1
|
Su G, Liu Z, Xue H, Zhao X, Yang L, Wu D, Hai C, Liu X, Song L, Bai C, Li G, Li G. Spirulina polysaccharides improve postthaw sperm quality in bulls by inhibiting the activation of pathways related to protein kinase A. Int J Biol Macromol 2025; 296:139796. [PMID: 39805438 DOI: 10.1016/j.ijbiomac.2025.139796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Sperm cryopreservation is widely used in assisted reproductive technology (ART) and livestock breeding. Although sperm cryopreservation accelerates breeding, the quality of cryopreserved sperm tends to be decreased. Improving the quality of frozen sperm is a hot topic, and spirulina polysaccharide, known for its immunomodulatory and antioxidant properties, is considered a promising natural extract for extensive studies. In this study, a pectic polysaccharide was extracted from spirulina (PSP), and its effects on postthaw bovine sperm viability were evaluated. Phosphoproteomic analysis based on TMT labelling and LC-MS/MS was employed. The results revealed that 10 mg/L PSP had significant protective effects on postthaw sperm viability, plasma membrane integrity, acrosomal integrity, and mitochondrial membrane integrity. Moreover, PSP increased the antioxidant capacity by activating antioxidant enzymes such as SOD, CAT, and GSH-PX and reduced apoptosis, ROS release and MDA levels. In addition, PSP resulted in decreased phosphorylation levels of proteins related to the acrosome, flagellum, metabolism, energy acquisition, and apoptosis. This protective effect of PSP on frozen sperm was achieved by inhibiting the activation of protein kinase A(PKA) protein-related pathways.
Collapse
Affiliation(s)
- Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Zhe Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Huiting Xue
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guanhua Li
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China.
| |
Collapse
|
2
|
Wu KY, Chen YJ, Lin SF, Hsu HM. Iron triggers TvPI4P5K proteostasis and Arf-mediated cell membrane trafficking to regulate PIP 2 signaling crucial for multiple pathogenic activities of the parasitic protozoan Trichomonas vaginalis. mBio 2025; 16:e0186424. [PMID: 39714186 PMCID: PMC11796385 DOI: 10.1128/mbio.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP2) signaling in the actin-dependent pathogenicity of T. vaginalis. This study further demonstrated that iron transiently regulated T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor TvArf220, facilitating co-trafficking to the plasma membrane, crucial for PIP2 production. In dominant-active HA-TvArf220 Q71L mutant, TvPI4P5K plasma membrane trafficking, PIP2 production, and intracellular calcium levels were increased, while these processes were inhibited in dominant-negative T31N mutant or those by Brefeldin A (BFA) treatment. Additionally, PIP2 replenishment reversed these inhibitions in the T31N mutant, suggesting the critical role of TvArf220 activation in PIP2-calcium signaling. Also, T31N mutant and BFA treatment impaired actin dynamics and cytoskeleton-dependent processes in T. vaginalis, further linking the role of TvArf220 to PIP2-calcium-dependent actin dynamics. Beyond cytoadherence, during host-parasite interactions, TvArf220 influenced both contact-dependent and -independent cytotoxicity, as well as phagocytotic capacity, contributing to the cytopathogenesis of human vaginal epithelial cells. Our findings underscore the key upstream regulation mechanisms of the PIP2 signaling, orchestrating the interplay between TvArf220-PIP2-calcium signaling and downstream actin cytoskeleton-driven pathogenicity in T. vaginalis.IMPORTANCETrichomonas vaginalis actin cytoskeleton-centric pathogenicity is regulated by the phosphatidylinositol 4,5-bisphosphates (PIP2)-triggered calcium signaling cascade in response to environmental iron, though the detailed mechanism by which iron modulates PIP2 signaling remains unclear. Our findings reveal that iron rapidly induces T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) translation followed by its degradation, while simultaneously activating TvArf220 binding, which facilitates TvPI4P5K localization to the plasma membrane for PIP2 production. In contrast to the TvArf220 Q71L mutant, the reduced PIP2 production, intracellular calcium, actin assembly, morphogenesis, and cytoadherence in the dominant-negative T31N mutant were recovered by PIP2 supplementation, indicating the essential role of TvArf220 in PIP2-dependent calcium signaling. Additionally, the contact-dependent or -independent cytotoxicity, along with the phagocytosis, was impaired in the TvPI4P5K- or TvArf220-deficient parasites, as well as in those treated with BAPTA or Latrunculin B. These findings highlight that TvArf220-mediated PIP2-calcium signaling cascade regulates actin cytoskeleton and cytopathogenicity of T. vaginalis. This study uncovers a novel pathogenic mechanism and suggests potential therapeutic targets for parasite control.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Lottero-Leconte R, Lara A, Plaza J, Arroyo-Salvo C, Bogetti ME, Rivolta AEY, Dellavalle F, Sengiali F, Cetica P, Rio S, Zalazar L, Cesari A, Miragaya M, Morado S, Perez-Martinez S. Role of GPR55 receptor in bovine sperm capacitation. Andrology 2025. [PMID: 39749764 DOI: 10.1111/andr.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Endocannabinoids like anandamide (AEA), among other lipids, are recognized signaling molecules that participate in reproductive events. OBJECTIVES Our aims were to characterize orphan G protein-coupled receptor (GPR55) presence; investigate GPR55 activation by AEA and determine GPR55 role in the bovine sperm function. MATERIALS AND METHODS GPR55 presence was assessed by immunocytochemistry. Protein kinase A (pPKA) and PKC (pPKC) substrates, pERK1/2, G/F-actin were determined by Western blotting, activation of RAC-1 by pull-down assay, F-actin and acrosomal exocytosis by fluorescence microscopy, sperm motility by optic microscopy and computer-aided sperm analysis and fertilizing ability by in vitro fertilization (IVF). RESULTS We detected GPR55 in spermatozoa at T0, after incubation in non-capacitating and capacitating (presence of AEA) conditions and upon release from oviductal epithelia. AEA induced an increase in pPKA and pPKC, while CID16020046 (CID), selective GPR55 antagonist, prevented this effect. Incubation with H89, PKA inhibitor, significantly decreased pPKC, while Gö6983, a PKC inhibitor, partially reduced pPKA. pPKA remained elevated at 15- and 45-min incubation, while pPKC decreased at 15 and increased at 45 min. CID prevented pPKC increase at 5 and 45 min and decreased pPKA at 45 min. RAC-1 and F-actin increase induced by AEA was prevented by CID. Variations in two progressive motility kinematic parameters were observed with AEA and/or CID. Sperm pretreatment with AEA increased the rate of cleaved embryos and CID prevented this effect. DISCUSSION We demonstrated that GPR55 activation by AEA induces time-dependent signaling pathways involving pPKA and pPKC during bovine sperm capacitation. AEA regulates actin polymerization through GPR55 activation, suggesting the receptor participates in cytoskeleton remodeling, and yielded higher IVF rates. Also, sperm pre-incubation with molecules like AEA involved in capacitation could improve the embryo development. CONCLUSION We have demonstrated GPR55 presence in bovine spermatozoa. The regulation of PKA and PKC and of molecules associated with cytoskeletal dynamics, such as RAC-1 and actin, by GPR55 is closely related to sperm motility and acrosomal exocytosis.
