1
|
Hu Y, Li M, Li Y, Du L, Xie R, Ni F, Xia C, Wang K, Huang Y, Xu B, Li Y, Jiang Y, Hao M, Jiang B, Ning S, Yuan Z, Feng L, Zhang L, Chen S, Wu B, Liu Z, Fahima T, Liu D, Huang L. A head-to-head NLR gene pair from wild emmer confers stripe rust resistance in wheat. Nat Genet 2025; 57:1543-1552. [PMID: 40490513 DOI: 10.1038/s41588-025-02207-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/25/2025] [Indexed: 06/11/2025]
Abstract
Wheat stripe rust poses a major threat to global food security. Discovery of disease resistance genes from wild relatives enables multigene stacking that could enhance durability. Here we use map-based cloning and long-read sequencing to isolate two adjacent nucleotide-binding and leucine-rich repeat (NLR) receptors from wild emmer wheat. Using mutagenesis, gene silencing and genetic transformation, we show that the genes TdNLR1 and TdNLR2 oriented head-to-head are both required for YrTD121-mediated stripe rust resistance. TdNLR1 encodes a canonical NLR (CC-NB-ARC-LRR) protein, whereas TdNLR2 encodes an atypical one (NB-ARC-LRR). Both genes lack an integrated domain previously associated with effector perception, representing an uncommon architecture for paired NLRs in plants. The coiled coil domain of TdNLR1 triggers cell death and self-associates in planta. YrTD121 was present in wild emmer but absent in all other Triticum species examined. Our work sheds light on the function of paired NLRs in conferring disease resistance and facilitates breeding for resistance.
Collapse
Affiliation(s)
- Yanling Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Miaomiao Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuqin Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lilin Du
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ruijie Xie
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fei Ni
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Binyang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Yinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shisheng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| | - Zhiyong Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Mount Carmel, Israel.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Klymiuk V, Wiebe K, Chawla HS, Ens J, Subramaniam R, Pozniak CJ. Coordinated function of paired NLRs confers Yr84-mediated stripe rust resistance in wheat. Nat Genet 2025; 57:1535-1542. [PMID: 40490512 DOI: 10.1038/s41588-025-02203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/22/2025] [Indexed: 06/11/2025]
Abstract
Cloning of resistance genes expands our understanding of their function and facilitates their deployment in breeding. Here we report the cloning of two genes from wild emmer wheat (Triticum turgidum ssp. dicoccoides) underlying Yr84-mediated stripe rust resistance using a combination of fine mapping, long-read sequencing and mutation-induced functional validation. In contrast to all previously cloned stripe rust genes, the incompletely dominant Yr84 phenotype is conferred through the coordinated function of paired nucleotide-binding leucine-rich repeat (NLR) genes CNL and NL. We reason that based on their genomic organization, annotation, expression profiles and predicted protein structure, CNL functions as a sensor NLR, responsible for effector recognition, and NL acts as a helper NLR, initiating downstream resistance cascades. Both the CNL and NL lack an integrated domain(s) previously implicated in effector recognition by paired NLRs; therefore, these findings contribute insights into the structure and molecular mechanisms of the function of plant paired NLRs.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Harmeet Singh Chawla
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
3
|
Korchanová Z, Milovanov A, Švec M, Doležel J, Bartoš J, Valárik M. Progress and innovations of gene cloning in wheat and its close relatives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:106. [PMID: 40295316 PMCID: PMC12037653 DOI: 10.1007/s00122-025-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE Wheat and its close relatives have large and complex genomes, making gene cloning difficult. Nevertheless, developments in genomics over the past decade have made it more feasible. The large and complex genomes of cereals, especially bread wheat, have always been a challenge for gene mapping and cloning. Nevertheless, recent advances in genomics have led to significant progress in this field. Currently, high-quality reference sequences are available for major wheat species and their relatives. New high-throughput genotyping platforms and next-generation sequencing technologies combined with genome complexity reduction techniques and mutagenesis have opened new avenues for gene cloning. In this review, we provide a comprehensive overview of the genes cloned in wheat so far and discuss the strategies used for cloning these genes. We highlight the advantages and drawbacks of individual approaches and show how particular genomic progress contributed to wheat gene cloning. A wide range of new resources and approaches have led to a significant increase in the number of successful cloning projects over the past decade, demonstrating that it is now feasible to perform rapid gene cloning of agronomically important genes, even in a genome as large and complex as that of wheat.
Collapse
Affiliation(s)
- Zuzana Korchanová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900, Olomouc, Czech Republic
| | - Alexander Milovanov
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84104, Slovakia
| | - Miroslav Švec
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84104, Slovakia
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Jan Bartoš
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Miroslav Valárik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Guo G, Bai K, Hou Y, Gong Z, Zhang H, Wu Q, Lu P, Li M, Dong L, Xie J, Chen Y, Zhang P, Zhu K, Li B, Li W, Dong L, Yang Y, Qiu D, Wang G, Ahn H, Zhao H, Yuan C, Shi W, Xue M, Yang L, Yu D, Zhao Y, Chen Y, Li H, Hu T, Han G, Jones JDG, Liu Z. The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1260-1276. [PMID: 39840722 PMCID: PMC11933841 DOI: 10.1111/pbi.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025]
Abstract
Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat. The resistance function of the RXL/Pm5e pair is validated by mutagenesis, gene silencing, and gene-editing assays. Interestingly, both RXL and Pm5e encode atypical NLRs, with RXL possessing a truncated NB-ARC (nucleotide binding adaptor shared by APAF-1, plant R proteins and CED-4) domain and Pm5e featuring an atypical coiled-coil (CC) domain. Notably, RXL and Pm5e lack an integrated domain associated with effector recognition found in all previously reported NLR pairs. Additionally, RXL and Pm5e exhibit a preference for forming hetero-complexes rather than homo-complexes, highlighting their cooperative role in disease resistance. We further show that the CC domain of Pm5e specifically suppresses the hypersensitive response induced by the CC domain of RXL through competitive interaction, revealing regulatory mechanisms within this NLR pair. Our study sheds light on the molecular mechanism underlying RXL/Pm5e-mediated powdery mildew resistance and provides a new example of an NLR pair in wheat disease resistance.
