1
|
Han S, Cui C, He H, Shen X, Chen Y, Wang Y, Li D, Zhu Q, Yin H. Myoferlin Regulates Wnt/β-Catenin Signaling-Mediated Skeletal Muscle Development by Stabilizing Dishevelled-2 Against Autophagy. Int J Mol Sci 2019; 20:ijms20205130. [PMID: 31623157 PMCID: PMC6829482 DOI: 10.3390/ijms20205130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022] Open
Abstract
Myoferlin (MyoF), which is a calcium/phospholipid-binding protein expressed in cardiac and muscle tissues, belongs to the ferlin family. While MyoF promotes myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that MyoF not only promotes C2C12 myoblast differentiation, but also inhibits muscle atrophy and autophagy. In the present study, we found that myoblasts fail to develop into mature myotubes due to defective differentiation in the absence of MyoF. Meanwhile, MyoF regulates the expression of atrophy-related genes (Atrogin-1 and MuRF1) to rescue muscle atrophy. Furthermore, MyoF interacts with Dishevelled-2 (Dvl-2) to activate canonical Wnt signaling. MyoF facilitates Dvl-2 ubiquitination resistance by reducing LC3-labeled Dvl-2 levels and antagonizing the autophagy system. In conclusion, we found that MyoF plays an important role in myoblast differentiation during skeletal muscle atrophy. At the molecular level, MyoF protects Dvl-2 against autophagy-mediated degradation, thus promoting activation of the Wnt/β-catenin signaling pathway. Together, our findings suggest that MyoF, through stabilizing Dvl-2 and preventing autophagy, regulates Wnt/β-catenin signaling-mediated skeletal muscle development.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuqi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
2
|
Nakajima T, Shibata M, Nishio M, Nagata S, Alev C, Sakurai H, Toguchida J, Ikeya M. Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development 2018; 145:145/16/dev165431. [PMID: 30139810 PMCID: PMC6124548 DOI: 10.1242/dev.165431] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022]
Abstract
Somites (SMs) comprise a transient stem cell population that gives rise to multiple cell types, including dermatome (D), myotome (MYO), sclerotome (SCL) and syndetome (SYN) cells. Although several groups have reported induction protocols for MYO and SCL from pluripotent stem cells, no studies have demonstrated the induction of SYN and D from SMs. Here, we report systematic induction of these cells from human induced pluripotent stem cells (iPSCs) under chemically defined conditions. We also successfully induced cells with differentiation capacities similar to those of multipotent mesenchymal stromal cells (MSC-like cells) from SMs. To evaluate the usefulness of these protocols, we conducted disease modeling of fibrodysplasia ossificans progressiva (FOP), an inherited disease that is characterized by heterotopic endochondral ossification in soft tissues after birth. Importantly, FOP-iPSC-derived MSC-like cells showed enhanced chondrogenesis, whereas FOP-iPSC-derived SCL did not, possibly recapitulating normal embryonic skeletogenesis in FOP and cell-type specificity of FOP phenotypes. These results demonstrate the usefulness of multipotent SMs for disease modeling and future cell-based therapies. Summary: Protocols for the differentiation of human iPSCs to somite derivatives (myotome, sclerotome, syndetome and dermatome) are developed and applied to the modeling of the bone disease fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuaki Shibata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Nishio
- Department of Tissue Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Sanae Nagata
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Girardi F, Le Grand F. Wnt Signaling in Skeletal Muscle Development and Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:157-179. [DOI: 10.1016/bs.pmbts.2017.11.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Galli LM, Zebarjadi N, Li L, Lingappa VR, Burrus LW. Divergent effects of Porcupine and Wntless on WNT1 trafficking, secretion, and signaling. Exp Cell Res 2016; 347:171-183. [PMID: 27492485 DOI: 10.1016/j.yexcr.2016.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/12/2016] [Accepted: 07/31/2016] [Indexed: 12/30/2022]
Abstract
Loss-of-function studies have identified Porcupine (PORCN) and Wntless (WLS) as essential mediators of Wnt secretion and signaling. Whereas PORCN is thought to palmitoylate Wnt proteins, WLS is believed to transport palmitoylated Wnt proteins to the cell surface. However, little is known about how these two proteins cooperate to regulate Wnt palmitoylation, trafficking, secretion, and signaling. We first investigated possible interactions between PORCN, WLS, and WNT1, by carrying out co-immunoprecipitation studies. These studies demonstrate the existence of a complex containing PORCN and WLS. They further show that PORCN and WLS compete for binding to WNT1. Then, we used gain-of-function studies to investigate the cooperation between PORCN and WLS as well as possible biochemical interactions between PORCN, WLS, and WNT1. Consistent with the proposed roles for PORCN and WLS, we show that overexpression of PORCN promotes palmitoylation of WNT1 while overexpression of WLS does not. Overexpression of PORCN enhances the ability of WLS to promote WNT1 trafficking to the cell surface as well as secretion, but decreases the ability of WLS to activate WNT1 signaling in target cell. These observations suggest that the levels of WNT1 on the cell surface and in the media are not the sole determinants of the activation of Wnt signaling in target cells.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Navid Zebarjadi
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Lydia Li
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| |
Collapse
|
5
|
Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis. Dev Biol 2015; 402:61-71. [DOI: 10.1016/j.ydbio.2015.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/19/2022]
|
6
|
WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets. Mol Cell Biol 2015; 35:1763-76. [PMID: 25755281 DOI: 10.1128/mcb.01180-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.
