1
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Wilson R, Le Bourgeois M, Perez M, Sarkies P. Fluctuations in chromatin state at regulatory loci occur spontaneously under relaxed selection and are associated with epigenetically inherited variation in C. elegans gene expression. PLoS Genet 2023; 19:e1010647. [PMID: 36862744 PMCID: PMC10013927 DOI: 10.1371/journal.pgen.1010647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Some epigenetic information can be transmitted between generations without changes in the underlying DNA sequence. Changes in epigenetic regulators, termed epimutations, can occur spontaneously and be propagated in populations in a manner reminiscent of DNA mutations. Small RNA-based epimutations occur in C. elegans and persist for around 3-5 generations on average. Here, we explored whether chromatin states also undergo spontaneous change and whether this could be a potential alternative mechanism for transgenerational inheritance of gene expression changes. We compared the chromatin and gene expression profiles at matched time points from three independent lineages of C. elegans propagated at minimal population size. Spontaneous changes in chromatin occurred in around 1% of regulatory regions each generation. Some were heritable epimutations and were significantly enriched for heritable changes in expression of nearby protein-coding genes. Most chromatin-based epimutations were short-lived but a subset had longer duration. Genes subject to long-lived epimutations were enriched for multiple components of xenobiotic response pathways. This points to a possible role for epimutations in adaptation to environmental stressors.
Collapse
Affiliation(s)
- Rachel Wilson
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcos Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Riva C, Hajduskova M, Gally C, Suman SK, Ahier A, Jarriault S. A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved plasticity factors. Cell Rep 2022; 40:111365. [PMID: 36130499 PMCID: PMC9513805 DOI: 10.1016/j.celrep.2022.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/09/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Transdifferentiation, or direct cell reprogramming, is the conversion of one fully differentiated cell type into another. Whether core mechanisms are shared between natural transdifferentiation events when occurring with or without cell division is unclear. We have previously characterized the Y-to-PDA natural transdifferentiation in Caenorhabditis elegans, which occurs without cell division and requires orthologs of vertebrate reprogramming factors. Here, we identify a rectal-to-GABAergic transdifferentiation and show that cell division is required but not sufficient for conversion. We find shared mechanisms, including erasure of the initial identity, which requires the conserved reprogramming factors SEM-4/SALL, SOX-2, CEH-6/OCT, and EGL-5/HOX. We also find three additional and parallel roles of the Wnt signaling pathway: selection of a specific daughter, removal of the initial identity, and imposition of the precise final subtype identity. Our results support a model in which levels and antagonistic activities of SOX-2 and Wnt signaling provide a timer for the acquisition of final identity.
Collapse
Affiliation(s)
- Claudia Riva
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Martina Hajduskova
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| | - Shashi Kumar Suman
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Arnaud Ahier
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Sophie Jarriault
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
4
|
Rumley JD, Preston EA, Cook D, Peng FL, Zacharias AL, Wu L, Jileaeva I, Murray JI. pop-1/TCF, ref-2/ZIC and T-box factors regulate the development of anterior cells in the C. elegans embryo. Dev Biol 2022; 489:34-46. [PMID: 35660370 PMCID: PMC9378603 DOI: 10.1016/j.ydbio.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.
Collapse
Affiliation(s)
- Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elicia A Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan Cook
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felicia L Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda L Zacharias
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lucy Wu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ilona Jileaeva
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Lehmann C, Pohl C. A Maternal-Effect Toxin Affects Epithelial Differentiation and Tissue Mechanics in Caenorhabditis elegans. Front Cell Dev Biol 2021; 9:743496. [PMID: 34722524 PMCID: PMC8551626 DOI: 10.3389/fcell.2021.743496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Selfish genetic elements that act as post-segregation distorters cause lethality in non-carrier individuals after fertilization. Two post-segregation distorters have been previously identified in Caenorhabditis elegans, the peel-1/zeel-1 and the sup-35/pha-1 elements. These elements seem to act as modification-rescue systems, also called toxin/antidote pairs. Here we show that the maternal-effect toxin/zygotic antidote pair sup-35/pha-1 is required for proper expression of apical junction (AJ) components in epithelia and that sup-35 toxicity increases when pathways that establish and maintain basal epithelial characteristics, die-1, elt-1, lin-26, and vab-10, are compromised. We demonstrate that pha-1(e2123) embryos, which lack the antidote, are defective in epidermal morphogenesis and frequently fail to elongate. Moreover, seam cells are frequently misshaped and mispositioned and cell bond tension is reduced in pha-1(e2123) embryos, suggesting altered tissue material properties in the epidermis. Several aspects of this phenotype can also be induced in wild-type embryos by exerting mechanical stress through uniaxial loading. Seam cell shape, tissue mechanics, and elongation can be restored in pha-1(e2123) embryos if expression of the AJ molecule DLG-1/Discs large is reduced. Thus, our experiments suggest that maternal-effect toxicity disrupts proper development of the epidermis which involves distinct transcriptional regulators and AJ components.
Collapse
Affiliation(s)
- Christina Lehmann
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Pedone KH, González-Pérez V, Leopold LE, Rasmussen NR, Der CJ, Cox AD, Ahmed S, Reiner DJ. Engineering threshold-based selection systems. G3 (BETHESDA, MD.) 2021; 11:jkab234. [PMID: 34544135 PMCID: PMC8496214 DOI: 10.1093/g3journal/jkab234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/28/2021] [Indexed: 11/12/2022]
Abstract
Using model organisms to identify novel therapeutic targets is frequently constrained by pre-existing genetic toolkits. To expedite positive selection for identification of novel downstream effectors, we engineered conditional expression of activated CED-10/Rac to disrupt Caenorhabditis elegans embryonic morphogenesis, titrated to 100% lethality. The strategy of engineering thresholds for positive selection using experimental animals was validated with pharmacological and genetic suppression and is generalizable to diverse molecular processes and experimental systems.