Collapse
Affiliation(s)
- Guanghao Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Kaihong Bai
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yikun Hou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhen Gong
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | - Huaizhi Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qiuhong Wu
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Ping Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Miaomiao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Lingli Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jingzhong Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yongxing Chen
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Panpan Zhang
- Tea Research InstituteYunnan Academy of Agricultural SciencesKunmingYunnanChina
| | - Keyu Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Beibei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wenling Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Lei Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yijun Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dan Qiu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Gaojie Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hee‐Kyung Ahn
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Present address:
Institute of Molecular Plant Sciences, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - He Zhao
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Wenqi Shi
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Minfeng Xue
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Lijun Yang
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Dazao Yu
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Yusheng Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yuhang Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hongjie Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Tiezhu Hu
- Henan Institute of Science and TechnologyXinxiangHenan ProvinceChina
| | - Guan‐Zhu Han
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | | | - Zhiyong Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Hainan Seed Industry LaboratorySanya CityHainan ProvinceChina
| |
Collapse
|
5
|
Valentini G, Hurtado-Gonzales OP, Xavier LFS, He R, Gill U, Song Q, Pastor-Corrales MA. Fine mapping of the unique Ur-11 gene conferring broad resistance to the rust pathogen of common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:64. [PMID: 40035870 DOI: 10.1007/s00122-025-04856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/15/2025] [Indexed: 03/06/2025]
Abstract
KEY MESSAGE Fine mapping positioned the Ur-11 rust resistance gene in common bean to a narrow 9 kb genomic region and enabled the development of a KASP marker tightly linked to Ur-11 for use in gene pyramiding to achieve durable rust resistance. The extensive virulence diversity of the fungal pathogen Uromyces appendiculatus threatens common bean (Phaseolus vulgaris) production. The Ur-11 gene present in the Guatemalan common bean accession PI 181996 conferred resistance to 89 of 90 virulent races of U. appendiculatus. We describe here the fine mapping of Ur-11 and the development and validation of a DNA marker tightly linked to Ur-11. An F2 population from the cross between the susceptible Pinto 114 with the resistant PI 181996 was inoculated with four races of U. appendiculatus. This study established that the rust resistance in PI 181996 was conferred by Ur-11. We then fine mapped Ur-11 using F2 plants and F2:3 families, high-throughput SNP genotyping, SSRs and KASPs marker development, whole-genome sequencing, and local haplotype analysis. Ur-11 was positioned in a narrow 9.01 Kb genomic region on chromosome Pv11 flanked by KASP markers SS322 and SS375. This genomic region included a candidate gene encoding a nucleotide-binding site and leucine rich-repeat domain with pathogen resistance functions. The validation of the SS322 KASP marker was performed on a panel of 206 diverse common bean cultivars that were inoculated with four races of U. appendiculatus. The SS322 marker was 97.5% accurate in identifying the presence of Ur-11 in common bean plants. These results suggest that S322 will be a highly effective molecular marker for the development of common bean cultivars with Ur-11 alone and combining Ur-11 with other rust resistance genes that would confer broad and durable resistance to the hypervirulent bean rust pathogen.
Collapse
Affiliation(s)
- Giseli Valentini
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Oscar P Hurtado-Gonzales
- Plant Germplasm Quarantine Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Beltsville, MD, 20705, USA
| | - Larissa F S Xavier
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Ruifeng He
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Marcial A Pastor-Corrales
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| |
Collapse
|
6
|
Lhamo D, Li G, Song G, Li X, Sen TZ, Gu Y, Xu X, Xu SS. Genome-wide association studies on resistance to powdery mildew in cultivated emmer wheat. THE PLANT GENOME 2025; 18:e20493. [PMID: 39073025 PMCID: PMC11733656 DOI: 10.1002/tpg2.20493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
Powdery mildew, caused by the fungal pathogen Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em. Marchal (Bgt), is a constant threat to global wheat (Triticum aestivum L.) production. Although ∼100 powdery mildew (Pm) resistance genes and alleles have been identified in wheat and its relatives, more is needed to minimize Bgt's fast evolving virulence. In tetraploid wheat (Triticum turgidum L.), wild emmer wheat [T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.) Thell.] accessions from Israel have contributed many Pm resistance genes. However, the diverse genetic reservoirs of cultivated emmer wheat [T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell.] have not been fully exploited. In the present study, we evaluated a diverse panel of 174 cultivated emmer accessions for their reaction to Bgt isolate OKS(14)-B-3-1 and found that 66% of accessions, particularly those of Ethiopian (30.5%) and Indian (6.3%) origins, exhibited high resistance. To determine the genetic basis of Bgt resistance in the panel, genome-wide association studies were performed using 46,383 single nucleotide polymorphisms (SNPs) from genotype-by-sequencing and 4331 SNPs from the 9K SNP Infinium array. Twenty-five significant SNP markers were identified to be associated with Bgt resistance, of which 21 SNPs are likely novel loci, whereas four possibly represent emmer derived Pm4a, Pm5a, PmG16, and Pm64. Most novel loci exhibited minor effects, whereas three novel loci on chromosome arms 2AS, 3BS, and 5AL had major effect on the phenotypic variance. This study demonstrates cultivated emmer as a rich source of powdery mildew resistance, and the resistant accessions and novel loci found herein can be utilized in wheat breeding programs to enhance Bgt resistance in wheat.
Collapse
Affiliation(s)
- Dhondup Lhamo
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Genqiao Li
- USDA‐ARS Peanut and Small Grains Research UnitStillwaterOklahomaUSA
| | - George Song
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Xuehui Li
- Department of Plant SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Taner Z. Sen
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Yong‐Qiang Gu
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Xiangyang Xu
- USDA‐ARS Peanut and Small Grains Research UnitStillwaterOklahomaUSA
| | - Steven S. Xu
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| |
Collapse
|
7
|
Fu B, Lin Z, Yan L, Zhang Q, Liu C, Cai J, Guo W, Liu Y, Zhai W, Gong S, Xu F, Wu J. Fine-mapping of PmHHM, a broad-spectrum allele from a wheat landrace conferring both seedling and adult resistance to powdery mildew. FRONTIERS IN PLANT SCIENCE 2025; 15:1489013. [PMID: 39980756 PMCID: PMC11839664 DOI: 10.3389/fpls.2024.1489013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/28/2024] [Indexed: 02/22/2025]
Abstract
Introduction Common wheat is a leading global food crop that impacts food security. Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici (Bgt), poses a significant threat to grain yield and flour quality. The identification and utilization of broad-spectrum resistance genes against PM are essential for effective disease control. Methods The resistance spectrum test during the seedling stage and the identification of resistance during the adult stage were conducted to evaluate the wheat landrace Honghuamai (HHM). Five segregating populations were investigated to assess the inheritance of PM resistance in HHM. To map its PM resitance gene, bulked segregant analysis, molecular mapping and comparative genomic analysis were also used in the present study. Results HHM shows remarkable adult resistance in the field and is nearly immune to all 25 Bgt isolates used in seedling tests, making it an excellent source of PM resistance. PM resistance in HHM was determined by a single dominant gene, temporarily named PmHHM. It was then fine-mapped to an interval with a genetic distance of 0.0031 cM and a physical distance of 187.4 kb on chromosome 4AL of the Chinese Spring reference sequence v.2.1. Four genes were identified in the target region, three of which encode nucleotide-binding leucine-rich repeat (NLR) proteins. Comparative genomic analysis revealed presence/absence variations (PAVs) of the PmHHM locus among common wheat varieties. Discussion These closely linked molecular markers will not only benefit the cloning of the gene underlying PmHHM but also facilitate the efficient utilization of the gene in breeding programs.
Collapse
Affiliation(s)
- Bisheng Fu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhixin Lin
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Lijuan Yan
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Qiaofeng Zhang
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Caiyun Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Jin Cai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Wei Guo
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Ying Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Wenling Zhai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Feng Xu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jizhong Wu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Dai Y, Yu N, Xu H, Liu S, Zhang J, Liu R, Li J, Li Y, Xiao B, Pan G, Li D, Liu C, Jin Y, Ma P. A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430. Int J Mol Sci 2024; 26:242. [PMID: 39796101 PMCID: PMC11720082 DOI: 10.3390/ijms26010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world. Exploring Pm gene(s) and developing resistant cultivars are preferred to control the disease. Wild emmer wheat (Triticum dicoccoides, 2n = 4x = 28, AABB) has accumulated abundant gene resources for resistance to powdery mildew during the long process of natural evolution. In the current study, the WEW accession D430 was highly resistant to powdery mildew at the whole-growth stage. Genetic analysis showed that the powdery mildew resistance in D430 was conferred by a single dominant locus or gene by the cross of D430 and susceptible durum wheat 647, tentatively named PmD430. Combining BSR-Seq analysis, molecular mapping, and sequence alignment, PmD430 was finally mapped to Pm4 locus, and the sequence was identical to Pm4b. Subsequently, 1871 DEGs between resistant and susceptible bulks were annotated and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Eight disease-related genes were evaluated by qRT-PCR and exhibited a unique expression pattern when invaded by Bgt isolate E09 and was, therefore, presented as latent targets for regulating powdery mildew resistance in D430.