Collapse
|
7
|
Chen Y, Wang G, Ma ZL, Li Y, Wang XY, Cheng X, Chuai M, Tang SZ, Lee KKH, Yang X. Adverse effects of high glucose levels on somite and limb development in avian embryos. Food Chem Toxicol 2014; 71:1-9. [PMID: 24882757 DOI: 10.1016/j.fct.2014.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022]
Abstract
Gestational diabetes has an adverse impact on fetal musculoskeletal development, but the mechanism involved is still not completely understood. In this study, we investigated the effects of high glucose on the developing somites and their derivate using the chick embryo as a model. We demonstrated that under high glucose, the number of generated somites was reduced and their morphology altered in 2-day old chick embryos. In addition, high glucose repressed the development of the limb buds in 5.5-day old chick embryos. We also demonstrated that high glucose abridged the development of the sclerotome and the cartilage in the developing limb bud. The sonic hedgehog (Shh) gene has been reported to play a crucial role in the development and differentiation of sclerotome. Hence, we examined how Shh expression in the sclerotome was affected under high glucose. We found that high glucose treatment significantly inhibited Shh expression. The high glucose also impaired myotome formation at trunk level - as revealed by immunofluorescent staining with MF20 antibodies. In the neural tube, we established that Wnt3a expression was also significantly repressed. In summary, our study demonstrates that high glucose concentrations impair somite and limb bud development in chick embryos, and suggests that Shh and Wnt genes may play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zheng-lai Ma
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-yu Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Shu-ze Tang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Wong J, Mehta V, Voronova A, Coutu J, Ryan T, Shelton M, Skerjanc IS. β-catenin is essential for efficient in vitro premyogenic mesoderm formation but can be partially compensated by retinoic acid signalling. PLoS One 2013; 8:e57501. [PMID: 23460868 PMCID: PMC3583846 DOI: 10.1371/journal.pone.0057501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that P19 cells expressing a dominant negative β-catenin mutant (β-cat/EnR) cannot undergo myogenic differentiation in the presence or absence of muscle-inducing levels of retinoic acid (RA). While RA could upregulate premyogenic mesoderm expression, including Pax3/7 and Meox1, only Pax3/7 and Gli2 could be upregulated by RA in the presence of β-cat/EnR. However, the use of a dominant negative construct that cannot be compensated by other factors is limiting due to the possibility of negative chromatin remodelling overriding compensatory mechanisms. In this study, we set out to determine if β-catenin function is essential for myogenesis with and without RA, by creating P19 cells with reduced β-catenin transcriptional activity using an shRNA approach, termed P19[shβ-cat] cells. The loss of β-catenin resulted in a reduction of skeletal myogenesis in the absence of RA as early as premyogenic mesoderm, with the loss of Pax3/7, Eya2, Six1, Meox1, Gli2, Foxc1/2, and Sox7 transcript levels. Chromatin immunoprecipitation identified an association of β-catenin with the promoter region of the Sox7 gene. Differentiation of P19[shβ-cat] cells in the presence of RA resulted in the upregulation or lack of repression of all of the precursor genes, on day 5 and/or 9, with the exception of Foxc2. However, expression of Sox7, Gli2, the myogenic regulatory factors and terminal differentiation markers remained inhibited on day 9 and overall skeletal myogenesis was reduced. Thus, β-catenin is essential for in vitro formation of premyogenic mesoderm, leading to skeletal myogenesis. RA can at least partially compensate for the loss of β-catenin in the expression of many myogenic precursor genes, but not for myoblast gene expression or overall myogenesis.