Collapse
Affiliation(s)
- Katherine H Pedone
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vanessa González-Pérez
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Luciana E Leopold
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neal R Rasmussen
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shawn Ahmed
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David J Reiner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX 77030, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Grimbert S, Mastronardi K, Richard V, Christensen R, Law C, Zardoui K, Fay D, Piekny A. Multi-tissue patterning drives anterior morphogenesis of the C. elegans embryo. Dev Biol 2021; 471:49-64. [PMID: 33309948 PMCID: PMC8597047 DOI: 10.1016/j.ydbio.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Complex structures derived from multiple tissue types are challenging to study in vivo, and our knowledge of how cells from different tissues are coordinated is limited. Model organisms have proven invaluable for improving our understanding of how chemical and mechanical cues between cells from two different tissues can govern specific morphogenetic events. Here we used Caenorhabditis elegans as a model system to show how cells from three different tissues are coordinated to give rise to the anterior lumen. While some aspects of pharyngeal morphogenesis have been well-described, it is less clear how cells from the pharynx, epidermis and neuroblasts coordinate to define the location of the anterior lumen and supporting structures. Using various microscopy and software approaches, we define the movements and patterns of these cells during anterior morphogenesis. Projections from the anterior-most pharyngeal cells (arcade cells) provide the first visible markers for the location of the future lumen, and facilitate patterning of the surrounding neuroblasts. These neuroblast patterns control the rate of migration of the anterior epidermal cells, whereas the epidermal cells ultimately reinforce and control the position of the future lumen, as they must join with the pharyngeal cells for their epithelialization. Our studies are the first to characterize anterior morphogenesis in C. elegans in detail and should lay the framework for identifying how these different patterns are controlled at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Karina Mastronardi
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Victoria Richard
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, NIH/NIBIB, 13 South Drive, Bethesda, MD, 20892, USA
| | - Christopher Law
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Khashayar Zardoui
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - David Fay
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
8
|
Game of Tissues: How the Epidermis Thrones C. elegans Shape. J Dev Biol 2020; 8:jdb8010007. [PMID: 32182901 PMCID: PMC7151205 DOI: 10.3390/jdb8010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The versatility of epithelial cell structure is universally exploited by organisms in multiple contexts. Epithelial cells can establish diverse polarized axes within their tridimensional structure which enables them to flexibly communicate with their neighbors in a 360° range. Hence, these cells are central to multicellularity, and participate in diverse biological processes such as organismal development, growth or immune response and their misfunction ultimately impacts disease. During the development of an organism, the first task epidermal cells must complete is the formation of a continuous sheet, which initiates its own morphogenic process. In this review, we will focus on the C. elegans embryonic epithelial morphogenesis. We will describe how its formation, maturation, and spatial arrangements set the final shape of the nematode C. elegans. Special importance will be given to the tissue-tissue interactions, regulatory tissue-tissue feedback mechanisms and the players orchestrating the process.
Collapse
|
9
|
Esse R, Gushchanskaia ES, Lord A, Grishok A. DOT1L complex suppresses transcription from enhancer elements and ectopic RNAi in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2019; 25:1259-1273. [PMID: 31300558 PMCID: PMC6800474 DOI: 10.1261/rna.070292.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/10/2019] [Indexed: 05/14/2023]
Abstract
Methylation of histone H3 on lysine 79 (H3K79) by DOT1L is associated with actively transcribed genes. Earlier, we described that DOT-1.1, the Caenorhabditis elegans homolog of mammalian DOT1L, cooperates with the chromatin-binding protein ZFP-1 (AF10 homolog) to negatively modulate transcription of highly and widely expressed target genes. Also, the reduction of ZFP-1 levels has consistently been associated with lower efficiency of RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA), but the reason for this is not clear. Here, we demonstrate that the DOT1L complex suppresses transcription originating from enhancer elements and antisense transcription, thus potentiating the expression of enhancer-regulated genes. We also show that worms lacking H3K79 methylation do not survive, and this lethality is suppressed by a loss of caspase-3 or Dicer complex components that initiate gene silencing response to exogenous dsRNA. Our results suggest that ectopic elevation of endogenous dsRNA directly or indirectly resulting from global misregulation of transcription in DOT1L complex mutants may engage the Dicer complex and, therefore, limit the efficiency of exogenous RNAi.
Collapse
Affiliation(s)
- Ruben Esse
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Avery Lord
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alla Grishok
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Genome Science Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
10
|
Fan L, Kovacevic I, Heiman MG, Bao Z. A multicellular rosette-mediated collective dendrite extension. eLife 2019; 8:38065. [PMID: 30767892 PMCID: PMC6400498 DOI: 10.7554/elife.38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Coordination of neurite morphogenesis with surrounding tissues is crucial to the establishment of neural circuits, but the underlying cellular and molecular mechanisms remain poorly understood. We show that neurons in a C. elegans sensory organ, called the amphid, undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7, HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our results suggest a collective mechanism of neurite extension that is distinct from the classical pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in shaping neurites.
Collapse
Affiliation(s)
- Li Fan
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Ismar Kovacevic
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| |
Collapse
|
11
|
Zilberman Y, Abrams J, Anderson DC, Nance J. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis. J Cell Biol 2017; 216:3729-3744. [PMID: 28903999 PMCID: PMC5674880 DOI: 10.1083/jcb.201611061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/18/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Joshua Abrams
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Dorian C Anderson
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
- Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
12
|
Adachi T, Nagahama K, Izumi S. The C. elegans mRNA decapping enzyme shapes morphology of cilia. Biochem Biophys Res Commun 2017; 493:382-387. [PMID: 28887031 DOI: 10.1016/j.bbrc.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Cilia and flagella are evolutionarily conserved organelles that protrude from cell surfaces. Most cilia and flagella are single rod-shaped but some cilia show a variety of shapes. For example, human airway epithelial cells are multiciliated, flagella of crayfish spermatozoon are star-like shaped, and fruit fly spermatozoon extends long flagella. In Caenorhabditis elegans, cilia display morphological diversity of shapes (single, dual rod-type and wing-like and highly-branched shapes). Here we show that DCAP-1 and DCAP-2, which are the homologues of mammalian DCP1 and DCP2 mRNA decapping enzymes, respectively, are involved in formation of dual rod-type and wing-like shaped cilia in C. elegans. mRNA decapping enzyme catalyzes hydrolysis of 5' cap structure of mRNA, which leads to degradation of mRNA. Rescue experiments showed that DCAP-2 acts not in glial cells surrounding cilia but in neurons. This is the first evidence to demonstrate that mRNA decapping is involved in ciliary shape formation.
Collapse
Affiliation(s)
- Takeshi Adachi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan.
| | - Keigo Nagahama
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan
| | - Susumu Izumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan
| |
Collapse
|
13
|
Ho MCW, Quintero-Cadena P, Sternberg PW. Genome-wide discovery of active regulatory elements and transcription factor footprints in Caenorhabditis elegans using DNase-seq. Genome Res 2017; 27:2108-2119. [PMID: 29074739 PMCID: PMC5741056 DOI: 10.1101/gr.223735.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
Abstract
Deep sequencing of size-selected DNase I–treated chromatin (DNase-seq) allows high-resolution measurement of chromatin accessibility to DNase I cleavage, permitting identification of de novo active cis-regulatory modules (CRMs) and individual transcription factor (TF) binding sites. We adapted DNase-seq to nuclei isolated from C. elegans embryos and L1 arrest larvae to generate high-resolution maps of TF binding. Over half of embryonic DNase I hypersensitive sites (DHSs) were annotated as noncoding, with 24% in intergenic, 12% in promoters, and 28% in introns, with similar statistics observed in L1 arrest larvae. Noncoding DHSs are highly conserved and enriched in marks of enhancer activity and transcription. We validated noncoding DHSs against known enhancers from myo-2, myo-3, hlh-1, elt-2, and lin-26/lir-1 and recapitulated 15 of 17 known enhancers. We then mined DNase-seq data to identify putative active CRMs and TF footprints. Using DNase-seq data improved predictions of tissue-specific expression compared with motifs alone. In a pilot functional test, 10 of 15 DHSs from pha-4, icl-1, and ceh-13 drove reporter gene expression in transgenic C. elegans. Overall, we provide experimental annotation of 26,644 putative CRMs in the embryo containing 55,890 TF footprints, as well as 15,841 putative CRMs in the L1 arrest larvae containing 32,685 TF footprints.