Collapse
Affiliation(s)
- Yintao Dai
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shaoqing Liu
- Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Jiadong Zhang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jiatong Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yaoxue Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Guantong Pan
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Dongming Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Cheng Liu
- National Key Laboratory of Wheat Breeding, Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang-Huai River Valley, Crop Research Institute, Shandong Academy of Agricultural Sciences, National Engineering Research Center for Wheat and Maize, Shandong Wheat Technology Innovation Center, Jinan 250100, China;
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
9
|
Han G, Xing L, Gu T, Jin Y, Shi F, Yan H, Zhuo S, Shi Z, Wang J, Zhou Y, Liu W, Zhang Y, An D. Molecular identification of a Pm4 allele conferring powdery mildew resistance in durum wheat DR88. BMC PLANT BIOLOGY 2024; 24:1169. [PMID: 39639220 PMCID: PMC11622551 DOI: 10.1186/s12870-024-05884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive wheat diseases worldwide. Durum wheat (Triticum turgidum L. var. durum Desf.) is a crucial gene donor for improving common wheat. RESULTS In this study, we investigated a durum wheat accession, DR88, which exhibits broad and high levels of resistance to powdery mildew. Using bulked segregant RNA-Seq (BSR-Seq), we identified a dominant gene, tentatively designated PmDR88, and localized it to 743-776 Mb interval on chromosome arm 2AL according to the reference genome of durum wheat cv. Svevo. Subsequently, PmDR88 was mapped in a genetic region of 3.9 cM flanked by the markers WGRE77410 and WGRC872 at genetic distances of 1.6 and 2.3 cM, respectively; it also co-segregated with JS717×JS718, the diagnostic marker for the Pm4 locus. Genotyping of a large population comprising 5,174 F2:3 families using JS717×JS718 confirmed that PmDR88 is located at the Pm4 locus on 2AL. Sequence alignment revealed that PmDR88 shares identical amino acid sequences with Pm4d, while qRT-PCR analysis suggested distinct expression patterns for PmDR88 compared with previously reported Pm4 alleles. Two complementary DNA markers, including the dominant co-segregating marker JS717×JS718 and a newly developed closely-linked co-dominant marker WGRE77410, were confirmed to be available for efficiently transferring PmDR88 into the tested wheat backgrounds by marker-assisted selection (MAS) strategy. CONCLUSIONS PmDR88 was mapped in the Pm4 locus. Despite sharing identical amino acid sequences with Pm4d, PmDR88 exhibits distinct expression patterns. Moreover, DR88 shows broad and high levels of resistance to powdery mildew. Two complementary DNA markers were identified for MAS breeding. The molecular identification of PmDR88 will facilitate transfer of this Pm4 allele into susceptible cultivars for resistance improvement or into resistant cultivars for resistance-enhanced pyramiding breeding.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Lixian Xing
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Shiyu Zhuo
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Key Laboratory of Crop Genetics and Breeding, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China.
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
| |
Collapse
|
10
|
He H, Wang J, Liang J, Zhang Q, Xue M, Chen Z, Tang Q, Chen X, Zhu S, Wang Y. An integrated pipeline facilitates fast cloning of a new powdery mildew resistance gene from the wheat wild relative Aegilops umbellulata. PLANT COMMUNICATIONS 2024; 5:101070. [PMID: 39169628 PMCID: PMC11589472 DOI: 10.1016/j.xplc.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiale Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiabao Liang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qianyuan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Minfeng Xue
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhaozhao Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiulian Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobei Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shanying Zhu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yajun Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
11
|
Tiwari VK, Saripalli G, Sharma PK, Poland J. Wheat genomics: genomes, pangenomes, and beyond. Trends Genet 2024; 40:982-992. [PMID: 39191555 DOI: 10.1016/j.tig.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
There is an urgent need to improve wheat for upcoming challenges, including biotic and abiotic stresses. Sustainable wheat improvement requires the introduction of new genes and alleles in high-yielding wheat cultivars. Using new approaches, tools, and technologies to identify and introduce new genes in wheat cultivars is critical. High-quality genomes, transcriptomes, and pangenomes provide essential resources and tools to examine wheat closely to identify and manipulate new and targeted genes and alleles. Wheat genomics has improved excellently in the past 5 years, generating multiple genomes, pangenomes, and transcriptomes. Leveraging these resources allows us to accelerate our crop improvement pipelines. This review summarizes the progress made in wheat genomics and trait discovery in the past 5 years.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Wu D, Wang F, Chen L, Mao Y, Li Y, Zhu W, Xu L, Zhang Y, Wang Y, Zeng J, Cheng Y, Sha L, Fan X, Zhang H, Zhou Y, Kang H. Characterization of the wheat-tetraploid Thinopyrum elongatum 7E(7D) substitution line with Fusarium head blight resistance. BMC PLANT BIOLOGY 2024; 24:1006. [PMID: 39455993 PMCID: PMC11515827 DOI: 10.1186/s12870-024-05703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Fusarium head blight (FHB), a devastating disease of wheat production, is predominantly elicited by Fusarium graminearum (Fg). The tetraploid Thinopyrum elongatum is a tertiary gene resource of common wheat that possesses high affinity and displays high resistance traits against multiple biotic and abiotic stress. We aim to employ and utilize the novel FHB resistance resources from the wild germplasm of common wheat for breeding. RESULTS Durum wheat-tetraploid Th. elongatum amphiploid 8801 was hybridized with common wheat cultivars SM482 and SM51, and the F5 generation was generated. We conducted cytogenetically in situ hybridization (ISH) technologies to select and confirm a genetically stable 7E(7D) substitution line K17-1069-5, which showed FHB expansion resistance in both field and greenhouse infection experiments and displayed no significant disadvantage in agronomic traits compared to their common wheat parents in the field. The F2 segregation populations (K17-1069-5 × SM830) showed that the 7E chromosome conferred dominant FHB resistance with dosage effect. We developed 19 SSR molecular markers specific to chromosome 7E, which could be conducted for genetic mapping and large breeding populations marker-assisted selection (MAS) during selection procedures in the future. We isolated a novel Fhb7 allele from the tetraploid Th. elongatum chromosome 7E (Chr7E) using homology-based cloning, which was designated as TTE7E-Fhb7. CONCLUSIONS In summary, our study developed a novel wheat-tetraploid Thinopyrum elongatum 7E(7D) K17-1069-5 substitution line which contains stable FHB resistance.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Fei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Linfeng Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanwen Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
13
|
Gong B, Gao J, Xie Y, Zhang H, Zhu W, Xu L, Cheng Y, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Zhou Y, Wu D, Li Y, Kang H. Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:246. [PMID: 39365463 DOI: 10.1007/s00122-024-04756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
KEY MESSAGE Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangqiu Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
14
|
Xing L, Gu T, Shi F, Jin Y, Fu X, Han G, Xu H, Zhou Y, Liu W, He M, An D. Characterization of a Powdery Mildew Resistance Gene in Wheat Breeding Line Jingzi 102 Using Bulk Segregant RNA Sequencing. PLANT DISEASE 2024; 108:3084-3091. [PMID: 38853337 DOI: 10.1094/pdis-02-24-0297-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA sequencing combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 centimorgan, respectively, corresponding to the bread wheat genome of Chinese Spring (International Wheat Genome Sequencing Consortium RefSeq v2.1) 703.8 to 707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease-resistance breeding.