Collapse
Affiliation(s)
- Raquel Lottero-Leconte
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Angela Lara
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Amada Eugenia Ynsaurralde Rivolta
- Laboratorio de Biotecnología de la Reproducción. Instituto Nacional de Tecnología Agropecuaria (INTA), Mercedes-Corrientes, Argentina
| | - Franco Dellavalle
- Laboratorio de Biotecnología de la Reproducción. Instituto Nacional de Tecnología Agropecuaria (INTA), Mercedes-Corrientes, Argentina
| | - Fiamma Sengiali
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Cetica
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Rio
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Lucia Zalazar
- Instituto de Investigaciones Biológicas CONICET, Universidad Nacional de Mar del Plata (IIB/UNMdP), Mar del Plata, Argentina
| | - Andreína Cesari
- Instituto de Investigaciones Biológicas CONICET, Universidad Nacional de Mar del Plata (IIB/UNMdP), Mar del Plata, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio Morado
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Ogneva IV, Zhdankina YS, Gogichaeva KK, Malkov AA, Biryukov NS. The Motility of Mouse Spermatozoa Changes Differentially After 30-Minute Exposure Under Simulating Weightlessness and Hypergravity. Int J Mol Sci 2024; 25:13561. [PMID: 39769324 PMCID: PMC11678010 DOI: 10.3390/ijms252413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Research into the mechanisms by which gravity influences spermatozoa has implications for maintaining the species in deep space exploration and may provide new approaches to reproductive technologies on Earth. Changes in the speed of mouse spermatozoa after 30 min exposure to simulated weightlessness (by 3D-clinostat) and 2 g hypergravity (by centrifugation) were studied using inhibitory analysis. Simulated microgravity after 30 min led to an increase in the speed of spermatozoa and against the background of an increase in the relative calcium content in the cytoplasm. This effect was prevented by the introduction of 6-(dimethylamino) purine, wortmannin, and calyculin A. Hypergravity led to a decrease in the speed of spermatozoa movement, which was prevented by sodium orthovanadate and calyculin A. At the same time, under microgravity conditions, there was a redistribution of proteins forming microfilament bundles between the membrane and cytoplasmic compartments and under hypergravity conditions-proteins forming networks. The obtained results indicate that even a short exposure of spermatozoa to altered gravity leads to the launch of mechanotransduction pathways in them and a change in motility.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
- Yu.A. Gagarin Research and Test Cosmonaut Training Center, 141160 Star City, Moscow Region, Russia
| | - Yulia S. Zhdankina
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ksenia K. Gogichaeva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
| | - Artyom A. Malkov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
5
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
6
|
Chen YJ, Wu KY, Lin SF, Huang SH, Hsu HC, Hsu HM. PIP2 regulating calcium signal modulates actin cytoskeleton-dependent cytoadherence and cytolytic capacity in the protozoan parasite Trichomonas vaginalis. PLoS Pathog 2023; 19:e1011891. [PMID: 38109416 PMCID: PMC10758264 DOI: 10.1371/journal.ppat.1011891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/01/2024] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Trichomonas vaginalis is a prevalent causative agent that causes trichomoniasis leading to uropathogenic inflammation in the host. The crucial role of the actin cytoskeleton in T. vaginalis cytoadherence has been established but the associated signaling has not been fully elucidated. The present study revealed that the T. vaginalis second messenger PIP2 is located in the recurrent flagellum of the less adherent isolate and is more abundant around the cell membrane of the adherent isolates. The T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) with conserved activity phosphorylating PI(4)P to PI(4, 5)P2 was highly expressed in the adherent isolate and partially colocalized with PIP2 on the plasma membrane but with discrete punctate signals in the cytoplasm. Plasma membrane PIP2 degradation by phospholipase C (PLC)-dependent pathway concomitant with increasing intracellular calcium during flagellate-amoeboid morphogenesis. This could be inhibited by Edelfosine or BAPTA simultaneously repressing parasite actin assembly, morphogenesis, and cytoadherence with inhibitory effects similar to the iron-depleted parasite, supporting the significance of PIP2 and iron in T. vaginalis colonization. Intriguingly, iron is required for the optimal expression and cell membrane trafficking of TvPI4P5K for in situ PIP2 production, which was diminished in the iron-depleted parasites. TvPI4P5K-mediated PIP2 signaling may coordinate with iron to modulate T. vaginalis contact-dependent cytolysis to influence host cell viability. These observations provide novel insights into T. vaginalis cytopathogenesis during the host-parasite interaction.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsi Huang
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Heng-Cheng Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Breitbart H, Grinshtein E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. Int J Mol Sci 2023; 24:17005. [PMID: 38069328 PMCID: PMC10707520 DOI: 10.3390/ijms242317005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
To acquire the capacity to fertilize the oocyte, mammalian spermatozoa must undergo a series of biochemical reactions in the female reproductive tract, which are collectively called capacitation. The capacitated spermatozoa subsequently interact with the oocyte zona-pellucida and undergo the acrosome reaction, which enables the penetration of the oocyte and subsequent fertilization. However, the spontaneous acrosome reaction (sAR) can occur prematurely in the sperm before reaching the oocyte cumulus oophorus, thereby jeopardizing fertilization. One of the main processes in capacitation involves actin polymerization, and the resulting F-actin is subsequently dispersed prior to the acrosome reaction. Several biochemical reactions that occur during sperm capacitation, including actin polymerization, protect sperm from sAR. In the present review, we describe the protective mechanisms that regulate sperm capacitation and prevent sAR.
Collapse
Affiliation(s)
- Haim Breitbart
- The Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
8
|
Azoulay Y, Malik Z, Breitbart H. Sperm interaction with bacteria induces the spontaneous acrosome reaction. Theriogenology 2023; 203:82-88. [PMID: 36989544 DOI: 10.1016/j.theriogenology.2023.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 03/30/2023]
Abstract
Bacterial contamination in the semen deteriorates spermatozoa function. One mechanism through which this may occur is by inducing a premature form of the acrosome reaction (spontaneous acrosome reaction (sAR)) which has been shown to abrogate fertilization. To understand the mechanism by which bacteria affect sperm functions, we determined the effects of bacteria on sperm sAR and on other parameters involved in sperm capacitation. Sperm cells undergo biochemical changes in the female reproductive tract collectively called capacitation. Only capacitated sperm can undergo the physiological acrosomal exocytosis process near or on the oocyte, which allows the spermatozoon to penetrate and fertilize the egg. Bovine sperm incubated with the bacteria Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) or Pseudomonas aeruginosa (P. aeruginosa), revealed a sperm-bacteria interaction, however only E. coli and P. aeruginosa caused an increase in sperm sAR. This effect was seen only when the bacteria were present with the sperm during the full incubation under capacitation conditions but not when the bacteria were added to capacitated sperm. These results indicate that bacteria affect sperm during capacitation and not at the AR step. In addition, Ca2+ influx, protein kinase A, and protein tyrosine phosphorylation activities, three essential processes that promote capacitation, were inhibited by the bacteria. Moreover, increasing intracellular cAMP, which also occur during sperm capacitation, caused significant reverse of sAR induced by the bacteria.
Collapse
|
9
|
Omics insights into spermatozoa activation induced by Fetal bovine serum in viviparous black rockfish (Sebastes schlegelii). Gene 2023; 851:147014. [DOI: 10.1016/j.gene.2022.147014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
10
|
Zou C, Xu S, Geng H, Li E, Sun W, Yu D. Bioinformatics analysis identifies potential hub genes and crucial pathways in the pathogenesis of asthenozoospermia. BMC Med Genomics 2022; 15:252. [PMID: 36471356 PMCID: PMC9724253 DOI: 10.1186/s12920-022-01407-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Asthenozoospermia is a troublesome disease experienced by men in their reproductive years, but its exact etiology remains unclear. To address this problem, this study aims to identify the hub genes and crucial pathways in asthenozoospermia. METHODS We screened two Gene Expression Omnibus (GEO) datasets (GSE92578 and GSE22331) to extract the differentially expressed genes (DEGs) between normozoospermic and asthenozoospermic men using the "Limma" package. Gene enrichment analyses of the DEGs were conducted using the "clusterProfiler" R package. The protein-protein interaction (PPI) network was then established using the STRING database. A miRNA-transcription factor-gene network was constructed based on the predicted results of hub genes using the RegNetwork database. The expression of four hub genes in asthenozoospermia and normal samples were verified using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting. RESULTS We identified 271 DEGs, which included 218 upregulated and 53 downregulated in two asthenozoospermia datasets. These DEGs were observed to be markedly enriched in pathways with cell growth and embryonic organ development, phospholipase D signaling pathway, cGMP-PKG signaling pathway, and Wnt signaling pathway. The most significant genes were identified, including COPS7A, CUL3, KLHL7, NEDD4. We then constructed regulatory networks of these genes, miRNAs, and transcription factors. Finally, we found that the COPS7A was significantly upregulated in patients with asthenozoospermia, but CUL3, KLHL7 and NEDD4 were significantly downregulated compared with normal samples. CONCLUSION We applied bioinformatics methods to analyze the DEGs of asthenozoospermia based on the GEO database and identified the novel crucial genes and pathways in this disease. Our findings may provide novel insights into asthenozoospermia and identify new clues for the potential treatment of this disease.