Collapse
Affiliation(s)
- Margaret C W Ho
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Porfirio Quintero-Cadena
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Paul W Sternberg
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
14
|
A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun 2017; 8:14802. [PMID: 28378740 PMCID: PMC5382276 DOI: 10.1038/ncomms14802] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
CD47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to its receptor, SIRPα, on macrophages and other immune cells. CD47 is expressed at different levels by neoplastic and normal cells. Here, to reveal mechanisms by which different neoplastic cells generate this dominant 'don't eat me' signal, we analyse the CD47 regulatory genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in certain cancer cell types. We show that a set of active constituent enhancers, located within the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKB1 signalling pathway directly regulates CD47 by interacting with a constituent enhancer located within a CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve SE to drive CD47 overexpression to escape immune surveillance.
Collapse
|
15
|
Quintin S, Wang S, Pontabry J, Bender A, Robin F, Hyenne V, Landmann F, Gally C, Oegema K, Labouesse M. Non-centrosomal epidermal microtubules act in parallel to LET-502/ROCK to promote C. elegans elongation. Development 2015; 143:160-73. [PMID: 26586219 PMCID: PMC6514414 DOI: 10.1242/dev.126615] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
C. elegans embryonic elongation is a morphogenetic event driven by actomyosin contractility and muscle-induced tension transmitted through hemidesmosomes. A role for the microtubule cytoskeleton has also been proposed, but its contribution remains poorly characterized. Here, we investigate the organization of the non-centrosomal microtubule arrays present in the epidermis and assess their function in elongation. We show that the microtubule regulators γ-tubulin and NOCA-1 are recruited to hemidesmosomes and adherens junctions early in elongation. Several parallel approaches suggest that microtubule nucleation occurs from these sites. Disrupting the epidermal microtubule array by overexpressing the microtubule-severing protein Spastin or by inhibiting the C. elegans ninein homolog NOCA-1 in the epidermis mildly affected elongation. However, microtubules were essential for elongation when hemidesmosomes or the activity of the Rho kinase LET-502/ROCK were partially compromised. Imaging of junctional components and genetic analyses suggest that epidermal microtubules function together with Rho kinase to promote the transport of E-cadherin to adherens junctions and myotactin to hemidesmosomes. Our results indicate that the role of LET-502 in junctional remodeling is likely to be independent of its established function as a myosin II activator, but requires a microtubule-dependent pathway involving the syntaxin SYX-5. Hence, we propose that non-centrosomal microtubules organized by epidermal junctions contribute to elongation by transporting junction remodeling factors, rather than having a mechanical role. Summary: During C. elegans embryonic elongation, microtubules nucleate at adjerens junctions and hemidesmosomes, and are important for the transport of junctional proteins.
Collapse
Affiliation(s)
- Sophie Quintin
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Shahoe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Julien Pontabry
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Ambre Bender
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - François Robin
- Institut de Biologie Paris Seine, IBPS FR3631, Université Pierre et Marie Curie, 7-9 Quai Saint Bernard, Paris 75005, France
| | - Vincent Hyenne
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Frédéric Landmann
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Christelle Gally
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Michel Labouesse
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France Institut de Biologie Paris Seine, IBPS FR3631, Université Pierre et Marie Curie, 7-9 Quai Saint Bernard, Paris 75005, France
| |
Collapse
|
16
|
Walck-Shannon E, Reiner D, Hardin J. Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans. Development 2015; 142:3549-60. [PMID: 26395474 DOI: 10.1242/dev.127597] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/26/2015] [Indexed: 12/24/2022]
Abstract
Cell intercalation is a fundamental, coordinated cell rearrangement process that shapes tissues throughout animal development. Studies of intercalation within epithelia have focused almost exclusively on the localized constriction of specific apical junctions. Another widely deployed yet poorly understood alternative mechanism of epithelial intercalation relies on basolateral protrusive activity. Using the dorsal embryonic epidermis of Caenorhabditis elegans, we have investigated this alternative mechanism using high-resolution live cell microscopy and genetic analysis. We find that as dorsal epidermal cells migrate past one another they produce F-actin-rich protrusions polarized at their extending (medial) edges. These protrusions are controlled by the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, which function redundantly to polarize actin polymerization upstream of the WAVE complex and WASP, respectively. We also identify UNC-73, the C. elegans ortholog of Trio, as a guanine nucleotide exchange factor (GEF) upstream of both CED-10 and MIG-2. Further, we identify a novel polarizing cue, CRML-1, which is the ortholog of human capping Arp2/3 myosin I linker (CARMIL), that localizes to the nonprotrusive lateral edges of dorsal cells. CRML-1 genetically suppresses UNC-73 function and, indirectly, actin polymerization. This network identifies a novel, molecularly conserved cassette that regulates epithelial intercalation via basolateral protrusive activity.
Collapse
Affiliation(s)
- Elise Walck-Shannon
- Graduate Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
| | - David Reiner
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, NC 27514, USA Center for Translational Cancer Research, Institute of Biosciences and Technology and Department of Medical Physiology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | - Jeff Hardin
- Graduate Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA Department of Zoology, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
| |
Collapse
|
17
|
Shaham S. Glial development and function in the nervous system of Caenorhabditis elegans. Cold Spring Harb Perspect Biol 2015; 7:a020578. [PMID: 25573712 DOI: 10.1101/cshperspect.a020578] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nematode, Caenorhabditis elegans, has served as a fruitful setting for understanding conserved biological processes. The past decade has seen the rise of this model organism as an important tool for uncovering the mysteries of the glial cell, which partners with neurons to generate a functioning nervous system in all animals. C. elegans affords unparalleled single-cell resolution in vivo in examining glia-neuron interactions, and similarities between C. elegans and vertebrate glia suggest that lessons learned from this nematode are likely to have general implications. Here, I summarize what has been gleaned over the past decade since C. elegans glia research became a concerted area of focus. Studies have revealed that glia are essential elements of a functioning C. elegans nervous system and play key roles in its development. Importantly, glial influence on neuronal function appears to be dynamic. Key questions for the field to address in the near- and long-term have emerged, and these are discussed within.