Collapse
Affiliation(s)
- Lixian Xing
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingqi He
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| |
Collapse
|
15
|
Ma C, Tian X, Dong Z, Li H, Chen X, Liu W, Yin G, Ma S, Zhang L, Cao A, Liu C, Yan H, Sehgal SK, Zhang Z, Liu B, Wang S, Liu Q, Zhao Y, Zhao Y. An Aegilops longissima NLR protein with integrated CC-BED module mediates resistance to wheat powdery mildew. Nat Commun 2024; 15:8281. [PMID: 39333612 PMCID: PMC11436982 DOI: 10.1038/s41467-024-52670-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), reduces wheat yields and grain quality, thus posing a significant threat to global food security. Wild relatives of wheat serve as valuable resources for resistance to powdery mildew. Here, the powdery mildew resistance gene Pm6Sl is cloned from the wild wheat species Aegilops longissima. It encodes a nucleotide-binding leucine-rich repeat (NLR) protein featuring a CC-BED module formed by a zinc finger BED (Znf-BED) domain integrated into the coiled-coil (CC) domain. The function of Pm6Sl is validated via mutagenesis, gene silencing, and transgenic assays. In addition, we develop a resistant germplasm harbouring Pm6Sl in a very small segment with no linkage drag along with the diagnostic gene marker pm6sl-1 to facilitate Pm6Sl deployment in wheat breeding programs. The cloning of Pm6Sl, a resistance gene with BED-NLR architecture, will increase our understanding of the molecular mechanisms underlying BED-NLR-mediated resistance to various pathogens.
Collapse
Affiliation(s)
- Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xiubin Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, P. R. China
| | - Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Guihong Yin
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Shuyang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liwei Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100083, P. R. China
| | - Aizhong Cao
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, P. R. China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, P. R. China
| | - Hongfei Yan
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, P. R. China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, P. R. China
| | - Shiwei Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100083, P. R. China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
16
|
Rivera-Burgos L, VanGessel C, Guedira M, Smith J, Marshall D, Jin Y, Rouse M, Brown-Guedira G. Fine mapping of stem rust resistance derived from soft red winter wheat cultivar AGS2000 to an NLR gene cluster on chromosome 6D. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:206. [PMID: 39158718 PMCID: PMC11333525 DOI: 10.1007/s00122-024-04702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
The Puccinia graminis f. sp. tritici (Pgt) Ug99-emerging virulent races present a major challenge to global wheat production. To meet present and future needs, new sources of resistance must be found. Identification of markers that allow tracking of resistance genes is needed for deployment strategies to combat highly virulent pathogen races. Field evaluation of a DH population located a QTL for stem rust (Sr) resistance, QSr.nc-6D from the breeding line MD01W28-08-11 to the distal region of chromosome arm 6DS where Sr resistance genes Sr42, SrCad, and SrTmp have been identified. A locus for seedling resistance to Pgt race TTKSK was identified in a DH population and an RIL population derived from the cross AGS2000 × LA95135. The resistant cultivar AGS2000 is in the pedigree of MD01W28-08-11 and our results suggest that it is the source of Sr resistance in this breeding line. We exploited published markers and exome capture data to enrich marker density in a 10 Mb region flanking QSr.nc-6D. Our fine mapping in heterozygous inbred families identified three markers co-segregating with resistance and delimited QSr.nc-6D to a 1.3 Mb region. We further exploited information from other genome assemblies and identified collinear regions of 6DS harboring clusters of NLR genes. Evaluation of KASP assays corresponding to our co-segregating SNP suggests that they can be used to track this Sr resistance in breeding programs. However, our results also underscore the challenges posed in identifying genes underlying resistance in such complex regions in the absence of genome sequence from the resistant genotypes.
Collapse
Affiliation(s)
- L Rivera-Burgos
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA
| | - C VanGessel
- Department of Crop and Soil Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - M Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - J Smith
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA
| | - D Marshall
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Y Jin
- Cereal Disease Laboratory, USDA-ARS, University of Minnesota, St. Paul, MN, 55108, USA
| | - M Rouse
- Cereal Disease Laboratory, USDA-ARS, University of Minnesota, St. Paul, MN, 55108, USA
- Sugarcane Production Research Unit, USDA-ARS, Canal Point, FL, 33438, USA
| | - G Brown-Guedira
- Plant Science Research Unit, USDA-ARS, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
18
|
Zhang J, Jie Y, Yan L, Wang M, Dong Y, Pang Y, Ren C, Song J, Chen X, Li X, Zhang P, Yang D, Zhang Y, Qi Z, Ru Z. Development and identification of a novel wheat-Thinopyrum ponticum disomic substitution line DS5Ag(5D) with new genes conferring resistance to powdery mildew and leaf rust. BMC PLANT BIOLOGY 2024; 24:718. [PMID: 39069623 DOI: 10.1186/s12870-024-05433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Powdery mildew (caused by Blumeria graminis f. sp. tritici (Bgt)) and leaf rust (caused by Puccinia triticina (Pt)) are prevalent diseases in wheat (Triticum aestivum L.) production. Thinopyrum ponticum (2n = 10x = 70, EeEeEbEbExExStStStSt) contains genes that confer high levels of resistance to these diseases. RESULTS An elite wheat-Th. ponticum disomic substitution line, DS5Ag(5D), was developed in the Bainong Aikang 58 (AK58) background. The line was assessed using genomic in situ hybridization (GISH), oligo-nucleotide probe multiplex (ONPM) fluorescence in situ hybridization (FISH), and molecular markers. Twenty eight chromosome-specific molecular markers were identified for the alien chromosome, and 22 of them were co-dominant. Additionally, SNP markers from the wheat 660 K SNP chip were utilized to confirm chromosome identification and they provide molecular tools for tagging the chromosome in concern. The substitution line demonstrated high levels of resistance to powdery mildew throughout its growth period and to leaf rust at the adult stage. Based on the resistance evaluation of five F5 populations between the substitution lines and wheat genotypes with different levels of sensitivity to the two diseases. Results showed that the resistance genes located on 5Ag confered stable resistance against both diseases across different backgrounds. Resistance spectrum analysis combined with diagnostic marker detection of known resistance genes of Th. ponticum revealed that 5Ag contained two novel genes, Pm5Ag and Lr5Ag, which conferred resistance to powdery mildew and leaf rust, respectively. CONCLUSIONS In this study, a novel wheat-Th. ponticum disomic substitution line DS5Ag(5D) was successfully developed. The Th. ponticum chromosome 5Ag contain new resistance genes for powdery mildew and leaf rust. Chromosomic-specific molecular markers were generated and they can be used to track the 5Ag chromosome fragments. Consequently, this study provides new elite germplasm resources and molecular markers to facilitate the breeding of wheat varieties that is resistant to powdery mildew and leaf rust.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yize Jie
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Linjie Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mengmeng Wang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yilong Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yunfei Pang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Cuicui Ren
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jie Song
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiangdong Chen
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaojun Li
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Peipei Zhang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Dongyan Yang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yang Zhang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Zhengang Ru
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
19
|
Hou F, Chen H, Zhang T, Jin Y, Kong L, Liu X, Xing L, Cao A, Zhang R. Introgression of an All-Stage and Broad-Spectrum Powdery Mildew Resistance Gene Pm3VS from Dasypyrum villosum Chromosome 3V into Wheat. PLANT DISEASE 2024; 108:2073-2080. [PMID: 38389384 DOI: 10.1094/pdis-11-23-2495-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious disease that threatens wheat production globally. It is imperative to explore novel resistance genes to control this disease by developing and planting resistant varieties. Here, we identified a wheat-Dasypyrum villosum 3V (3D) disomic substitution line, NAU3815 (2n = 42), with a high level of powdery mildew resistance at both the seedling and adult-plant stages. Subsequently, NAU3815 was used to generate recombination between chromosomes 3V and 3D. Through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and 3VS- and 3VL-specific markers analysis, four introgression lines were developed from the selfing progenies of 3V and 3D double monosomic line NAU3816, which was derived from the F1 hybrids of NAU3815/NAU0686. There were t3VS (3D) ditelosomic substitution line NAU3817, t3VL (3D) ditelosomic substitution line NAU3818, homozygous T3DL·3VS translocation line NAU3819, and homozygous T3DS·3VL translocation line NAU3820. Powdery mildew tests of these lines confirmed the presence of an all-stage and broad-spectrum powdery mildew resistance gene, Pm3VS, located on chromosome arm 3VS. When compared with the recurrent parent NAU0686 plants, the T3DL·3VS translocation line NAU3819 showed no obvious negative effect on yield-related traits. However, the introduction of the T3DL·3VS translocated chromosome had a strong effect on reducing the flag-leaf length. Consequently, the T3DL·3VS translocation line NAU3819 provides a new germplasm in breeding for both resistance and plant architecture.