Collapse
Affiliation(s)
- Ci Zou
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Shen Xu
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Hao Geng
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Enlai Li
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Wei Sun
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Dexin Yu
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China ,grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical University, NO.678 Furong Road, 230601 Hefei, China
| |
Collapse
|
11
|
Bowker Z, Goldstein S, Breitbart H. Protein acetylation protects sperm from spontaneous acrosome reaction. Theriogenology 2022; 191:231-238. [PMID: 35998406 DOI: 10.1016/j.theriogenology.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
In order to penetrate the egg, spermatozoa must undergo the acrosome reaction in close proximity to the egg. This process can take place only after a series of biochemical changes in the sperm, collectively termed capacitation, occur in the female reproductive tract. Sperm cells can undergo spontaneous-acrosome reaction(sAR) before reaching the vicinity of the egg, preventing successful fertilization. Several mechanisms were shown to protect sperm from undergoing sAR, and all of them are involved in proper capacitation. Here, we describe the involvement of protein acetylation in the mechanism that protects bovine spermatozoa from sAR. Incubation of bovine sperm under non-capacitation conditions revealed a strong increase in sAR that was significantly reduced in the presence of deacetylase inhibitors. Protein kinase A (PKA) is an essential key enzyme in sperm capacitation, and its inhibition results in high sAR. The reduction in sAR by hyperacetylation was independent of PKA activity. We previously demonstrated that calmodulin-kinase II (CaMKII) activity protects sperm from sAR, and here we show that its activity is essential for reduction in sAR by hyperacetylation. We further show that the 'exchange protein directly activated by Camp' (EPAC) mediates both protein lysine acetylation and the reduced rate of sAR caused by hyperacetylation. In conclusion, these results suggest a PKA-independent and EPAC-CaMKII dependent hyperacetylation mechanism that protects sperm from sAR.
Collapse
Affiliation(s)
- Z Bowker
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - S Goldstein
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - H Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
12
|
Dahan T, Breitbart H. Involvement of metabolic pathway in the sperm spontaneous acrosome reaction. Theriogenology 2022; 192:38-44. [PMID: 36044805 DOI: 10.1016/j.theriogenology.2022.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
In order to fertilize the egg, spermatozoa must undergo a series of biochemical processes in the female reproductive tract collectively called capacitation. Only capacitated sperm can interact with the egg resulting in the acrosome reaction (AR), allowing egg penetration and fertilization. Sperm can undergo spontaneous AR (sAR) before reaching the egg, preventing successful fertilization. Here we investigated the metabolic pathways involved in sperm capacitation and sAR. Inhibition of glycolysis or oxidative phosphorylation did not affect capacitation or sAR levels; however, when both systems were inhibited, no capacitation occurred, and there was a significant increase in sAR. Under such ATP-starvation, the increase in sAR is triggered by Ca2+ influx into the sperm via the CatSper cation channel. Protein kinase A (PKA) is an essential key enzyme in sperm capacitation; there was no change in its activity when a single metabolic system was inhibited, while complete inhibition of was observed when the two systems were inhibited. Protein tyrosine phosphorylation (PTP), also known to occur in sperm capacitation, was partially reduced by inhibition of one metabolic system, and completely blocked when the two metabolic systems were inhibited. We conclude that ATP, PKA and PTP are involved in the mechanisms protecting sperm from sAR.
Collapse
Affiliation(s)
- Tsipora Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Haim Breitbart
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
13
|
Grinshtain E, Shpungin S, Baum M, Nir U, Breitbart H. The Fer tyrosine kinase protects sperm from spontaneous acrosome reaction. Dev Biol 2022; 487:24-33. [DOI: 10.1016/j.ydbio.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
|
14
|
Karuthadurai T, Das DN, Kumaresan A, Sinha MK, Kamaraj E, Nag P, Ebenezer Samuel King JP, Datta TK, Manimaran A, Jeyakumar S, Ramesha K. Sperm Transcripts Associated With Odorant Binding and Olfactory Transduction Pathways Are Altered in Breeding Bulls Producing Poor-Quality Semen. Front Vet Sci 2022; 9:799386. [PMID: 35274020 PMCID: PMC8902071 DOI: 10.3389/fvets.2022.799386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
Spermatozoa carries a reservoir of mRNAs regulating sperm functions and fertilizing potential. Although it is well recognized that a considerable proportion of high genetic merit breeding bulls produce poor-quality semen, the transcriptomic alterations in spermatozoa from such bulls are not understood. In the present study, comparative high-throughput transcriptomic profiling of spermatozoa from good and poor-quality semen-producing bulls was carried out to identify the transcripts associated with semen quality. Using next-generation sequencing (NGS), we identified 11,632 transcripts in Holstein Friesian bull spermatozoa; after total hit normalization, a total of 544 transcripts were detected, of which 185 transcripts were common to both good and poor-quality semen, while 181 sperm transcripts were unique to good quality semen, and 178 transcripts were unique to poor-quality semen. Among the co-expressed transcripts, 31 were upregulated, while 108 were downregulated, and 46 were neutrally expressed in poor-quality semen. Bioinformatics analysis revealed that the dysregulated transcripts were predominantly involved in molecular function, such as olfactory receptor activity and odor binding, and in biological process, such as detection of chemical stimulus involved in sensory perception, sensory perception of smell, signal transduction, and signal synaptic transmission. Since a majority of the dysregulated transcripts were involved in the olfactory pathway (85% of enriched dysregulated genes were involved in this pathway), the expression of selected five transcripts associated with this pathway (OR2T11, OR10S1, ORIL3, OR5M11, and PRRX1) were validated using real-time qPCR, and it was found that their transcriptional abundance followed the same trend as observed in NGS; the sperm transcriptional abundance of OR2T11 and OR10S1 differed significantly (p < 0.05) between good and poor-quality semen. It is concluded that poor-quality semen showed altered expression of transcripts associated with olfactory receptors and pathways indicating the relationship between olfactory pathway and semen quality in bulls.
Collapse
Affiliation(s)
- Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Dayal Nitai Das
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
- *Correspondence: Arumugam Kumaresan ;
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR-National Dairy Research Institute, Karnal, India
| | - Ayyasamy Manimaran
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kerekoppa Ramesha
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
15
|
Tam N, Lai KP, Kong RYC. Comparative transcriptomic analysis reveals reproductive impairments caused by PCBs and OH-PCBs through the dysregulation of ER and AR signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149913. [PMID: 34474298 DOI: 10.1016/j.scitotenv.2021.149913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Reports have highlighted the presence of PCBs and their metabolites, OH-PCBs, in human serum as well as their endocrine-disrupting effects on reproductive function through direct interactions with the androgen receptor (AR) and estrogen receptor (ER). However, the molecular mechanisms directly linking the actions of PCBs and OH-PCBs on the AR and ER to induce reproductive impairment remain poorly understood. In this study, we characterized the cellular response to PCBs and OH-PCBs acting on AR and ER transactivation at the transcriptome level coupled with bioinformatics analysis to identify the downstream pathways of androgen and estrogen signaling that leads to reproductive dysfunction. We first confirmed the agonistic and antagonistic effects of several PCBs and OH-PCBs on AR- and ER-mediated reporter gene activity using the androgen-responsive LNCaP and estrogen-responsive MCF-7 cell lines, respectively. Anti-estrogenic activity was not detected among the tested compounds; however, we found that in addition to anti-androgenic and estrogenic activity, PCB 28 and PCB 138 exhibited androgenic activity, while most of the tested OH-PCBs showed a synergistic effect on DHT-mediated transactivation of the AR. Bioinformatics analysis of transcriptome profiles from selected PCBs and OH-PCBs revealed various pathways that were dysregulated depending on their agonistic, antagonistic, or synergistic effects. The OH-PCBs with estrogenic activity affected pathways including vitamin metabolism and calcium transport. Other notable dysregulated pathways include cholesterol transport in response to androgenic PCBs, thyroid hormone metabolism in response to anti-androgenic PCBs, and antioxidant pathways in response to androgen-synergistic OH-PCBs. Our results demonstrate that PCBs and OH-PCBs directly alter specific pathways through androgen- or estrogen-mediated signaling, thereby providing additional insights into the mechanisms by which these compounds cause reproductive dysfunction.
Collapse
Affiliation(s)
- Nathan Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Abstract
Fertilization, a crucial event for species preservation, in sea urchins, as in many other organisms, requires sperm motility regulation. In Strongylocentrotus purpuratus sea urchins, speract, a sperm chemoattractant component released to seawater from the outer egg layer, attracts sperm after binding to its receptor in the sperm flagellum. Previous experiments performed in demembranated sperm indicated that motility regulation in these cells involved protein phosphorylation mainly due to the cAMP-dependent protein kinase (PKA). However, little information is known about the involvement of protein kinase C (PKC) in this process. In this work, using intact S. purpuratus sea urchin sperm, we show that: (i) the levels of both phosphorylated PKA (PKA substrates) and PKC (PKC substrates) substrates change between immotile, motile and speract-stimulated sperm, and (ii) the non-competitive PKA (H89) and PKC (chelerythrine) inhibitors diminish the circular velocity of sperm and alter the phosphorylation levels of PKA substrates and PKC substrates, while the competitive inhibitors Rp-cAMP and bisindolylmaleimide (BIM) do not. Altogether, our results show that both PKA and PKC participate in sperm motility regulation through a crosstalk in the signalling pathway. These results contribute to a better understanding of the mechanisms that govern motility in sea urchin sperm.