Collapse
Affiliation(s)
- Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065
| |
Collapse
|
18
|
Liu WJ, Reece-Hoyes JS, Walhout AJM, Eisenmann DM. Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6. BMC DEVELOPMENTAL BIOLOGY 2014; 14:17. [PMID: 24885717 PMCID: PMC4051164 DOI: 10.1186/1471-213x-14-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/27/2014] [Indexed: 01/05/2023]
Abstract
Background Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo. Results We used the yeast one-hybrid (Y1H) method to screen for factors that bound to 13 fragments from the lin-39 region: twelve fragments contained sequences conserved between C. elegans and two other nematode species, while one fragment was known to drive reporter gene expression in the early embryo in cells that generate the VPCs. Sixteen transcription factors that bind to eight lin-39 genomic fragments were identified in yeast, and we characterized several factors by verifying their physical interactions in vitro, and showing that reduction of their function leads to alterations in lin-39 levels and lin-39::GFP reporter expression in vivo. Three factors, the orphan nuclear hormone receptor NHR-43, the hypodermal fate regulator LIN-26, and the GATA factor ELT-6 positively regulate lin-39 expression in the embryonic precursors to the VPCs. In particular, ELT-6 interacts with an enhancer that drives GFP expression in the early embryo, and the ELT-6 site we identified is necessary for proper embryonic expression. These three factors, along with the factors ZTF-17, BED-3 and TBX-9, also positively regulate lin-39 expression in the larval VPCs. Conclusions These results significantly expand the number of factors known to directly bind and regulate lin-39 expression, identify the first factors required for lin-39 expression in the embryo, and hint at a positive feedback mechanism involving GATA factors that maintains lin-39 expression in the vulval lineage. This work indicates that, as in other organisms, the regulation of Hox gene expression in C. elegans is complicated, redundant and robust.
Collapse
Affiliation(s)
| | | | | | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21250, USA.
| |
Collapse
|
19
|
The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans. Dev Biol 2014; 391:43-53. [PMID: 24721716 DOI: 10.1016/j.ydbio.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022]
Abstract
The PAF1 complex (PAF1C) is an evolutionarily conserved protein complex involved in transcriptional regulation and chromatin remodeling. How the PAF1C is involved in animal development is still not well understood. Here, we report that, in the nematode Caenorhabditis elegans, the PAF1C is involved in epidermal morphogenesis in late embryogenesis. From an RNAi screen we identified the C. elegans ortholog of a component of the PAF1C, CTR-9, as a gene whose depletion caused various defects during embryonic epidermal morphogenesis, including epidermal cell positioning, ventral enclosure and epidermal elongation. RNAi of orthologs of other four components of the PAF1C (PAFO-1, LEO-1, CDC-73 and RTFO-1) caused similar epidermal defects. In these embryos, whereas the number and cell fate determination of epidermal cells were apparently unaffected, their position and shape were severely disorganized. PAFO-1::mCherry, mCherry::LEO-1 and GFP::RTFO-1 driven by the authentic promoters were detected in the nuclei of a wide range of cells. Nuclear localization of GFP::RTFO-1 was independent of other PAF1C components, while PAFO-1::mCherry and mCherry::LEO-1 dependent on other components except RTFO-1. Epidermis-specific expression of mCherry::LEO-1 rescued embryonic lethality of the leo-1 deletion mutant. Thus, although the PAF1C is universally expressed in C. elegans embryos, its epidermal function is crucial for the viability of this animal.
Collapse
|
20
|
Chen RAJ, Down TA, Stempor P, Chen QB, Egelhofer TA, Hillier LW, Jeffers TE, Ahringer J. The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res 2013; 23:1339-47. [PMID: 23550086 PMCID: PMC3730107 DOI: 10.1101/gr.153668.112] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA polymerase transcription initiation sites are largely unknown in Caenorhabditis elegans. The initial 5′ end of most protein-coding transcripts is removed by trans-splicing, and noncoding initiation sites have not been investigated. We characterized the landscape of RNA Pol II transcription initiation, identifying 73,500 distinct clusters of initiation. Bidirectional transcription is frequent, with a peak of transcriptional pairing at 120 bp. We assign transcription initiation sites to 7691 protein-coding genes and find that they display features typical of eukaryotic promoters. Strikingly, the majority of initiation events occur in regions with enhancer-like chromatin signatures. Based on the overlap of transcription initiation clusters with mapped transcription factor binding sites, we define 2361 transcribed intergenic enhancers. Remarkably, productive transcription elongation across these enhancers is predominantly in the same orientation as that of the nearest downstream gene. Directed elongation from an upstream enhancer toward a downstream gene could potentially deliver RNA polymerase II to a proximal promoter, or alternatively might function directly as a distal promoter. Our results provide a new resource to investigate transcription regulation in metazoans.
Collapse
Affiliation(s)
- Ron A-J Chen
- The Gurdon Institute, and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnson RP, Kramer JM. C. elegans dystroglycan coordinates responsiveness of follower axons to dorsal/ventral and anterior/posterior guidance cues. Dev Neurobiol 2012; 72:1498-515. [PMID: 22275151 DOI: 10.1002/dneu.22011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/16/2011] [Accepted: 01/20/2012] [Indexed: 11/08/2022]
Abstract
Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C. elegans, formation of the right angle-shaped lumbar commissure connecting the lumbar and preanal ganglia is an example of pioneer/follower dynamics. We find that the dystroglycan ortholog DGN-1 mediates the fidelity of follower lumbar commissure axon extension along the pioneer axon route. In dgn-1 mutants, the axon of the pioneer PVQ neuron faithfully establishes the lumbar commissure, but axons of follower lumbar neurons, such as PVC, frequently bypass the lumbar commissure and extend along an oblique trajectory directly toward the preanal ganglion. In contrast, disruption of the UNC-6/netrin guidance pathway principally perturbs PVQ ventral guidance to pioneer the lumbar commissure. Loss of DGN-1 in unc-6 mutants has a quantitatively similar effect on follower axon guidance regardless of PVQ axon route, indicating that DGN-1 does not mediate follower/pioneer adhesion. Instead, DGN-1 appears to block premature responsiveness of follower axons to a preanal ganglion-directed guidance cue, which mediates ventral-to-anterior reorientation of lumbar commissure axons. Deletion analysis shows that only the most N-terminal DGN-1 domain is required for these activities. These studies suggest that dystroglycan modulation of growth cone responsiveness to conflicting guidance cues is important for restricting follower axon extension to the tracts laid down by pioneers.