Collapse
Affiliation(s)
- Fu Hou
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Area in Jiangsu, Huaian 223001, China
| | - Heyu Chen
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Xiaoxue Liu
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
20
|
Wu D, Zhao X, Xie Y, Li L, Li Y, Zhu W, Xu L, Wang Y, Zeng J, Cheng Y, Sha L, Fan X, Zhang H, Zhou Y, Kang H. Cytogenetic and Genomic Characterization of a Novel Wheat-Tetraploid Thinopyrum elongatum 1BS⋅1EL Translocation Line with Stripe Rust Resistance. PLANT DISEASE 2024; 108:2065-2072. [PMID: 38381966 DOI: 10.1094/pdis-12-23-2799-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a destructive wheat disease pathogen. Thinopyrum elongatum is a valuable germplasm including diploid, tetraploid, and decaploid with plenty of biotic and abiotic resistance. In a previous study, we generated a stripe rust-resistant wheat-tetraploid Th. elongatum 1E/1D substitution line, K17-841-1. To further apply the wild germplasm for wheat breeding, we selected and obtained a new homozygous wheat-tetraploid Th. elongatum translocation line, T1BS⋅1EL, using genomic in situ hybridization, fluorescence in situ hybridization (FISH), oligo-FISH painting, and the wheat 55K single nucleotide polymorphism genotyping array. The T1BS⋅1EL is highly resistant to stripe rust at the seedling and adult stages. Pedigree and molecular marker analyses revealed that the resistance gene was located on the chromosome arm 1EL of tetraploid Th. elongatum, tentatively named Yr1EL. In addition, we developed and validated 32 simple sequence repeat markers and two kompetitive allele-specific PCR assays that were specific to the tetraploid Th. elongatum chromosome arm 1EL to facilitate marker-assisted selection for alien 1EL stripe rust resistance breeding. This will help us explore and locate the stripe rust resistance gene mapping on the 1E chromosome and deploy it in the wheat breeding program.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yangqiu Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lingyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haigin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huoyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
21
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
22
|
Wei Y, Zhang T, Jin Y, Li W, Kong L, Liu X, Xing L, Cao A, Zhang R. Introgression of an adult-plant powdery mildew resistance gene Pm4VL from Dasypyrum villosum chromosome 4V into bread wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1401525. [PMID: 38966140 PMCID: PMC11222578 DOI: 10.3389/fpls.2024.1401525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) seriously threatens wheat production worldwide. It is imperative to identify novel resistance genes from wheat and its wild relatives to control this disease by host resistance. Dasypyrum villosum (2n = 2x = 14, VV) is a relative of wheat and harbors novel genes for resistance against multi-fungal diseases. In the present study, we developed a complete set of new wheat-D. villosum disomic introgression lines through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and molecular markers analysis, including four disomic substitution lines (2n=42) containing respectively chromosomes 1V#6, 2V#6, 3V#6, and 6V#6, and four disomic addition lines (2n=44) containing respectively chromosomes 4V#6, 5V#6, 6V#6 and 7V#6. These lines were subsequently evaluated for their responses to a mixture Bgt isolates at both seedling and adult-plant stages. Results showed that introgression lines containing chromosomes 3V#6, 5V#6, and 6V#6 exhibited resistance at both seedling and adult-plant stages, whereas the chromosome 4V#6 disomic addition line NAU4V#6-1 exhibited a high level of adult plant resistance to powdery mildew. Moreover, two translocation lines were further developed from the progenies of NAU4V#6-1 and the Ph1b mutation line NAU0686-ph1b. They were T4DL·4V#6S whole-arm translocation line NAU4V#6-2 and T7DL·7DS-4V#6L small-fragment translocation line NAU4V#6-3. Powdery mildew tests of the two lines confirmed the presence of an adult-plant powdery mildew resistance gene, Pm4VL, located on the terminal segment of chromosome arm 4V#6L (FL 0.6-1.00). In comparison with the recurrent parent NAU0686 plants, the T7DL·7DS-4V#6L translocation line NAU4V#6-3 showed no obvious negative effect on yield-related traits, providing a new germplasm in breeding for resistance.
Collapse
Affiliation(s)
- Yi Wei
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Wen Li
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Xiaoxue Liu
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Liu X, Yang C, Wu S, Dong H, Wang G, Han X, Fan B, Shang Y, Dang C, Xie C, Wang Z. Genetic Basis Identification of a NLR Gene, TaRGA5-like, That Confers Partial Powdery Mildew Resistance in Wheat SJ106. Int J Mol Sci 2024; 25:6603. [PMID: 38928313 PMCID: PMC11204014 DOI: 10.3390/ijms25126603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Wheat powdery mildew is an important fungal disease that seriously jeopardizes wheat production, which poses a serious threat to food safety. SJ106 is a high-quality, disease-resistant spring wheat variety; this disease resistance is derived from Wheat-wheatgrass 33. In this study, the powdery mildew resistance genes in SJ106 were located at the end of chromosome 6DS, a new disease resistance locus tentatively named PmSJ106 locus. This interval was composed of a nucleotide-binding leucine-rich repeat (NLR) gene cluster containing 19 NLR genes. Five NLRs were tandem duplicated genes, and one of them (a coiled coil domain-nucleotide binding site-leucine-rich repeat (CC-NBS-LRR; CNL) type gene, TaRGA5-like) expressed 69-836-fold in SJ106 compared with the susceptible control. The genome DNA and cDNA sequences of TaRGA5-like were amplified from SJ106, which contain several nucleotide polymorphisms in LRR regions compared with susceptible individuals and Chinese Spring. Overexpression of TaRGA5-like significantly increased resistance to powdery mildew in susceptible receptor wheat Jinqiang5. However, Virus induced gene silence (VIGS) of TaRGA5-like resulted in only a small decrease of SJ106 in disease resistance, presumably compensated by other NLR duplicated genes. The results suggested that TaRGA5-like confers partial powdery mildew resistance in SJ106. As a member of the PmSJ106 locus, TaRGA5-like functioned together with other NLR duplicated genes to improve wheat resistance to powdery mildew. Wheat variety SJ106 would become a novel and potentially valuable germplasm for powdery mildew resistance.