Collapse
|
17
|
Ji J, Hong F, Zhou Y, Liu T, Fan D, Zhang X, Lu Y, Jiang L, Wang X, Wang C. Molecular mechanisms associated with oxidative damage in the mouse testis induced by LaCl 3. ENVIRONMENTAL TOXICOLOGY 2021; 36:408-416. [PMID: 33098623 DOI: 10.1002/tox.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
China is the world's largest rare earth producer and exporter, previous studies have shown that rare earth elements can cause oxidative damage in animal testis. However, the molecular mechanisms underlying these observations have yet to be elucidated. In this paper, male mice were fed with different doses (10, 20, and 40 mg/kg BW) of LaCl3 for 90 consecutive days, regulatory role of nuclear factor erythroid-2 related factor 2 (Nrf-2)/antioxidant response element (ARE) pathway in testicular oxidative stress induced by LaCl3 were investigated. Analysis showed that LaCl3 exposure could lead to severe testicular pathological changes and apoptosis in spermatogenic cells, it up-regulated the peroxidation of lipids, proteins and DNA, and induced the excessive levels of reactive oxygen species (ROS) production in mouse testis, reduced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione S epoxide transferase (GST) as well as the glutathione (GSH) content. Furthermore, exposure to LaCl3 also downregulated the expression of Nrf2 and its target gene products, including heme oxygenase 1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H dehydrogenase [quinine] 1(NQO1), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K), but upregulated the expression of Kelch-like ECH-related protein 1 (Keap1) in damaged mouse testes. Collectively, our data imply that the oxidative damage induced by LaCl3 in testis was related to inhibition of the Nrf-2/AREs pathway activation.
Collapse
Affiliation(s)
- Jianhui Ji
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Fashui Hong
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Yingjun Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Tingwu Liu
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Dongxue Fan
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Xingxiang Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yutian Lu
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Lingling Jiang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Xiaomei Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Chen Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
18
|
Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep 2020; 10:15619. [PMID: 32973195 PMCID: PMC7518284 DOI: 10.1038/s41598-020-72425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022] Open
Abstract
Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Raquel Lottero-Leconte
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIIB-UNSAM/CONICET), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Elango K, Kumaresan A, Sharma A, Nag P, Prakash MA, Sinha MK, Manimaran A, Peter ESKJ, Jeyakumar S, Selvaraju S, Ramesha KP, Datta TK. Sub-fertility in crossbred bulls: deciphering testicular level transcriptomic alterations between zebu (Bos indicus) and crossbred (Bos taurus x Bos indicus) bulls. BMC Genomics 2020; 21:502. [PMID: 32693775 PMCID: PMC7372791 DOI: 10.1186/s12864-020-06907-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The incidence of poor semen quality and sub-fertility/infertility is higher in crossbred as compared to Zebu males. Several attempts have been made to understand the possible reasons for higher incidence of fertility problems in crossbred males, at sperm phenotype, proteome and genome level but with variable results. Since the quality of the ejaculated spermatozoa is determined by the testicular environment, assessing the testicular transcriptome between these breeds would help in identifying the possible mechanisms associated with infertility in crossbred bulls. However, such information is not available. We performed global transcriptomic profiling of testicular tissue from crossbred and Zebu bulls using Agilent Bos taurus GXP 8X60k AMADID: 29411 array. To the best of our knowledge, this is the first study comparing the testicular mRNAs between crossbred and Zebu bulls. RESULTS Out of the 14,419 transcripts detected in bovine testis, 1466 were differentially expressed between crossbred and Zebu bulls, in which 1038 were upregulated and 428 were downregulated in crossbred bulls. PI4KB and DPY19L2 genes, reported to be involved in sperm capacitation and acrosome formation respectively, were among the top 10 downregulated transcripts in crossbred testis. Genes involved in ubiquitination and proteolysis were upregulated, while genes involved in cell proliferation, stem cell differentiation, stem cell population maintenance, steroidogenesis, WNT signalling, protein localization to plasma membrane, endocannabinoid signalling, heparin binding, cAMP metabolism and GABA receptor activity were downregulated in crossbred testis. Among the 10 genes validated using qPCR, expression of CCNYL, SOX2, MSMB, SPATA7, TNP1, TNP2 and CRISP2 followed the same trend as observed in microarray analysis with SPATA7 being significantly downregulated and transition proteins (TNP1, TNP2) being significantly upregulated in crossbred bulls. CONCLUSIONS Abundant proteolysis by ubiquitination and downregulation of WNT signaling, cell proliferation, differentiation and steroidogenesis might be associated with higher incidence of poor semen quality and/or sub-fertility/infertility in crossbred bulls as compared to Zebu bulls. Downregulation of SPATA7 (Spermatogenesis Associated 7) and upregulation of transition proteins (TNP1 and TNP2) in crossbred bull testis might be associated with impaired spermatogenesis processes including improper chromatin compaction in crossbred bulls.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ayyasamy Manimaran
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sakthivel Jeyakumar
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sellappan Selvaraju
- Reproductive physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Kerekoppa P Ramesha
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
20
|
Itzhakov D, Nitzan Y, Breitbart H. Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm. Asian J Androl 2020; 21:337-344. [PMID: 30632486 PMCID: PMC6628745 DOI: 10.4103/aja.aja_99_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l−1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02–0.1 μmol l−1), whereas higher concentrations (>5 μmol l−1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.
Collapse
Affiliation(s)
- Diana Itzhakov
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yeshayahu Nitzan
- Department of Clinical Laboratory Science, Zefat Academic College, Zefat 1320611, Israel
| | - Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
21
|
Huta Y, Nitzan Y, Breitbart H. Ezrin protects bovine spermatozoa from spontaneous acrosome reaction. Theriogenology 2020; 151:119-127. [PMID: 32334120 DOI: 10.1016/j.theriogenology.2020.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/18/2022]
Abstract
To interact and penetrate the egg, the spermatozoon must undergo a maturation step called the acrosome reaction (AR) in close proximity to the egg. This process can take place only after a series of biochemical changes to the sperm occur in the female reproductive tract, collectively called capacitation. Spermatozoa can undergo spontaneous-acrosome reaction (sAR) before reaching the vicinity of the egg, preventing successful fertilization. Several mechanisms were shown to protect spermatozoa from undergoing sAR. Here we describe the involvement of the actin cross-linker, Ezrin in the mechanism that protects spermatozoa from sAR. Inhibition of Ezrin stimulates sAR and inhibits actin polymerization. Ezrin is highly phosphorylated/activated during the first hour of the capacitation process, and its phosphorylation rate is subsequently decreased. Ezrin phosphorylation depends on protein kinase A (PKA) and calmodulin kinase II (CaMKII) activities, and to some extent on phosphatidyl-inositol-4-kinase (PI4K) activity. Inhibition of these three kinases stimulates sAR, in which the effect of PI4K inhibition, but not PKA or CaMKII inhibition, can be reversed by increasing p-Ezrin using a phosphatase inhibitor. All together, we showed that three kinases mediate Ezrin activation during spermatozoa capacitation, leading to actin polymerization in a mechanism that prevents sAR.