Collapse
Affiliation(s)
- Robert P Johnson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
22
|
Stigler B, Chamberlin HM. A regulatory network modeled from wild-type gene expression data guides functional predictions in Caenorhabditis elegans development. BMC SYSTEMS BIOLOGY 2012; 6:77. [PMID: 22734688 PMCID: PMC3463499 DOI: 10.1186/1752-0509-6-77] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/04/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Complex gene regulatory networks underlie many cellular and developmental processes. While a variety of experimental approaches can be used to discover how genes interact, few biological systems have been systematically evaluated to the extent required for an experimental definition of the underlying network. Therefore, the development of computational methods that can use limited experimental data to define and model a gene regulatory network would provide a useful tool to evaluate many important but incompletely understood biological processes. Such methods can assist in extracting all relevant information from data that are available, identify unexpected regulatory relationships and prioritize future experiments. RESULTS To facilitate the analysis of gene regulatory networks, we have developed a computational modeling pipeline method that complements traditional evaluation of experimental data. For a proof-of-concept example, we have focused on the gene regulatory network in the nematode C. elegans that mediates the developmental choice between mesodermal (muscle) and ectodermal (skin) cell fates in the embryonic C lineage. We have used gene expression data to build two models: a knowledge-driven model based on gene expression changes following gene perturbation experiments, and a data-driven mathematical model derived from time-course gene expression data recovered from wild-type animals. We show that both models can identify a rich set of network gene interactions. Importantly, the mathematical model built only from wild-type data can predict interactions demonstrated by the perturbation experiments better than chance, and better than an existing knowledge-driven model built from the same data set. The mathematical model also provides new biological insight, including a dissection of zygotic from maternal functions of a key transcriptional regulator, PAL-1, and identification of non-redundant activities of the T-box genes tbx-8 and tbx-9. CONCLUSIONS This work provides a strong example for a mathematical modeling approach that solely uses wild-type data to predict an underlying gene regulatory network. The modeling approach complements traditional methods of data analysis, suggesting non-intuitive network relationships and guiding future experiments.
Collapse
Affiliation(s)
- Brandilyn Stigler
- Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA.
| | | |
Collapse
|
23
|
Oikonomou G, Perens EA, Lu Y, Shaham S. Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Dev Biol 2012; 362:42-9. [PMID: 22138055 PMCID: PMC3254776 DOI: 10.1016/j.ydbio.2011.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/31/2011] [Accepted: 11/12/2011] [Indexed: 12/26/2022]
Abstract
The endings of sensory receptor cells often lie within specialized compartments formed by glial cells. The main sensory organ of Caenorhabditis elegans, the amphid, provides a powerful setting for studying glial compartment morphogenesis. Our previous studies showed that amphid compartment size is controlled by opposing activities of the Nemo-like kinase LIT-1, which promotes compartment expansion, and the Patched-related protein DAF-6, which restricts compartment growth. From a genetic screen for mutations able to suppress the bloated sensory compartments of daf-6 mutants, we identified an allele of the sorting nexin gene snx-1. SNX-1 protein is a component of the retromer, a protein complex that facilitates recycling of transmembrane proteins from the endosome to the Golgi network. We find that snx-1 functions cell autonomously within glia to promote sensory compartment growth, and that SNX-1 protein is enriched near the surface of the sensory compartment. snx-1 interacts genetically with lit-1 and another regulator of compartment size, the Dispatched-related gene che-14. Mutations in snx-3 and vps-29, also retromer genes, can suppress daf-6 defects. Surprisingly, however, remaining retromer components seem not to be involved. Our results suggest that a novel assembly of retromer components is important for determining sensory compartment dimensions.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Elliot A. Perens
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
24
|
Abstract
Neurons and glia display remarkable morphological plasticity, and remodeling of glia may facilitate neuronal shape changes. The molecular basis and control of glial shape changes is not well understood. In response to environmental stress, the nematode Caenorhabditis elegans enters an alternative developmental state, called dauer, in which glia and neurons of the amphid sensory organ remodel. Here, we describe a genetic screen aimed at identifying genes required for amphid glia remodeling. We previously demonstrated that remodeling requires the Otx-type transcription factor TTX-1 and its direct target, the receptor tyrosine kinase gene ver-1. We now find that the hunchback/Ikaros-like C2H2 zinc-finger factor ztf-16 is also required. We show that ztf-16 mutants exhibit pronounced remodeling defects, which are explained, at least in part, by defects in the expression of ver-1. Expression and cell-specific rescue studies suggest that ztf-16, like ttx-1, functions within glia; however, promoter deletion studies show that ztf-16 acts through a site on the ver-1 promoter that is independent of ttx-1. Our studies identify an important component of glia remodeling and suggest that transcriptional changes may underlie glial morphological plasticity in the sensory organs of C. elegans.
Collapse
|
25
|
Neural maintenance roles for the matrix receptor dystroglycan and the nuclear anchorage complex in Caenorhabditis elegans. Genetics 2012; 190:1365-77. [PMID: 22298703 DOI: 10.1534/genetics.111.136184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies in Caenorhabditis elegans have revealed specific neural maintenance mechanisms that protect soma and neurites against mispositioning due to displacement stresses, such as muscle contraction. We report that C. elegans dystroglycan (DG) DGN-1 functions to maintain the position of lumbar neurons during late embryonic and larval development. In the absence of DGN-1 the cell bodies of multiple lumbar neuron classes are frequently displaced anterior of their normal positions. Early but not later embryonic panneural expression of DGN-1 rescues positional maintenance, suggesting that dystroglycan is required for establishment of a critical maintenance pathway that persists throughout later developmental stages. Lumbar neural maintenance requires only a membrane-tethered N-terminal domain of DGN-1 and may involve a novel extracellular partner for dystroglycan. A genetic screen for similar lumbar maintenance mutants revealed a role for the nesprin/SYNE family protein ANC-1 as well as for the extracellular protein DIG-1, previously implicated in lumbar neuron maintenance. The involvement of ANC-1 reveals a previously unknown role for nucleus-cytoskeleton interactions in neural maintenance. Genetic analysis indicates that lumbar neuron position is maintained in late embryos by parallel DGN-1/DIG-1 and ANC-1-dependent pathways, and in larvae by separate DGN-1 and ANC-1 pathways. The effect of muscle paralysis on late embryonic- or larval-stage maintenance defects in mutants indicates that lumbar neurons are subject to both muscle contraction-dependent and contraction-independent displacement stresses, and that different maintenance pathways may protect against specific types of displacement stress.
Collapse
|
26
|
Hajduskova M, Ahier A, Daniele T, Jarriault S. Cell plasticity in Caenorhabditis elegans: from induced to natural cell reprogramming. Genesis 2011; 50:1-17. [PMID: 21932439 DOI: 10.1002/dvg.20806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 01/17/2023]
Abstract
Achieving controlled reprogramming of differentiated cells into a desired cell type would open new opportunities in stem-cell biology and regenerative medicine. Experimentation on cell reprogramming requires a model in which cell conversion can be induced and tracked individually. The tiny nematode, Caenorhabditis elegans, owing to its known cellular lineage, allows the study of direct cell type conversion with a single-cell resolution. Indeed, recent advances have shown that despite its invariant cell lineage, cellular identities can be reprogrammed, leading to cell conversion in vivo. In addition, natural transdifferentiation events occur in the worm, providing a powerful model for the study of cellular plasticity in a physiological cellular microenvironment. Here, we review pioneer studies on induced and naturally occurring reprogramming events in C. elegans and the new notions that have emerged.