Collapse
Affiliation(s)
- Xiaoying Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Chenxiao Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Siqi Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Huixuan Dong
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Guangyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Xinyue Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Baoli Fan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China;
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE), State Key Laboratory for Agro-Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (C.D.); (C.X.)
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE), State Key Laboratory for Agro-Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (C.D.); (C.X.)
| | - Zhenying Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| |
Collapse
|
24
|
Kumar RR, Niraj RK, Goswami S, Thimmegowda V, Mishra GP, Mishra D, Rai GK, Kumar SN, Viswanathan C, Tyagi A, Singh GP, Rai AK. Characterization of putative calcium-dependent protein kinase-1 ( TaCPK-1) gene: hubs in signalling and tolerance network of wheat under terminal heat. 3 Biotech 2024; 14:150. [PMID: 38725866 PMCID: PMC11076446 DOI: 10.1007/s13205-024-03989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Calcium-dependent protein kinase (CDPK) is member of one of the most important signalling cascades operating inside the plant system due to its peculiar role as thermo-sensor. Here, we identified 28 full length putative CDPKs from wheat designated as TaCDPK (1-28). Based on digital gene expression, we cloned full length TaCPK-1 gene of 1691 nucleotides with open reading frame (ORF) of 548 amino acids (accession number OP125853). The expression of TaCPK-1 was observed maximum (3.1-fold) in leaf of wheat cv. HD2985 (thermotolerant) under T2 (38 ± 3 °C, 2 h), as compared to control. A positive correlation was observed between the expression of TaCPK-1 and other stress-associated genes (MAPK6, CDPK4, HSFA6e, HSF3, HSP17, HSP70, SOD and CAT) involved in thermotolerance. Global protein kinase assay showed maximum activity in leaves, as compared to root, stem and spike under heat stress. Immunoblot analysis showed abundance of CDPK protein in wheat cv. HD2985 (thermotolerant) in response to T2 (38 ± 3 °C, 2 h), as compared to HD2329 (thermosusceptible). Calcium ion (Ca2+), being inducer of CDPK, showed strong Ca-signature in the leaf tissue (Ca-622 ppm) of thermotolerant wheat cv. under heat stress, whereas it was minimum (Ca-201 ppm) in spike tissue. We observed significant variations in the ionome of wheat under HS. To conclude, TaCPK-1 plays important role in triggering signaling network and in modulation of HS-tolerance in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03989-6.
Collapse
Affiliation(s)
- Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ravi K. Niraj
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vinutha Thimmegowda
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Gyan P. Mishra
- Division of Seed Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Dwijesh Mishra
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Gyanendra K. Rai
- Sher-E-Kashmir University of Agricultural Science and Technology, Chatta, Jammu, 180009 India
| | | | - Chinnusamy Viswanathan
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Aruna Tyagi
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Gyanendra P. Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| | - Anil K. Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| |
Collapse
|
25
|
Jin Y, Yu Z, Su F, Fang T, Liu S, Xu H, Wang J, Xiao B, Han G, Li H, Ma P. Evaluation and Identification of Powdery Mildew Resistance Genes in Aegilops tauschii and Emmer Wheat Accessions. PLANT DISEASE 2024; 108:1670-1681. [PMID: 38173259 DOI: 10.1094/pdis-08-23-1667-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii and 161 emmer wheat accessions were first evaluated for their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii and only Pm4 alleles were detected in 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d, and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e, and Pm2g) in the Ae. tauschii. Further resistance spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele, Pm2S, was identified in Ae. tauschii, which contained a 64-bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared with reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was close to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii background, a diagnostic marker, YTU-QS-3, was developed, and its effectiveness was verified. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.
Collapse
Affiliation(s)
- Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Ziyang Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Fuyu Su
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Tianying Fang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shuang Liu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
26
|
Qian Z, Liu R, Liu X, Qie Y, Wang J, Yin Y, Xin Q, Yu N, Zhang J, Li Y, Li J, Dai Y, Liu C, Jin Y, Ma P. Bulked segregant RNA-seq reveals complex resistance expression profile to powdery mildew in wild emmer wheat W762. FRONTIERS IN PLANT SCIENCE 2024; 15:1387427. [PMID: 38817928 PMCID: PMC11137253 DOI: 10.3389/fpls.2024.1387427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Exploring powdery mildew resistance (Pm) gene(s) and dissecting the molecular mechanism of the host resistance are critical to effectively and reasonably control this disease. Durum wheat (Triticum turgidum L. var. durumDesf.) is an important gene donor for wheat improvement against powdery mildew. In this study, a resistant durum wheat accession W762 was used to investigate its potential resistance component(s) and profile its expression pattern in responding to Bgt invasion using bulked segregant RNA-Seq (BSR-Seq) and further qRT-PCR verification. Genetic analysis showed that the powdery mildew resistance in W762 did not meet monogenic inheritance and complex genetic model might exist within the population of W762 × Langdon (susceptible durum wheat). After BSR-Seq, 6,196 consistently different single nucleotide polymorphisms (SNPs) were called between resistant and susceptible parents and bulks, and among them, 763 SNPs were assigned to the chromosome arm 7B. Subsequently, 3,653 differentially expressed genes (DEGs) between resistant and susceptible parents and bulks were annotated and analyzed by Gene Ontology (GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The potential regulated genes were selected and analyzed their temporal expression patterns following Bgt inoculation. As a result, nine disease-related genes showed distinctive expression profile after Bgt invasion and might serve as potential targets to regulate the resistance against powdery mildew in W762. Our study could lay a foundation for analysis of the molecular mechanism and also provide potential targets for the improvement of durable resistance against powdery mildew.
Collapse
Affiliation(s)
- Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Xueqing Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang, China
| | - Jiangchun Wang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yan Yin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Qingguo Xin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Jiadong Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Yaoxue Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Jiatong Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Yintao Dai
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
27
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
28
|
Li M, Zhang H, Xiao H, Zhu K, Shi W, Zhang D, Wang Y, Yang L, Wu Q, Xie J, Chen Y, Qiu D, Guo G, Lu P, Li B, Dong L, Li W, Cui X, Li L, Tian X, Yuan C, Li Y, Yu D, Nevo E, Fahima T, Li H, Dong L, Zhao Y, Liu Z. A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew. Nat Commun 2024; 15:3124. [PMID: 38600164 PMCID: PMC11006675 DOI: 10.1038/s41467-024-47497-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huixin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Shi
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dong Zhang
- Beijing PlantTech Biotechnology Co., Ltd., Beijing, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lingchuan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiubin Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dazhao Yu
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya City, Hainan Province, China.