Collapse
Affiliation(s)
- Y Huta
- The Mina &Everard Faculty of Life Sciences,Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Y Nitzan
- Department of Clinical Laboratory Science, Zefat Academic College, Zefat, 1320611, Israel
| | - H Breitbart
- The Mina &Everard Faculty of Life Sciences,Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
22
|
Santella L, Limatola N, Chun JT. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. ZOOLOGICAL LETTERS 2020; 6:5. [PMID: 32313685 PMCID: PMC7158055 DOI: 10.1186/s40851-020-00157-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 05/06/2023]
Abstract
ABSTRACT Much of the scientific knowledge on oocyte maturation, fertilization, and embryonic development has come from the experiments using gametes of marine organisms that reproduce by external fertilization. In particular, echinoderm eggs have enabled the study of structural and biochemical changes related to meiotic maturation and fertilization owing to the abundant availability of large and transparent oocytes and eggs. Thus, in vitro studies of oocyte maturation and sperm-induced egg activation in starfish are carried out under experimental conditions that resemble those occurring in nature. During the maturation process, immature oocytes of starfish are released from the prophase of the first meiotic division, and acquire the competence to be fertilized through a highly programmed sequence of morphological and physiological changes at the oocyte surface. In addition, the changes in the cortical and nuclear regions are essential for normal and monospermic fertilization. This review summarizes the current state of research on the cortical actin cytoskeleton in mediating structural and physiological changes during oocyte maturation and sperm and egg activation in starfish and sea urchin. The common denominator in these studies with echinoderms is that exquisite rearrangements of the egg cortical actin filaments play pivotal roles in gamete interactions, Ca2+ signaling, exocytosis of cortical granules, and control of monospermic fertilization. In this review, we also compare findings from studies using invertebrate eggs with what is known about the contributions made by the actin cytoskeleton in mammalian eggs. Since the cortical actin cytoskeleton affects microvillar morphology, movement, and positioning of organelles and vesicles, and the topography of the egg surface, these changes have impacts on the fertilization process, as has been suggested by recent morphological studies on starfish oocytes and eggs using scanning electron microscopy. Drawing the parallelism between vitelline layer of echinoderm eggs and the zona pellucida of mammalian eggs, we also discuss the importance of the egg surface in mediating monospermic fertilization. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
23
|
Cyclin-CDK Complexes are Key Controllers of Capacitation-Dependent Actin Dynamics in Mammalian Spermatozoa. Int J Mol Sci 2019; 20:ijms20174236. [PMID: 31470670 PMCID: PMC6747110 DOI: 10.3390/ijms20174236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional maturation process to acquire the competence to fertilize the female egg. During this process, called capacitation, the actin cytoskeleton dramatically changes its organization. First, actin fibers polymerize, forming a network over the anterior part of the sperm cells head, and then it rapidly depolymerizes and disappears during the exocytosis of the acrosome content (the acrosome reaction (AR)). Here, we developed a computational model representing the actin dynamics (AD) process on mature spermatozoa. In particular, we represented all the molecular events known to be involved in AD as a network of nodes linked by edges (the interactions). After the network enrichment, using an online resource (STRING), we carried out the statistical analysis on its topology, identifying the controllers of the system and validating them in an experiment of targeted versus random attack to the network. Interestingly, among them, we found that cyclin-dependent kinase (cyclin–CDK) complexes are acting as stronger controllers. This finding is of great interest since it suggests the key role that cyclin–CDK complexes could play in controlling AD during sperm capacitation, leading us to propose a new and interesting non-genomic role for these molecules.
Collapse
|
24
|
Bernabò N, Machado-Simoes J, Valbonetti L, Ramal-Sanchez M, Capacchietti G, Fontana A, Zappacosta R, Palestini P, Botto L, Marchisio M, Lanuti P, Ciulla M, Di Stefano A, Fioroni E, Spina M, Barboni B. Graphene Oxide increases mammalian spermatozoa fertilizing ability by extracting cholesterol from their membranes and promoting capacitation. Sci Rep 2019; 9:8155. [PMID: 31148593 PMCID: PMC6544623 DOI: 10.1038/s41598-019-44702-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/14/2019] [Indexed: 11/09/2022] Open
Abstract
Graphene Oxide (GO) is a widely used biomaterial with an amazing variety of applications in biology and medicine. Recently, we reported the ability of GO to improve the in vitro fertilization (IVF) outcomes in swine, a validated animal model with a high predictive value for human fertility. For that reason, here we characterized the mechanisms involved in this positive interaction by adopting an experimental approach combining biological methods (confocal microscopy analysis on single cell, flow cytometry on cell populations and co-incubation with epithelial oviductal cells), physical-chemical techniques (Differential Scanning Calorimetry and Thermogravimetric Analysis), and chemical methods (mass spectrometry and lipid measurement). As a result, we propose a model in which GO is able to extract cholesterol from the spermatozoa membrane without causing any detrimental effect. In this way, the cholesterol extraction promotes a change in membrane chemical-physical properties that could positively affect male gamete function, modulating sperm signalling function and increasing in this way the fertilizing potential, without losing the ability to physiologically interact with the female environment. In conclusion, these data seem to suggest new intriguing possibilities in engineering sperm membrane for improving assisted reproduction technologies outcomes, even in human medicine.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| | - Juliana Machado-Simoes
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Antonella Fontana
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Romina Zappacosta
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano Bicocca, 20900, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano Bicocca, 20900, Monza, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Michele Ciulla
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Elena Fioroni
- Laboratorio Analisi Dr. Fioroni, Viale A. de Gasperi, 19, 63074, San Benedetto del Tronto, Italy
| | - Michele Spina
- Laboratorio Analisi Dr. Fioroni, Viale A. de Gasperi, 19, 63074, San Benedetto del Tronto, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
25
|
Tsirulnikov E, Huta Y, Breitbart H. PKA and PI3K activities during capacitation protect sperm from undergoing spontaneous acrosome reaction. Theriogenology 2019; 128:54-61. [DOI: 10.1016/j.theriogenology.2019.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/24/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
|
26
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2019; 86:502-515. [PMID: 30746812 DOI: 10.1002/mrd.23128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 11/11/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract the concentration is around 1 µM. In this study, we characterize the role of Zn 2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of G protein-coupled receptor 39 (GPR39) type Zn-receptor localized mainly in the sperm tail. Zn 2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-AC-cAMP-PKA-Src-EGFR and phospholipase C. Both the transmembrane adenylyl cyclase (AC) and the soluble-AC are involved in the stimulation of HAM by Zn 2+ . The development of HAM is precisely regulated by cyclic adenosine monophosphate, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn 2+ were added to the cells; low Zn 2+ stimulated HAM, whereas at relatively high Zn 2+ , no effect was seen. We further demonstrate that the Ca 2+ -channel CatSper involved in Zn 2+ -stimulated HAM. These data support a role for extracellular Zn 2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
27
|
Romarowski A, Velasco Félix ÁG, Torres Rodríguez P, Gervasi MG, Xu X, Luque GM, Contreras-Jiménez G, Sánchez-Cárdenas C, Ramírez-Gómez HV, Krapf D, Visconti PE, Krapf D, Guerrero A, Darszon A, Buffone MG. Super-resolution imaging of live sperm reveals dynamic changes of the actin cytoskeleton during acrosomal exocytosis. J Cell Sci 2018; 131:jcs218958. [PMID: 30301778 PMCID: PMC6240301 DOI: 10.1242/jcs.218958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/25/2018] [Indexed: 01/14/2023] Open
Abstract
Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Ángel G Velasco Félix
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Paulina Torres Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - María G Gervasi
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA 01003, USA
| | - Xinran Xu
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, 1301 Campus Delivery, Fort Collins, CO 80523, USA
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Gastón Contreras-Jiménez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Héctor V Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Diego Krapf
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, 1301 Campus Delivery, Fort Collins, CO 80523, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA 01003, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| |
Collapse
|
28
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2018; 85:543-556. [PMID: 29750435 DOI: 10.1002/mrd.22996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract, the concentration is around 1 µM. In this study, we characterize the role of Zn2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of GPR39-type Zn-receptor localized mainly in the sperm tail. Zn2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A-tyrosine kinase Src (Src)-epidermal growth factor receptor and phospholipase C. Both the transmembrane AC and the soluble-AC are involved in the stimulation of HAM by Zn2+ . The development of HAM is precisely regulated by cAMP, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn2+ were added to the cells; low Zn2+ stimulated HAM, whereas at relatively high Zn2+ , no effect was seen. We further demonstrate that the Ca2+ -channel CatSper involved in Zn2+ -stimulated HAM. These data support a role for extracellular Zn2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
29
|