Collapse
Affiliation(s)
- Martina Hajduskova
- Development and Stem Cells Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | | | | | | |
Collapse
|
27
|
Oikonomou G, Perens EA, Lu Y, Watanabe S, Jorgensen EM, Shaham S. Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans. PLoS Biol 2011; 9:e1001121. [PMID: 21857800 PMCID: PMC3153439 DOI: 10.1371/journal.pbio.1001121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/28/2011] [Indexed: 12/23/2022] Open
Abstract
Glial cells surround neuronal endings to create enclosed compartments required for neuronal function. This architecture is seen at excitatory synapses and at sensory neuron receptive endings. Despite the prevalence and importance of these compartments, how they form is not known. We used the main sensory organ of C. elegans, the amphid, to investigate this issue. daf-6/Patched-related is a glia-expressed gene previously implicated in amphid sensory compartment morphogenesis. By comparing time series of electron-microscopy (EM) reconstructions of wild-type and daf-6 mutant embryos, we show that daf-6 acts to restrict compartment size. From a genetic screen, we found that mutations in the gene lit-1/Nemo-like kinase (NLK) suppress daf-6. EM and genetic studies demonstrate that lit-1 acts within glia, in counterbalance to daf-6, to promote sensory compartment expansion. Although LIT-1 has been shown to regulate Wnt signaling, our genetic studies demonstrate a novel, Wnt-independent role for LIT-1 in sensory compartment size control. The LIT-1 activator MOM-4/TAK1 is also important for compartment morphogenesis and both proteins line the glial sensory compartment. LIT-1 compartment localization is important for its function and requires neuronal signals. Furthermore, the conserved LIT-1 C-terminus is necessary and sufficient for this localization. Two-hybrid and co-immunoprecipitation studies demonstrate that the LIT-1 C-terminus binds both actin and the Wiskott-Aldrich syndrome protein (WASP), an actin regulator. We use fluorescence light microscopy and fluorescence EM methodology to show that actin is highly enriched around the amphid sensory compartment. Finally, our genetic studies demonstrate that WASP is important for compartment expansion and functions in the same pathway as LIT-1. The studies presented here uncover a novel, Wnt-independent role for the conserved Nemo-like kinase LIT-1 in controlling cell morphogenesis in conjunction with the actin cytoskeleton. Our results suggest that the opposing daf-6 and lit-1 glial pathways act together to control sensory compartment size. The nervous system of most animals consists of two related cell types, neurons and glia. A striking property of glia is their ability to ensheath neuronal cells, which can help increase the efficiency of synaptic communication between neurons. Sensory neuron receptive endings in the periphery, as well as excitatory synapses in the central nervous system, often lie within specialized compartments formed by glial processes. Despite the prevalence of these compartments, and their importance for neuronal function and signal transmission, little is known about how they form. We have used the amphid, the main sensory organ of the worm Caenorhabditis elegans, to investigate glial sensory compartment morphogenesis. We demonstrate that the glia-expressed gene daf-6/Patched-related acts to restrict the size of the sensory compartment, while the Nemo-like kinase lit-1 acts within glia in the opposite direction, to promote sensory compartment expansion. We show that LIT-1 localizes to the sensory compartment through a highly conserved domain. This domain can interact both with actin, which outlines the compartment, and with the regulator of actin polymerization WASP, which acts in the same pathway as lit-1. We postulate that Nemo-like kinases could have broader roles as regulators of cellular morphogenesis, in addition to their traditional role in regulating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
| | - Elliot A. Perens
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Seidel HS, Ailion M, Li J, van Oudenaarden A, Rockman MV, Kruglyak L. A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans. PLoS Biol 2011; 9:e1001115. [PMID: 21814493 PMCID: PMC3144186 DOI: 10.1371/journal.pbio.1001115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 06/16/2011] [Indexed: 12/25/2022] Open
Abstract
The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it.
Collapse
Affiliation(s)
- Hannah S. Seidel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Michael Ailion
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jialing Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexander van Oudenaarden
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Matthew V. Rockman
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Leonid Kruglyak
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
29
|
del Castillo-Olivares A, Kulkarni M, Smith HE. Regulation of sperm gene expression by the GATA factor ELT-1. Dev Biol 2009; 333:397-408. [PMID: 19591818 PMCID: PMC6334776 DOI: 10.1016/j.ydbio.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/14/2009] [Accepted: 06/30/2009] [Indexed: 01/15/2023]
Abstract
Cell fate specification is mediated primarily through the expression of cell-type-specific genes. The regulatory pathway that governs the sperm/egg decision in the hermaphrodite germ line of Caenorhabditis elegans has been well characterized, but the transcription factors that drive these developmental programs remain unknown. We report the identification of ELT-1, a GATA transcription factor that specifies hypodermal fate in the embryo, as a regulator of sperm-specific transcription in the germ line. Computational analysis identified a conserved bipartite sequence element that is found almost exclusively in the promoters of a number of sperm genes. ELT-1 was recovered in a yeast one-hybrid screen for factors that bind to that sperm consensus site. In vitro assays defined the sperm consensus sequence as an optimal binding site for ELT-1. We determined that expression of elt-1 is elevated in the sperm-producing germ line, and that ELT-1 is required for sperm function. Deletion of the ELT-1 binding site from a sperm promoter abrogates sperm-specific expression of a reporter transgene. This work demonstrates a role for the ELT-1 transcription factor in sperm, and provides a critical link between the germ line sex determination program and gamete-specific gene expression.
Collapse
Affiliation(s)
- Antonio del Castillo-Olivares
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | - Madhura Kulkarni
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Massachusetts General Hospital Cancer Center and Department of Cell Biology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Harold E. Smith
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Gally C, Wissler F, Zahreddine H, Quintin S, Landmann F, Labouesse M. Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development 2009; 136:3109-19. [PMID: 19675126 DOI: 10.1242/dev.039412] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myosin II plays a central role in epithelial morphogenesis; however, its role has mainly been examined in processes involving a single cell type. Here we analyze the structure, spatial requirement and regulation of myosin II during C. elegans embryonic elongation, a process that involves distinct epidermal cells and muscles. We developed novel GFP probes to visualize the dynamics of actomyosin remodeling, and found that the assembly of myosin II filaments, but not actin microfilaments, depends on the myosin regulatory light chain (MLC-4) and essential light chain (MLC-5, which we identified herein). To determine how myosin II regulates embryonic elongation, we rescued mlc-4 mutants with various constructs and found that MLC-4 is essential in a subset of epidermal cells. We show that phosphorylation of two evolutionary conserved MLC-4 serine and threonine residues is important for myosin II activity and organization. Finally, in an RNAi screen for potential myosin regulatory light chain kinases, we found that the ROCK, PAK and MRCK homologs act redundantly. The combined loss of ROCK and PAK, or ROCK and MRCK, completely prevented embryonic elongation, but a constitutively active form of MLC-4 could only rescue a lack of MRCK. This result, together with systematic genetic epistasis tests with a myosin phosphatase mutation, suggests that ROCK and MRCK regulate MLC-4 and the myosin phosphatase. Moreover, we suggest that ROCK and PAK regulate at least one other target essential for elongation, in addition to MLC-4.