| |
Collapse
|
29
|
Zhao Y, Han G, Qie Y, Song J, Zi Y, Xiao B, Wang J, Qian Z, Huang X, Liu R, Zhang J, Song L, Jin Y, Ma P. Characterization of the powdery mildew resistance locus in wheat breeding line Jimai 809 and its breeding application. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:28. [PMID: 38545461 PMCID: PMC10963687 DOI: 10.1007/s11032-024-01467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/15/2024] [Indexed: 04/24/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a severe disease that affects the yield and quality of wheat. Popularization of resistant cultivars in production is the preferred strategy to control this disease. In the present study, the Chinese wheat breeding line Jimai 809 showed excellent agronomic performance and high resistance to powdery mildew at the whole growth stage. To dissect the genetic basis for this resistance, Jimai 809 was crossed with the susceptible wheat cultivar Junda 159 to produce segregation populations. Genetic analysis showed that a single dominant gene, temporarily designated PmJM809, conferred the resistance to different Bgt isolates. PmJM809 was then mapped on the chromosome arm 2BL and flanked by the markers CISSR02g-1 and CIT02g-13 with genetic distances 0.4 and 0.8 cM, respectively, corresponding to a physical interval of 704.12-708.24 Mb. PmJM809 differed from the reported Pm genes on chromosome arm 2BL in origin, resistance spectrum, physical position and/or genetic diversity of the mapping interval, also suggesting PmJM809 was located on a complex interval with multiple resistance genes. To analyze and screen the candidate gene(s) of PmJM809, six genes related to disease resistance in the candidate interval were evaluated their expression patterns using an additional set of wheat samples and time-course analysis post-inoculation of the Bgt isolate E09. As a result, four genes were speculated as the key candidate or regulatory genes. Considering its comprehensive agronomic traits and resistance findings, PmJM809 was expected to be a valuable gene resource in wheat disease resistance breeding. To efficiently transfer PmJM809 into different genetic backgrounds, 13 of 19 closely linked markers were confirmed to be suitable for marker-assisted selection. Using these markers, a series of wheat breeding lines with harmonious disease resistance and agronomic performance were selected from the crosses of Jimai 809 and several susceptible cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01467-8.
Collapse
Affiliation(s)
- Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021 China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035 China
| | - Jianmin Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Yan Zi
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Xiaomei Huang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Jiadong Zhang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Lihong Song
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| |
Collapse
|
30
|
Li H, Men W, Ma C, Liu Q, Dong Z, Tian X, Wang C, Liu C, Gill HS, Ma P, Zhang Z, Liu B, Zhao Y, Sehgal SK, Liu W. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat Commun 2024; 15:2449. [PMID: 38503771 PMCID: PMC10951266 DOI: 10.1038/s41467-024-46814-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.
Collapse
Affiliation(s)
- Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Wenqiang Men
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, PR China
| | - Xiubin Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chaoli Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, PR China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
31
|
Wang J, Xu H, Qie Y, Han R, Sun X, Zhao Y, Xiao B, Qian Z, Huang X, Liu R, Zhang J, Liu C, Jin Y, Ma P. Evaluation and identification of powdery mildew-resistant genes in 137 wheat relatives. Front Genet 2024; 15:1342239. [PMID: 38327832 PMCID: PMC10847533 DOI: 10.3389/fgene.2024.1342239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Powdery mildew is one of the most severe diseases affecting wheat yield and quality and is caused by Blumeria graminis f. sp. tritici (Bgt). Host resistance is the preferred strategy to prevent this disease. However, the narrow genetic basis of common wheat has increased the demand for diversified germplasm resources against powdery mildew. Wheat relatives, especially the secondary gene pool of common wheat, are important gene donors in the genetic improvement of common wheat because of its abundant genetic variation and close kinship with wheat. In this study, a series of 137 wheat relatives, including 53 Triticum monococcum L. (2n = 2x = 14, AA), 6 T. urartu Thumanjan ex Gandilyan (2n = 2x = 14, AA), 9 T. timopheevii Zhuk. (2n = 4x = 28, AAGG), 66 T. aestivum subsp. spelta (2n = 6x = 42, AABBDD), and 3 Aegilops speltoides (2n = 2x = 14, SS) were systematically evaluated for their powdery mildew resistance and composition of Pm genes. Out of 137 (60.58%) accessions, 83 were resistant to Bgt isolate E09 at the seedling stage, and 116 of 137 (84.67%) wheat relatives were resistant to the mixture of Bgt isolates at the adult stage. This indicates that these accessions show a high level of resistance to powdery mildew. Some 31 markers for 23 known Pm genes were used to test these 137 accessions, and, in the results, only Pm2, Pm4, Pm6, Pm58, and Pm68 were detected. Among them, three Pm4 alleles (Pm4a, Pm4b, and Pm4f) were identified in 4 T. subsp. spelta accessions. q-RT PCR further confirmed that Pm4 alleles played a role in disease resistance in these four accessions. The phylogenetic tree showed that the kinship of Pm4 was close to Pm24 and Sr62. This study not only provides reference information and valuable germplasm resources for breeding new wheat varieties with disease resistance but also lays a foundation for enriching the genetic basis of wheat resistance to powdery mildew.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Science, Yantai, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Xiaomei Huang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Jiadong Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
32
|
Han G, Liu H, Zhu S, Gu T, Cao L, Yan H, Jin Y, Wang J, Liu S, Zhou Y, Shi Z, He H, An D. Two functional CC-NBS-LRR proteins from rye chromosome 6RS confer differential age-related powdery mildew resistance to wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:66-81. [PMID: 38153293 PMCID: PMC10754004 DOI: 10.1111/pbi.14165] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 12/29/2023]
Abstract
Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shanying Zhu
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Huagang He
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
33
|
Li Y, Hu Y, Jiang Y, Zhou Q, He Y, He J, Chen X, Chen X, Jiang B, Hao M, Ning S, Yuan Z, Zhang J, Xia C, Wu B, Feng L, Zhang L, Liu D, Huang L. Identification and fine-mapping of QYrAS286-2BL conferring adult-plant resistance to stripe rust in cultivated emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:5. [PMID: 38091074 DOI: 10.1007/s00122-023-04505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE A novel major adult-plant stripe rust resistance QTL derived from cultivated emmer wheat was mapped to a 123.6-kb region on wheat chromosome 2BL. Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat. Identification of new sources of resistance and their utilization in breeding programs is the effectively control strategy. The objective of this study was to identify and genetically characterize the stripe rust resistance derived from the cultivated emmer accession AS286. A recombinant inbred line population, developed from a cross between the susceptible durum wheat line langdon and AS286, was genotyped using the Wheat55K single nucleotide polymorphism array and evaluated in field conditions with a mixture of the prevalent Chinese Pst races (CYR32, CYR33, CYR34, Zhong4, and HY46) and in growth chamber with race CYR34. Three QTLs conferring resistance were mapped on chromosomes 1BS, 2BL, and 5BL, respectively. The QYrAS286-1BS and QYrAS286-2BL were stable with major effects, explaining 12.91% to 18.82% and 11.31% to 31.43% of phenotypic variation, respectively. QYrAS286-5BL was only detected based on growth chamber seedling data. RILs harboring both QYrAS286-1BS and QYrAS286-2BL showed high levels of stripe rust resistance equal to the parent AS286. The QYrAS286-2BL was only detected at the adult-plant stage, which is different from previously named Yr genes and inherited as a single gene. It was further mapped to a 123.6-kb region using KASP markers derived from SNPs identified by bulked segregant RNA sequencing (BSR-Seq). The identified loci enrich our stripe rust resistance gene pool, and the flanking markers developed here could be useful in marker-assisted selection for incorporating QYrAS286-2BL into wheat cultivars.
