long root hair and accumulate anthocyanin in shoots phenocopying PHR1 overexpression plants. By contrast, NLA overexpression plants phenocopy phr1 whose phenotypes are opposite to those of nla. Our results suggest NLA functions as a negative regulator of Pi response by modulating PHR1 stability and the NLA/PHR1 association depends on InsPn levels.
Collapse
Affiliation(s)
- Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Jin Seo Jeong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Chung-Hao Huang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| |
Collapse
|
16
|
Xu M, Wang Y, Zhang M, Chen M, Ni Y, Xu X, Xu S, Li Y, Zhang X. Genome-Wide Identification of BES1 Gene Family in Six Cucurbitaceae Species and Its Expression Analysis in Cucurbita moschata. Int J Mol Sci 2023; 24:ijms24032287. [PMID: 36768611 PMCID: PMC9916444 DOI: 10.3390/ijms24032287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The BES1 (BRI1-EMSSUPPRESSOR1) gene family play a vital role in the BR (brassinosteroid) signaling pathway, which is involved in the growth and development, biotic, abiotic, and hormone stress response in many plants. However, there are few reports of BES1 in Cucurbita moschata. In this study, 50 BES1 genes were identified in six Cucurbitaceae species by genome-wide analysis, which could be classified into 3 groups according to their gene structural features and motif compositions, and 13 CmoBES1 genes in Cucurbita moschata were mapped on 10 chromosomes. Quantitative real-time PCR analysis showed that the CmoBES1 genes displayed differential expression under different abiotic stress and hormone treatments. Subcellular localization showed that the most of CmoBES1 proteins localized in nucleus and cytoplasm, and transactivation assay indicated 9 CmoBES1 proteins played roles as transcription factors. Our analysis of BES1s diversity, localization, and expression in Curcubitaceae contributes to the better understanding of the essential roles of these transcription factors in plants.
Collapse
|
17
|
Zhou Y, Park SH, Chua NH. UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. MOLECULAR PLANT 2023; 16:232-244. [PMID: 36415131 DOI: 10.1016/j.molp.2022.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Salicylic acid (SA), a defense hormone produced after pathogen challenge, is critical for plant immunity. Arabidopsis NONEXPRESSER OF PR GENES 1 (NPR1) and its paralogs NPR3 and NPR4 can bind SA and mediate SA signal transduction. NPR1 functions as a transcriptional co-activator to promote defense gene expression, whereas NPR3 and NPR4 have been shown to function as negative regulators in the SA signaling pathway. Although the mechanism about NPR1 regulation has been well studied, how NPR3/NPR4 proteins are regulated in immune responses remains largely unknown. Here, we show that the stability of NPR3/NPR4 is enhanced by SA. In the absence of pathogen challenge, NPR3/NPR4 are unstable and degraded by the 26S proteasome, whereas the increase in cellular SA levels upon pathogen infection suppresses NPR3/NPR4 degradation. We found that UBP12 and UBP13, two homologous deubiquitinases from a ubiquitin-specific protease subfamily, negatively regulate plant immunity by promoting NPR3/NPR4 stability. Our genetic results further showed that UBP12/UBP13-mediated immunity suppression is partially dependent on NPR3/NPR4 functions. By interacting with NPR3 in the nucleus in an SA-dependent manner, UBP12 and UBP13 remove ubiquitin from polyubiquitinated NPR3 to protect it from being degraded. The stabilization of NPR3/NPR4 promoted by UBP12/UBP13 is essential for negative regulation of basal and SA-induced immunity.
Collapse
Affiliation(s)
- Yu Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore.
| |
Collapse
|
18
|
Vogel K, Bläske T, Nagel MK, Globisch C, Maguire S, Mattes L, Gude C, Kovermann M, Hauser K, Peter C, Isono E. Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking. Nat Commun 2022; 13:6897. [PMID: 36371501 PMCID: PMC9653390 DOI: 10.1038/s41467-022-34637-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
The abundance of plasma membrane-resident receptors and transporters has to be tightly regulated by ubiquitin-mediated endosomal degradation for the proper coordination of environmental stimuli and intracellular signaling. Arabidopsis OVARIAN TUMOR PROTEASE (OTU) 11 and OTU12 are plasma membrane-localized deubiquitylating enzymes (DUBs) that bind to phospholipids through a polybasic motif in the OTU domain. Here we show that the DUB activity of OTU11 and OTU12 towards K63-linked ubiquitin is stimulated by binding to lipid membranes containing anionic lipids. In addition, we show that the DUB activity of OTU11 against K6- and K11-linkages is also stimulated by anionic lipids, and that OTU11 and OTU12 can modulate the endosomal degradation of a model cargo and the auxin efflux transporter PIN2-GFP in vivo. Our results suggest that the catalytic activity of OTU11 and OTU12 is tightly connected to their ability to bind membranes and that OTU11 and OTU12 are involved in the fine-tuning of plasma membrane proteins in Arabidopsis.
Collapse
Affiliation(s)
- Karin Vogel
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Tobias Bläske
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Marie-Kristin Nagel
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Christoph Globisch
- grid.9811.10000 0001 0658 7699Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Shane Maguire
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Lorenz Mattes
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Christian Gude
- grid.6936.a0000000123222966School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Kovermann
- grid.9811.10000 0001 0658 7699NMR, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Karin Hauser
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Christine Peter
- grid.9811.10000 0001 0658 7699Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Erika Isono
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
19
|
Deubiquitinating enzymes UBP12 and UBP13 regulate carbon/nitrogen-nutrient stress responses by interacting with the membrane-localized ubiquitin ligase ATL31 in Arabidopsis. Biochem Biophys Res Commun 2022; 636:55-61. [DOI: 10.1016/j.bbrc.2022.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|