Collapse
Affiliation(s)
- Christelle Gally
- IGBMC, CNRS/ INSERM/ UdS, 1 rue Laurent Fries, BP.10142, 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
31
|
Yin D, Wang Z, Gao Q, Sundaresan R, Parrish C, Yang Q, Krebsbach PH, Lichtler AC, Rowe DW, Hock J, Liu P. Determination of the fate and contribution of ex vivo expanded human bone marrow stem and progenitor cells for bone formation by 2.3ColGFP. Mol Ther 2009; 17:1967-78. [PMID: 19603005 DOI: 10.1038/mt.2009.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bone marrow transplantation can provide an effective cell-based strategy to enhance bone repair. However, the fate of implanted cells and the extent of their contribution to bone osteoinduction remain uncertain. To define the fate of bone marrow-derived cells and their contribution in vivo, we used a bone-specific collagen I promoter (2.3Col) driving green fluorescent protein (GFP) (2.3ColGFP) within a lentiviral vector. Prior to in vivo cell fate determination, we verified a high efficiency of lentiviral transduction in human bone marrow stromal cells (hBMSCs), without altering the proliferation or differentiation potential of these cells. We showed that the 2.3ColGFP marker responded to endogenous transcriptional regulation signals. In a mouse ossicle model, we demonstrated that the 2.3ColGFP marker is able to specifically define human bone marrow-derived stem cells that enter the osteoblast lineage in vivo. In addition, cells labeled with 2.3ColGFP with the donor origin, directly make a major contribution to bone formation. Furthermore, we also demonstrated in a calvarial defect model that a mixture of human bone marrow-derived populations, have stronger bone regenerative potential than that of hBMSCs, and an optimal dose is required for bone regeneration by the mixed populations.
Collapse
Affiliation(s)
- Dezhong Yin
- Aastrom Biosciences Inc., Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Heiman MG, Shaham S. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell 2009; 137:344-55. [PMID: 19344940 PMCID: PMC2673108 DOI: 10.1016/j.cell.2009.01.057] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/22/2008] [Accepted: 01/29/2009] [Indexed: 10/20/2022]
Abstract
Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, which act cooperatively at the time and place of anchoring. DEX-1 and DYF-7 contain, respectively, zonadhesin and zona pellucida domains, and DYF-7 self-associates into multimers important for anchoring. Thus, unlike other dendrites, amphid dendritic tips are positioned by DEX-1 and DYF-7 without the need for long-range guidance cues. In sequence and function, DEX-1 and DYF-7 resemble tectorins, which anchor stereocilia in the inner ear, suggesting that a sensory dendrite anchor may have evolved into part of a mechanosensor.
Collapse
Affiliation(s)
| | - Shai Shaham
- The Rockefeller University, New York NY 10065
| |
Collapse
|
33
|
Matsumoto J, Katsuyama Y, Ohtsuka Y, Lemaire P, Okamura Y. Functional analysis of synaptotagmin gene regulatory regions in two distantly related ascidian species. Dev Growth Differ 2009; 50:543-52. [PMID: 19238725 DOI: 10.1111/j.1440-169x.2008.01049.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have studied the structure and function of a promoter region of the Halocynthia synaptotagmin (Hr-Syt) gene, which is abundantly expressed in neuronal cells. Our previous analysis suggested that the expression of Hr-Syt is regulated by at least one epidermal and two neuronal regulatory regions. In this study, the regulatory regions of Hr-Syt promoter were further characterized by using two species of ascidians, Halocynthia roretzi and Ciona intestinalis embryos. A putative GATA transcription factor binding site in the epidermal regulatory region has ectodermal enhancer activity in the Halocynthia embryo. Neuronal expression of Hr-Syt was regulated by multiple redundant enhancer regions. Among these enhancer regions, a 200-bp (-2900/-2700) region drove the reporter expression in neurons in both species of ascidian. Although the synaptotagmin promoter sequences did not show overall similarity between Hr-Syt and Ciona synaptotagmin (Ci-Syt), 5'-upsteream two short sequences of Ci-Syt have similarity to the -2766/-2732 region of the Hr-Syt promoter. The homeodomain binding sites in this region are required for the neuronal enhancer activity. These results suggest that GATA and homeodomain transcription factors regulate the expression of synaptotagmin.
Collapse
Affiliation(s)
- Jun Matsumoto
- Molecular Neurobiology Group, Neuroscience Research Institute, AIST Tsukuba Central 6-12, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
34
|
A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 2008; 22:2535-49. [PMID: 18794350 DOI: 10.1101/gad.1678608] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) and transcription factors (TFs) are primary metazoan gene regulators. Whereas much attention has focused on finding the targets of both miRNAs and TFs, the transcriptional networks that regulate miRNA expression remain largely unexplored. Here, we present the first genome-scale Caenorhabditis elegans miRNA regulatory network that contains experimentally mapped transcriptional TF --> miRNA interactions, as well as computationally predicted post-transcriptional miRNA --> TF interactions. We find that this integrated miRNA network contains 23 miRNA <--> TF composite feedback loops in which a TF that controls a miRNA is itself regulated by that same miRNA. By rigorous network randomizations, we show that such loops occur more frequently than expected by chance and, hence, constitute a genuine network motif. Interestingly, miRNAs and TFs in such loops are heavily regulated and regulate many targets. This "high flux capacity" suggests that loops provide a mechanism of high information flow for the coordinate and adaptable control of miRNA and TF target regulons.
Collapse
|
35
|
Yanai I, Baugh LR, Smith JJ, Roehrig C, Shen-Orr SS, Claggett JM, Hill AA, Slonim DK, Hunter CP. Pairing of competitive and topologically distinct regulatory modules enhances patterned gene expression. Mol Syst Biol 2008; 4:163. [PMID: 18277379 PMCID: PMC2267734 DOI: 10.1038/msb.2008.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/08/2008] [Indexed: 11/08/2022] Open
Abstract
Biological networks are inherently modular, yet little is known about how modules are assembled to enable coordinated and complex functions. We used RNAi and time series, whole-genome microarray analyses to systematically perturb and characterize components of a Caenorhabditis elegans lineage-specific transcriptional regulatory network. These data are supported by selected reporter gene analyses and comprehensive yeast one-hybrid and promoter sequence analyses. Based on these results, we define and characterize two modules composed of muscle- and epidermal-specifying transcription factors that function together within a single cell lineage to robustly specify multiple cell types. The expression of these two modules, although positively regulated by a common factor, is reliably segregated among daughter cells. Our analyses indicate that these modules repress each other, and we propose that this cross-inhibition coupled with their relative time of induction function to enhance the initial asymmetry in their expression patterns, thus leading to the observed invariant gene expression patterns and cell lineage. The coupling of asynchronous and topologically distinct modules may be a general principle of module assembly that functions to potentiate genetic switches.