Collapse
Affiliation(s)
- Yuqin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yun Jiang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Yu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinrui Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
34
|
Wang T, Li G, Jiang C, Zhou Y, Yang E, Li J, Zhang P, Dundas I, Yang Z. Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3885. [PMID: 38005782 PMCID: PMC10674216 DOI: 10.3390/plants12223885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
An elite hexaploid triticale Yukuri from Australia was used as a bridge for transferring valuable genes from Secale cereale L. into common wheat for enriching the genetic variability of cultivated wheat. Non-denaturing-fluorescence in situ hybridization (ND-FISH) identified that Yukuri was a secondary triticale with a complete set of rye chromosomes and a 6D(6A) substitution. Seed protein electrophoresis showed that Yukuri had a unique composition of glutenin subunits. A set of Yukuri-derived wheat-rye introgression lines were created from a Yukuri x wheat population, and all lines were identified by ND-FISH with multiple probes and validated by diagnostic molecular marker analysis. A total of 59 wheat-rye introgression lines including modified chromosome structural variations of wheat, and new complex recombinant chromosomes of rye were detected through ND-FISH and Oligo-FISH painting based on oligonucleotide pools derived from wheat-barley genome collinear regions. Wheat lines carrying the 1R chromosome from Yukuri displayed resistance to both stripe rust and powdery mildew, while the lines carrying the 3RL and 7RL chromosome arms showed stripe rust resistance. The chromosome 1R-derived lines were found to exhibit a significant effect on most of the dough-related parameters, and chromosome 5R was clearly associated with increased grain weight. The development of the wheat-rye cytogenetic stocks carrying disease resistances and superior agronomic traits, as well as the molecular markers and FISH probes will promote the introgression of abundant variation from rye into wheat improvement programs.
Collapse
Affiliation(s)
- Tingting Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Chengzhi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Jianbo Li
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW 2570, Australia; (J.L.); (P.Z.)
| | - Peng Zhang
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW 2570, Australia; (J.L.); (P.Z.)
| | - Ian Dundas
- Formerly of School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia;
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| |
Collapse
|
35
|
Ul Islam B, Mir S, Dar MS, Khan GH, Shikari AB, Sofi NUR, Mohiddin F, Ahangar MA, Jehangir IA, Kumar S, Singh G, Wani SH. Characterization of Pre-Breeding Wheat ( Triticum aestivum L.) Germplasm for Stripe Rust Resistance Using Field Phenotyping and Genotyping. PLANTS (BASEL, SWITZERLAND) 2023; 12:3239. [PMID: 37765402 PMCID: PMC10538134 DOI: 10.3390/plants12183239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Wheat is highly affected by stripe rust disease, particularly under cooler environments, and the losses can reach up to 100 percent depending on the intensity of infection and the susceptibility of the genotype. The most effective method to manage this disease is the use of resistant varieties. In the present study, 192 wheat genotypes were evaluated for stripe rust resistance under field conditions and also in a laboratory using molecular markers. These lines included pre-breeding germplasm developed for rust resistance and some high-yielding commercially grown wheat varieties. Out of 192 genotypes, 53 were found to be resistant, and 29 showed moderate resistance reaction under field conditions, whereas the remaining genotypes were all either moderately susceptible or susceptible. Under controlled conditions, out of 109 genotypes, only 12 were found to be resistant to all the six virulent/pathogenic pathotypes. Additionally, a selection of 97 genotypes were found resistant in field screening and were subjected to molecular validation using the markers linked to major R-genes, viz., Yr5, Yr10, Yr15 and Yr17. Nine genotypes possessed the Yr5 gene, twelve had the Yr10 gene, fourteen had the Yr15 gene and thirty-two had the Yr17 gene. The resistance genes studied in the current study are effective in conferring resistance against stripe rust disease. The genotypes identified as resistant under both field and controlled conditions can be used as sources in stripe rust resistance breeding programs.
Collapse
Affiliation(s)
- Basharat Ul Islam
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Wadura, Sopore, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (B.U.I.); (A.B.S.)
| | - Saba Mir
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| | - Mohammad Saleem Dar
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| | - Gazala H. Khan
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| | - Asif B. Shikari
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Wadura, Sopore, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (B.U.I.); (A.B.S.)
| | - Najeeb ul Rehman Sofi
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| | - Fayaz Mohiddin
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| | - Mohammad Ashraf Ahangar
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| | - Intikhab Aalum Jehangir
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India;
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India;
| | - Shabir H. Wani
- Mountain Research Centre for Field Crops, Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190025, Jammu and Kashmir, India; (S.M.); (M.S.D.); (G.H.K.); (N.u.R.S.); (F.M.); (M.A.A.); (I.A.J.)
| |
Collapse
|
36
|
Warsi ZI, Khatoon K, Singh P, Rahman LU. Enhancing drought resistance in Pogostemon cablin (Blanco) Benth. through overexpression of ACC deaminase gene using thin cell layer regeneration system. FRONTIERS IN PLANT SCIENCE 2023; 14:1238838. [PMID: 37636084 PMCID: PMC10452012 DOI: 10.3389/fpls.2023.1238838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Pogostemon cablin cultivation faces massive constraints because of its susceptability to drought stress that reduces patchouli propagation and oil yield. The present study has achieved an efficient and rapid direct regeneration system for the transgenic production of P. cablin using Agrobacterium-mediated genetic transformation. To establish an efficient regeneration protocol for fast in-vitro multiplication of patchouli plants, leaf, petiole, and transverse thin cell layer (tTCL) explants were used and inoculated on an MS medium supplemented with different combinations of phytohormones. A comparative study showed a maximum regeneration frequency of 93.30 ± 0.56% per explant was obtained from leaf segments on optimal MS medium fortified with 0.2mg/L BAP and 0.1mg/L NAA. Leaf and petiole explants took 25-35 days to regenerate while tTCL section showed regeneration in just 15-20 days on the same medium. Subsequently, productive genetic transformation protocol OD600 0.6, AS 200µM, 30mg/L kanamycin, and infection time 5 min. was standardized and best-suited explants were infected at optimum conditions from the Agrobacterium tumefaciens (LBA 4404) strain harboring ACC deaminase to generate transgenic P. cablin Benth. (CIM-Samarth) plants. The investigation suggested that the optimized protocol provides a maximum transformation frequency of 42 ± 1.9% in 15-20 days from tTCL. The transgenic plants were shifted to the greenhouse with a 52.0 ± 0.8% survival frequency. A molecular docking study confirmed significant binding affinity of ligand ACC with ACC deaminase at the catalytic site, and ligand interactions showed four H-bonds at the binding pocket with amino acids Cys-196, Val-198, Thr-199, and Gly-200 that validate gene relative expression in transgenic plants. Among all transgenic acclimatized greenhouse-grown patchouli plants, line PT4 showed improved drought resistance under severe water stress as its RWC was 71.7 ± 2.3% to 75.7 ± 2.1% which is greater than the RWC of the control plant, 58.30 ± 0.21%. Analysis of the other physiological indicators, H2O2, chlorophyll content, and ROS result support drought resistance ability. Our study concluded that the first report on P. cablin, tTCL direct regeneration, and standardized transformation protocol created a new opportunity for genetic manipulation to achieve drought-resistant patchouli plants for cultivation in all seasons at the commercial level.
Collapse
Affiliation(s)
| | | | | | - Laiq Ur Rahman
- Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research (CSIR), Lucknow, India
| |
Collapse
|