Alonso CAI, Osycka-Salut CE, Castellano L, Cesari A, Di Siervi N, Mutto A, Johannisson A, Morrell JM, Davio C, Perez-Martinez S. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Mol Hum Reprod 2018; 23:521-534. [PMID: 28521061 DOI: 10.1093/molehr/gax030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/17/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? SUMMARY ANSWER Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. WHAT IS KNOWN ALREADY In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. STUDY DESIGN, SIZE, DURATION Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA-AM (intracellular Ca2+ chelator, 50 μM), EGTA (10 μM) and Probenecid (MRPs general inhibitor, 500 μM). In addition, assays for binding to oviductal epithelial cells and IVF were carried out to test the effect of cAMP compared with other known capacitant agents such as heparin (60 μg/ml) and bicarbonate (40 mM). PARTICIPANTS/MATERIALS, SETTING, METHODS Straws of frozen bovine semen (20-25 × 106 spermatozoa/ml) were kindly provided by Las Lilas, CIALE and CIAVT Artificial Insemination Centers. The methods used in this work include western blot, immunohistochemistry, flow cytometry, computer-assisted semen analysis, live imaging of Ca2+ and fluorescence scanning. At least three independent assays with bull samples of proven fertility were carried. MAIN RESULTS AND THE ROLE OF CHANCE In the present study, we elucidate the molecular events induced by extracellular cAMP. Our results showed that external cAMP induces sperm capacitation, depending upon the action of PLC. Downstream, this enzyme increased ERK1-2 activation through PKC and elicited a rise in sperm Ca2+ levels (P < 0.01). Moreover, extracellular cAMP-induced capacitation also depended on the activity of sAC and PKA, and increased tyrosine phosphorylation, indicating that the nucleotide exerts a broad range of responses. In addition, extracellular cAMP-induced sperm hyperactivation and concomitantly increased the proportion of spermatozoa with high mitochondrial activity (P < 0.01). Finally, cAMP increased the in vitro fertilization rate compared to control conditions (P < 0.001). LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study performed with bovine cryopreserved spermatozoa. Studies in other species and with fresh samples are needed to extrapolate these data. WIDER IMPLICATIONS OF THE FINDINGS These findings strongly suggest an important role of extracellular cAMP in the regulation of the signalling pathways involved in the acquisition of bull sperm fertilizing capability. The data presented here indicate that not only a rise, but also a regulation of cAMP levels is necessary to ensure sperm fertilizing ability. Thus, exclusion of the nucleotide to the extracellular space might be essential to guarantee the achievement of a cAMP tone, needed for all capacitation-associated events to take place. Moreover, the ability of cAMP to trigger such broad and complex signalling events allows us to hypothesize that cAMP is a self-produced autocrine/paracrine factor, and supports the emerging paradigm that spermatozoa do not compete but, in fact, communicate with each other. A precise understanding of the functional competence of mammalian spermatozoa is essential to generate clinical advances in the treatment of infertility and the development of novel contraceptive strategies. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas [PIP0 496 to S.P.-M.], Agencia Nacional de Promoción Científica y Tecológica [PICT 2012-1195 and PICT2014-2325 to S.P.-M., and PICT 2013-2050 to C.D.], Boehringer Ingelheim Funds, and the Swedish Farmers Foundation [SLF-H13300339 to J.M.]. The authors declare there are no conflicts of interests.
Collapse
Affiliation(s)
- Carlos Agustín I Alonso
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Medicina (CONICET-UBA), Paraguay 2155 (C1121ABG), Ciudad de Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas Técnicas (IIB/UNTECH-CONICET), Universidad Nacional de San Martín, Matheu 3910 (1650), Buenos Aires, Argentina
| | - Luciana Castellano
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Medicina (CONICET-UBA), Paraguay 2155 (C1121ABG), Ciudad de Buenos Aires, Argentina
| | - Andreína Cesari
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (IIB-CONICET-UNMDP), Funes 3250 (7600), Mar del Plata, Argentina
| | - Nicolás Di Siervi
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Junín 954 (C1113AAD) Ciudad de Buenos Aires, Argentina
| | - Adrián Mutto
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas Técnicas (IIB/UNTECH-CONICET), Universidad Nacional de San Martín, Matheu 3910 (1650), Buenos Aires, Argentina
| | - Anders Johannisson
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences (SE-750 07), Uppsala, Sweden
| | - Jane M Morrell
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences (SE-750 07), Uppsala, Sweden
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Junín 954 (C1113AAD) Ciudad de Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Medicina (CONICET-UBA), Paraguay 2155 (C1121ABG), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
30
|
Chun JT, Vasilev F, Limatola N, Santella L. Fertilization in Starfish and Sea Urchin: Roles of Actin. Results Probl Cell Differ 2018; 65:33-47. [PMID: 30083914 DOI: 10.1007/978-3-319-92486-1_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Marine animals relying on "external fertilization" provide advantageous opportunities to study the mechanisms of gamete activation and fusion, as well as the subsequent embryonic development. Owing to the large number of eggs that are easily available and handled, starfish and sea urchins have been chosen as favorable animal models in this line of research for over 150 years. Indeed, much of our knowledge on fertilization came from studies in the echinoderms. Fertilization involves mutual stimulation between eggs and sperm, which leads to morphological, biochemical, and physiological changes on both sides to ensure successful gamete fusion. In this chapter, we review the roles of actin in the fertilization of starfish and sea urchin eggs. As fertilization is essentially an event that takes place on the egg surface, it has been predicted that suboolemmal actin filaments would make significant contributions to sperm entry. A growing body of evidence from starfish and sea urchin eggs suggests that the prompt reorganization of the actin pools around the time of fertilization plays crucial regulatory roles not only in guiding sperm entry but also in modulating intracellular Ca2+ signaling and egg activation.
Collapse
Affiliation(s)
- Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| | - Filip Vasilev
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Nunzia Limatola
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Luigia Santella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| |
Collapse
|
31
|
Bernabò N, Valbonetti L, Greco L, Capacchietti G, Ramal Sanchez M, Palestini P, Botto L, Mattioli M, Barboni B. Aminopurvalanol A, a Potent, Selective, and Cell Permeable Inhibitor of Cyclins/Cdk Complexes, Causes the Reduction of in Vitro Fertilizing Ability of Boar Spermatozoa, by Negatively Affecting the Capacitation-Dependent Actin Polymerization. Front Physiol 2017; 8:1097. [PMID: 29312003 PMCID: PMC5744433 DOI: 10.3389/fphys.2017.01097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
The adoption of high-througput technologies demonstrated that in mature spermatozoa are present proteins that are thought to be not present or active in sperm cells, such as those involved in control of cell cycle. Here, by using an in silico approach based on the application of networks theory, we found that Cyclins/Cdk complexes could play a central role in signal transduction active during capacitation. Then, we tested this hypothesis in the vitro model. With this approach, spermatozoa were incubated under capacitating conditions in control conditions (CTRL) or in the presence of Aminopurvalanol A a potent, selective and cell permeable inhibitor of Cyclins/Cdk complexes at different concentrations (2, 10, and 20 μM). We found that this treatment caused dose-dependent inhibition of sperm fertilizing ability. We attribute this event to the loss of acrosome integrity due to the inhibition of physiological capacitation-dependent actin polymerization, rather than to a detrimental effect on membrane lipid remodeling or on other signaling pathways such as tubulin reorganization or MAPKs activation. In our opinion, these data could revamp the knowledge on biochemistry of sperm capacitation and could suggest new perspectives in studying male infertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luana Greco
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Mauro Mattioli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
32
|
Breitbart H, Finkelstein M. Actin cytoskeleton and sperm function. Biochem Biophys Res Commun 2017; 506:372-377. [PMID: 29102633 DOI: 10.1016/j.bbrc.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022]
Abstract
For the acquisition of the ability to fertilize the egg, mammalian spermatozoa should undergo a series of biochemical transformations in the female reproductive tract, collectively called capacitation. The capacitated sperm can undergo the acrosomal exocytosis process near or on the oocyte, which allows the spermatozoon to penetrate and fertilize it. One of the main processes in capacitation involves dynamic cytoskeletal remodeling particularly of actin. Actin polymerization occurs during sperm capacitation and the produced F-actin should be depolymerized prior to the acrosomal exocytosis. In the present review, we describe the mechanisms that regulate F-actin formation during sperm capacitation and the F-actin dispersion prior to the acrosomal exocytosis. During sperm capacitation, the actin severing proteins gelsolin and cofilin are inactive and they undergo activation prior to the acrosomal exocytosis.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | | |
Collapse
|
33
|
Gazo I, Dietrich MA, Prulière G, Shaliutina-Kolešová A, Shaliutina O, Cosson J, Chenevert J. Protein phosphorylation in spermatozoa motility of Acipenser ruthenus and Cyprinus carpio. Reproduction 2017; 154:653-673. [PMID: 28851826 DOI: 10.1530/rep-16-0662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
Spermatozoa of externally fertilizing freshwater fish possess several different modes of motility activation. Spermatozoa of common carp (Cyprinus carpio L.) are activated by hypoosmolality, whereas spermatozoa of sterlet (Acipenser ruthenus) require Ca2+ and low concentration of K+ for motility activation. Intracellular signaling differs between these two species as well, particularly in terms of utilization of secondary messengers (cAMP and Ca2+), and kinase activities. The current study was performed in order to determine the importance of protein phosphorylation and protein kinases for activation of sperm motility in carp and sterlet. Treatment with kinase inhibitors indicates that protein kinases A and C (PKA and PKC) participate in spermatozoa motility of both species. Immunodetection of phospho-(Ser/Thr) PKA substrates shows that phosphorylated proteins are localized differently in spermatozoa of carp and sterlet. Strong phosphorylation of PKC substrate was observed in flagella of sterlet spermatozoa, whereas in carp sperm, PKC substrates were lightly phosphorylated in the midpiece and flagella. Motility activation induced either phosphorylation or dephosphorylation on serine, threonine and tyrosine residues of numerous proteins in carp and sterlet spermatozoa. Proteomic methods were used to identify proteins whose phosphorylation state changes upon the initiation of sperm motility. Numerous mitochondrial and glycolytic enzymes were identified in spermatozoa of both species, as well as axonemal proteins, heat shock proteins, septins and calcium-binding proteins. Our results contribute to an understanding of the roles of signaling molecules, protein kinases and protein phosphorylation in motility activation and regulation of two valuable fish species, C. carpio and A. ruthenus.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Gérard Prulière
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche sur-mer, France
| | - Anna Shaliutina-Kolešová
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Olena Shaliutina
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Jacky Cosson
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Janet Chenevert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche sur-mer, France
| |
Collapse
|
34
|
Angeles-Floriano T, Roa-Espitia AL, Baltiérrez-Hoyos R, Cordero-Martínez J, Elizondo G, Hernández-González EO. Absence of aryl hydrocarbon receptor alters CDC42 expression and prevents actin polymerization during capacitation. Mol Reprod Dev 2016; 83:1015-1026. [DOI: 10.1002/mrd.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tania Angeles-Floriano
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Rafael Baltiérrez-Hoyos
- Facultad de Medicina y Cirugía; Universidad Autónoma Benito Juárez de Oaxaca; Oaxaca; Cátedras CONACYT
| | - Joaquin Cordero-Martínez
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Guillermo Elizondo
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Enrique O. Hernández-González
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| |
Collapse
|
35
|
Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9795409. [PMID: 27642606 PMCID: PMC5013236 DOI: 10.1155/2016/9795409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy.