Collapse
Affiliation(s)
- Itai Yanai
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - L Ryan Baugh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jessica J Smith
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Casey Roehrig
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Shai S Shen-Orr
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Julia M Claggett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Andrew A Hill
- Biological Technologies, Wyeth Research, Cambridge, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
- Department of Pathology, Tufts University School of Medicine, Boston, MA, USA
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
36
|
Zhao G, Schriefer LA, Stormo GD. Identification of muscle-specific regulatory modules in Caenorhabditis elegans. Genome Res 2007; 17:348-57. [PMID: 17284674 PMCID: PMC1800926 DOI: 10.1101/gr.5989907] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcriptional regulation is the major regulatory mechanism that controls the spatial and temporal expression of genes during development. This is carried out by transcription factors (TFs), which recognize and bind to their cognate binding sites. Recent studies suggest a modular organization of TF-binding sites, in which clusters of transcription-factor binding sites cooperate in the regulation of downstream gene expression. In this study, we report our computational identification and experimental verification of muscle-specific cis-regulatory modules in Caenorhabditis elegans. We first identified a set of motifs that are correlated with muscle-specific gene expression. We then predicted muscle-specific regulatory modules based on clusters of those motifs with characteristics similar to a collection of well-studied modules in other species. The method correctly identifies 88% of the experimentally characterized modules with a positive predictive value of at least 65%. The prediction accuracy of muscle-specific expression on an independent test set is highly significant (P<0.0001). We performed in vivo experimental tests of 12 predicted modules, and 10 of those drive muscle-specific gene expression. These results suggest that our method is highly accurate in identifying functional sequences important for muscle-specific gene expression and is a valuable tool for guiding experimental designs.
Collapse
Affiliation(s)
- Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lawrence A. Schriefer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gary D. Stormo
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Corresponding author.E-mail ; fax (314) 362-7855
| |
Collapse
|
37
|
Kiefer JC, Smith PA, Mango SE. PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut. Dev Biol 2006; 303:611-24. [PMID: 17250823 PMCID: PMC1855296 DOI: 10.1016/j.ydbio.2006.11.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 11/16/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
A key question in development is how pluripotent progenitors are progressively restricted to acquire specific cell fates. Here we investigate how embryonic blastomeres in C. elegans develop into foregut (pharynx) cells in response to the selector gene PHA-4/FoxA. When pha-4 is removed from pharyngeal precursors, they exhibit two alternative responses. Before late-gastrulation (8E stage), these cells lose their pharyngeal identity and acquire an alternative fate such as ectoderm (Specification stage). After the Specification stage, mutant cells develop into aberrant pharyngeal cells (Morphogenesis/Differentiation stage). Two lines of evidence suggest that the Specification stage depends on transcriptional repression of ectodermal genes by pha-4. First, pha-4 exhibits strong synthetic phenotypes with the B class synMuv gene tam-1 (Tandam Array expression Modifier 1) and with a mediator of transcriptional repression, the NuRD complex (NUcleosome Remodeling and histone Deacetylase). Second, pha-4 associates with the promoter of the ectodermal regulator lin-26 and is required to repress lin-26 expression. We propose that restriction of early blastomeres to the pharyngeal fate depends on both repression of ectodermal genes and activation of pharyngeal genes by PHA-4.
Collapse
Affiliation(s)
| | | | - Susan E. Mango
- *To whom correspondence should be sent: , phone 801-581-7633, FAX 801-585- 1980
| |
Collapse
|
38
|
Hawkins NC, Ellis GC, Bowerman B, Garriga G. MOM-5 frizzled regulates the distribution of DSH-2 to control C. elegans asymmetric neuroblast divisions. Dev Biol 2005; 284:246-59. [PMID: 15990090 DOI: 10.1016/j.ydbio.2005.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/29/2005] [Accepted: 05/18/2005] [Indexed: 11/23/2022]
Abstract
Asymmetric cell divisions produce all 302 neurons of the C. elegans hermaphrodite. Here, we describe a role for a C. elegans Dishevelled homolog, DSH-2, in an asymmetric neuroblast division. In dsh-2 mutants, neurons normally descended from the anterior neuroblast daughter of the ABpl/rpppa blast cell were frequently duplicated, while non-neuronal cells produced by the posterior daughter cell were often missing. These observations indicate that in the absence of dsh-2 function, the posterior daughter cell was transformed into a second anterior-like cell. Loss of mom-5, a C. elegans frizzled homolog, produced a similar phenotype. We also show that the DSH-2 protein localized to the cell cortex in most cells of the embryo. In the absence of MOM-5/Fz, DSH-2 was localized to the cytoplasm, suggesting that MOM-5 regulates asymmetric cell division by controlling the localization of DSH-2. Although all neurons in C. elegans are produced by an invariant pattern of cell divisions, our results indicate that cell signaling may contribute to asymmetric neuroblast division during embryogenesis.
Collapse
Affiliation(s)
- Nancy C Hawkins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.
| | | | | | | |
Collapse
|
39
|
Higazi TB, Deoliveira A, Katholi CR, Shu L, Barchue J, Lisanby M, Unnasch TR. Identification of elements essential for transcription in Brugia malayi promoters. J Mol Biol 2005; 353:1-13. [PMID: 16154590 DOI: 10.1016/j.jmb.2005.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/23/2022]
Abstract
Little is known concerning promoter structure in the filarial parasites. Recently, transient transfection methods have been developed for the human filarial parasite Brugia malayi. These methods have been employed to localize the promoter for the 70kDa heat shock protein (BmHSP70) to a region extending 394nt upstream from the initiating codon of the BmHSP70 open reading frame. Replacement mutagenesis was used to define the elements necessary for BmHSP70 promoter activity in detail. Four domains, ranging in size from six to 22 nucleotides, were found to be necessary for full promoter activity. The two most distal domains encoded a binding site for the heat shock transcription factor and a putative binding site for the GAGA transcription factor, motifs that are found in many other HSP70 promoters. However, none of the essential domains contained sequences typical of cis elements that are usually found in the core domain of a eukaryotic promoter. The largest essential domain was located at positions -53 to -32, and included the splice leader addition site. These data suggest that the regulatory domains of the BmHSP70 promoter were similar to those found in other eukaryotes, but that the core promoter domain exhibited features that appeared to be distinct from those found in most other well-characterized eukaryotic promoters. An analysis of two additional promoters of B.malayi highly transcribed genes suggests that they also lack features commonly found in most eukaryotic core promoters, suggesting that the unique features of the BmHSP70 core promoter are not confined to this gene.
Collapse
Affiliation(s)
- Tarig B Higazi
- Division of Geographic Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|