Collapse
|
36
|
Belmonte SA, Mayorga LS, Tomes CN. The Molecules of Sperm Exocytosis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:71-92. [PMID: 27194350 DOI: 10.1007/978-3-319-30567-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.
Collapse
Affiliation(s)
- Silvia A Belmonte
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Luis S Mayorga
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina.
| |
Collapse
|
37
|
Chen SM, Chen XM, Lu YL, Liu B, Jiang M, Ma YX. Cofilin is correlated with sperm quality and influences sperm fertilizing capacity in humans. Andrology 2016; 4:1064-1072. [PMID: 27369112 DOI: 10.1111/andr.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023]
Affiliation(s)
- S. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - X. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Department of Laboratory Medicine; Sichuan Provincial Hospital for Women and Children; Chengdu Sichuan China
| | - Y. L. Lu
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| | - B. Liu
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - M. Jiang
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - Y. X. Ma
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
38
|
Shabtay O, Breitbart H. CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization. Dev Biol 2016; 415:64-74. [PMID: 27178669 DOI: 10.1016/j.ydbio.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 02/01/2023]
Abstract
In order to interact with the egg and undergo acrosomal exocytosis or the acrosome reaction (AR), mammalian spermatozoa must undergo a series of biochemical changes in the female reproductive tract, collectively called capacitation. We showed that F-actin is formed during sperm capacitation and fast depolymerization occurs prior to the AR. We hypothesized that F-actin protects the sperm from undergoing spontaneous-AR (sAR) which decreases fertilization rate. We show that activation of the actin-severing protein gelsolin induces a significant increase in sAR. Moreover, inhibition of CaMKII or PLD during sperm capacitation, caused an increase in sAR and inhibition of F-actin formation. Spermine, which leads to PLD activation, was able to reverse the effects of CaMKII inhibition on sAR-increase and F-actin-decrease. Furthermore, the increase in sAR and the decrease in F-actin caused by the inactivation of the PLD-pathway, were reversed by activation of CaMKII using H2O2 or by inhibiting protein phosphatase 1 which enhance the phosphorylation and oxidation states of CaMKII. These results indicate that two distinct pathways lead to F-actin formation in the sperm capacitation process which prevents the occurrence of sAR.
Collapse
Affiliation(s)
- Ortal Shabtay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Breitbart
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
39
|
Role of Actin Cytoskeleton During Mammalian Sperm Acrosomal Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:129-44. [PMID: 27194353 DOI: 10.1007/978-3-319-30567-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian sperm require to undergo an exocytotic process called acrosomal exocytosis in order to be able to fuse with the oocyte. This ability is acquired during the course of sperm capacitation. This review is focused on one aspect related to this acquisition: the role of the actin cytoskeleton. Evidence from different laboratories indicates that actin polymerization occurs during capacitation, and the detection of several actin-related proteins suggests that the cytoskeleton is involved in important sperm functions. In other mammalian cells, the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis but, at the same time, is necessary to prepare the cell to undergo regulated exocytosis. Thus, F-actin stabilizes structures generated by exocytosis and supports the physiological progression of this process. Is this also the case in mammalian sperm? This review summarizes what is currently known about actin and its related proteins in the male gamete, with particular emphasis on their role in acrosomal exocytosis.
Collapse
|
40
|
Naresh S, Atreja SK. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation. Reprod Domest Anim 2015; 50:1047-53. [PMID: 26514336 DOI: 10.1111/rda.12635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa.
Collapse
Affiliation(s)
- S Naresh
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Atreja
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
41
|
Lee JS, Kwon WS, Rahman MS, Yoon SJ, Park YJ, Pang MG. Actin-related protein 2/3 complex-based actin polymerization is critical for male fertility. Andrology 2015. [DOI: 10.1111/andr.12076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- J.-S. Lee
- Department of Animal Science and Technology; Chung-Ang University; Anseong Korea
| | - W.-S. Kwon
- Department of Animal Science and Technology; Chung-Ang University; Anseong Korea
| | - M. S. Rahman
- Department of Animal Science and Technology; Chung-Ang University; Anseong Korea
| | - S.-J. Yoon
- Department of Animal Science and Technology; Chung-Ang University; Anseong Korea
| | - Y.-J. Park
- Department of Animal Science and Technology; Chung-Ang University; Anseong Korea
| | - M.-G. Pang
- Department of Animal Science and Technology; Chung-Ang University; Anseong Korea
| |
Collapse
|
42
|
Romarowski A, Battistone MA, La Spina FA, Puga Molina LDC, Luque GM, Vitale AM, Cuasnicu PS, Visconti PE, Krapf D, Buffone MG. PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev Biol 2015; 405:237-49. [PMID: 26169470 DOI: 10.1016/j.ydbio.2015.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
Mammalian sperm must acquire their fertilizing ability after a series of biochemical modifications in the female reproductive tract collectively called capacitation to undergo acrosomal exocytosis, a process that is essential for fertilization. Actin dynamics play a central role in controlling the process of exocytosis in somatic cells as well as in sperm from several mammalian species. In somatic cells, small GTPases of the Rho family are widely known as master regulators of actin dynamics. However, the role of these proteins in sperm has not been studied in detail. In the present work we characterized the participation of small GTPases of the Rho family in the signaling pathway that leads to actin polymerization during mouse sperm capacitation. We observed that most of the proteins of this signaling cascade and their effector proteins are expressed in mouse sperm. The activation of the signaling pathways of cAMP/PKA, RhoA/C and Rac1 is essential for LIMK1 activation by phosphorylation on Threonine 508. Serine 3 of Cofilin is phosphorylated by LIMK1 during capacitation in a transiently manner. Inhibition of LIMK1 by specific inhibitors (BMS-3) resulted in lower levels of actin polymerization during capacitation and a dramatic decrease in the percentage of sperm that undergo acrosomal exocytosis. Thus, we demonstrated for the first time that the master regulators of actin dynamics in somatic cells are present and active in mouse sperm. Combining the results of our present study with other results from the literature, we have proposed a working model regarding how LIMK1 and Cofilin control acrosomal exocytosis in mouse sperm.
Collapse
Affiliation(s)
- Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María A Battistone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florenza A La Spina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lis del C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra M Vitale
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusets, Amherst, MA 01003, USA
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario 2000 Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
43
|
The role and importance of cofilin in human sperm capacitation and the acrosome reaction. Cell Tissue Res 2015; 362:665-75. [DOI: 10.1007/s00441-015-2229-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
44
|
Vizel R, Hillman P, Ickowicz D, Breitbart H. AKAP3 degradation in sperm capacitation is regulated by its tyrosine phosphorylation. Biochim Biophys Acta Gen Subj 2015; 1850:1912-20. [PMID: 26093290 DOI: 10.1016/j.bbagen.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The A-kinase anchoring protein (AKAP) family is essential for sperm motility, capacitation and the acrosome reaction. PKA-dependent protein tyrosine phosphorylation occurs in mammalian sperm capacitation including AKAP3. In a recent study, we showed that AKAP3 undergoes degradation under capacitation conditions. Thus, we tested here whether AKAP3 degradation might be regulated by its tyrosine phosphorylation. METHODS The intracellular levels of AKAP3 were determined by western blot (WB) analysis using specific anti-AKAP3 antibodies. Tyrosine phosphorylation of AKAP3 was tested by immunoprecipitation and WB analysis. Acrosome reaction was examined using FITC-pisum sativum agglutinin. RESULTS AKAP3 is degraded and undergoes tyrosine-dephosphorylation during sperm capacitation and the degradation was reduced by inhibition of tyrosine phosphatase and enhanced by inhibition of tyrosine kinase. Sperm starvation or inhibition of mitochondrial respiration, which reduce cellular ATP levels, significantly accelerated AKAP3 degradation. Treatment with vanadate, or Na(+) or bicarbonate depletion, reduced AKAP3-degradation and the AR rate, while antimycin A or NH4Cl elevated both AKAP3-degradation and the AR degree. Treatment of sperm with NH4Cl enhanced PKA-dependent phosphorylation of four proteins, further supporting the involvement of AKAP3-degradation in capacitation. To demonstrate more specifically that sperm capacitation requires AKAP3-degradation, we inhibited AKAP3-degradation using anti-AKAP3 antibody in permeabilized cells. The anti-AKAP3-antibody induced significant inhibition of AKAP3-degradation and of the AR rate. CONCLUSION Sperm capacitation process requires AKAP3-degradation, and the degradation degree is regulated by the level of AKAP3 tyrosine phosphorylation. GENERAL SIGNIFICANCE Better understanding of the molecular mechanisms that mediate sperm capacitation can be used for infertility diagnosis, treatment and the developing of male contraceptives.
Collapse
Affiliation(s)
- Ruth Vizel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pnina Hillman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Debby Ickowicz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Breitbart
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
45
|
Calogero AE, Gullo G, La Vignera S, Condorelli RA, Vaiarelli A. Myoinositol improves sperm parameters and serum reproductive hormones in patients with idiopathic infertility: a prospective double-blind randomized placebo-controlled study. Andrology 2015; 3:491-5. [PMID: 25854593 DOI: 10.1111/andr.12025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 01/16/2023]
Abstract
Male infertility is a multifactorial disorder that affects a significant percentage of couples. Its etiology and pathogenesis remain elusive in about one-third of the cases; this is referred to as idiopathic infertility. Inositols mediate the sperm processes involved into oocyte fertilization, such as penetration of the ovum cumulus oophorus, binding with the zona pellucida and the acrosome reaction. The aim of this double-blind, randomized, placebo-controlled trial was to evaluate the efficacy and safety of myoinositol (the most abundant form of inositols present in nature) treatment in men with idiopathic infertility. To accomplish this, we evaluated the effects of myoinositol on sperm parameters and reproductive hormones at baseline and after 3 months of treatment in men with idiopathic infertility. No adverse reaction was observed. Myoinositol significantly increased the percentage of acrosome-reacted spermatozoa, sperm concentration, and total count and progressive motility compared to placebo. In addition, myoinositol rebalanced serum luteinizing hormone, follicle-stimulating hormone, and inhibin B concentrations. The clinical improvement of idiopathic infertile patients should encourage myoinositol use for the treatment of this disorder, even though its detailed mechanisms at the testicular level remain still unclear.
Collapse
Affiliation(s)
- A E Calogero
- Section of Endocrinology, Andrology and Internal Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - G Gullo
- Dipartimento di Ostetricia Ginecologia e Medicina Interna, Università degli Studi di Messina, Messina, Italy
| | - S La Vignera
- Section of Endocrinology, Andrology and Internal Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R A Condorelli
- Section of Endocrinology, Andrology and Internal Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - A Vaiarelli
- Reproductive Medicine Unit, Policlinico Universitario di Messina, Messina, Italy
| |
Collapse
|
46
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
47
|
Bernabò N, Barboni B, Maccarrone M. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system. Comput Struct Biotechnol J 2014; 11:11-21. [PMID: 25379139 PMCID: PMC4212279 DOI: 10.1016/j.csbj.2014.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - Barbara Barboni
- Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy ; European Center for Brain Research (CERC), Santa Lucia Foundation, Via Ardeatina 306, 00143 Rome, Italy
| |
Collapse
|
48
|
Shahar S, Hillman P, Lubart R, Ickowicz D, Breitbart H. Activation of sperm EGFR by light irradiation is mediated by reactive oxygen species. Photochem Photobiol 2014; 90:1077-83. [PMID: 24724551 DOI: 10.1111/php.12281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/07/2014] [Indexed: 12/21/2022]
Abstract
To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive-oxygen-species (ROS), Ca(2+) influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS-dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS-mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS-dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin-severing protein, gelsolin, and causes actin-depolymerization in human sperm. Light-stimulated tyrosine phosphorylation of Src-dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src-mediated actin polymerization. Light-stimulated HAM and in vitro-fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM.
Collapse
Affiliation(s)
- Shiran Shahar
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
49
|
Rotfeld H, Hillman P, Ickowicz D, Breitbart H. PKA and CaMKII mediate PI3K activation in bovine sperm by inhibition of the PKC/PP1 cascade. Reproduction 2014; 147:347-56. [DOI: 10.1530/rep-13-0560] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To enable fertilization, spermatozoa must undergo several biochemical processes in the female reproductive tract, collectively called capacitation. These processes involve protein kinase A (PKA)-dependent protein tyrosine phosphorylation including phosphatidylinositol-3-kinase (PI3K). It is not known how PKA, a serine/threonine (S/T) kinase, mediates tyrosine phosphorylation of proteins. We recently showed that inhibition of S/T phosphatase 1 (PP1) causes a significant increase in phospho-PI3K. In this study, we propose a mechanism by which PKA and PP1 mediate an increase in PI3K tyrosine phosphorylation and implicate calmodulin-dependent kinase II (CaMKII) in this process. Inhibition of sperm PP1 or PKC, stimulated CaMKII phosphorylation/activation, and inhibition of PKC enhanced PP1 phosphorylation/inactivation. Inhibition of CaMKII, using KN-93, caused significant reduction in phospho-PP1, indicating its activation. Moreover, KN-93 prevented the dephosphorylation/inactivation of PKC. We therefore suggest that CaMKII inhibits PKC, leading to PP1 inhibition and the reciprocal auto-activation of CaMKII. Thus, CaMKII can regulate its own activation by inhibiting the PKC/PP1 cascade. Inhibition of Src family kinases (SFK) caused significant inhibition of CaMKII and PP1 phosphorylation, suggesting that SFK activity results in PP1 inhibition and CaMKII activation. Activation of sperm PKA by 8Br-cAMP revealed an increase in phospho-CaMKII, which was inhibited by PKA inhibitor. Tyrosine phosphorylation of PI3K was stimulated by 8Br-cAMP and by PKC or PP1 inhibition and was abrogated by CaMKII inhibition. Furthermore, phosphorylation/activation of the tyrosine kinase Pyk2 was enhanced by PP1 inhibition, and this activation is blocked by CaMKII inhibition. Thus, PKA activates Src, which inhibits PP1, leading to CaMKII and Pyk2 activation, resulting in PI3K tyrosine phosphorylation/activation.
Collapse
|
50
|
Finkelstein M, Megnagi B, Ickowicz D, Breitbart H. Regulation of sperm motility by PIP2(4,5) and actin polymerization. Dev Biol 2013; 381:62-72. [DOI: 10.1016/j.ydbio.2013.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 06/10/2013] [Indexed: 11/24/2022]
|