Collapse
Affiliation(s)
- Jacob Wong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Josée Coutu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tammy Ryan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Shelton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S. Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Portilho DM, Soares CP, Morrot A, Thiago LS, Butler-Browne G, Savino W, Costa ML, Mermelstein C. Cholesterol depletion by methyl-β-cyclodextrin enhances cell proliferation and increases the number of desmin-positive cells in myoblast cultures. Eur J Pharmacol 2012; 694:1-12. [PMID: 22921450 DOI: 10.1016/j.ejphar.2012.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Skeletal myogenesis comprises myoblast replication and differentiation into striated multinucleated myotubes. Agents that interfere with myoblast replication are important tools for the understanding of myogenesis. Recently, we showed that cholesterol depletion by methyl-β-cyclodextrin (MCD) enhances the differentiation step in chick-cultured myogenic cells, involving the activation of the Wnt/β-catenin signaling pathway. However, the effects of cholesterol depletion on myoblast replication have not been carefully studied. Here we show that MCD treatment increases cell proliferation in primary chick myogenic cell cultures. Treatment of myogenic cells with the anti-mitotic reagent cytosine arabinoside, immediately following cholesterol depletion, blocks the MCD-induced effects on proliferation. Cholesterol depletion induced an increase in the number of desmin-positive mononucleated cells, and an increase in desmin expression. MCD induces an increase in the expression of the cell cycle regulator p53 and the master switch gene MyoD1. Treatment with BIO, a specific inhibitor of GSK3β, induced effects similar to MCD on cell proliferation; while treatment with Dkk1, a specific inhibitor of the Wnt/β-catenin pathway, neutralized the effects of MCD. These findings indicate that rapid changes in the cholesterol content in cell membranes of myoblasts can induce cell proliferation, possibly by the activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Débora M Portilho
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lu Y, Chen SR, Liu WB, Hou ZC, Xu GY, Yang N. Polymorphisms in Wnt signaling pathway genes are significantly associated with chicken carcass traits. Poult Sci 2012; 91:1299-307. [PMID: 22582286 DOI: 10.3382/ps.2012-02157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Wnt signaling pathway plays a crucial role during embryogenesis in vertebrates. In this study, 124 SNP in 31 Wnt signaling pathway genes were selected to genotype 764 individuals in an F(2) resource population by reciprocally crossing Silkie fowls and Cornish broilers, and 102 SNP were polymorphic. Pairwise linkage disequilibrium among the SNP within each gene was calculated. Haplotypes were reconstructed from the SNP in strong linkage disequilibrium. The associations of SNP and haplotypes with carcass traits were analyzed respectively, and the SNP contributions to phenotypic variance were estimated. The present study showed that 58 SNP in 24 genes and 8 haplotype blocks within 7 genes were significantly (P < 0.05) associated with at least one carcass trait. Fourteen SNP (among the 58 SNP) explained >2% phenotypic variance, 12 of which had significantly (P < 0.01) additive or dominant effects. Furthermore, both rs15865526 (Wnt9A) and rs14066777 (MAPK9) as well as their corresponding haplotype blocks were significantly associated with shank circumference and wing weight, respectively. In addition, 5 muscle-weight-related SNP explained >7% phenotypic variance, which was much higher than those of others. It was found that the Wnt signaling pathway was strongly associated with chicken carcass traits, and 7 genes were particularly important, namely RHOA and CHP for breast muscle weight, Wnt3A for breast muscle weight percentage over carcass weight, RAC1 for thigh weight percentage and thigh muscle weight percentage over carcass weight, Wnt11 for thigh weight percentage over carcass weight, Wnt9A for shank length, and MAPK9 for shank circumference. It is evident that Wnt signaling plays a major role in regulating carcass characteristics important for production traits in chickens.
Collapse
Affiliation(s)
- Y Lu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
11
|
Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA. Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process. Stem Cells 2012; 29:1371-9. [PMID: 21739529 DOI: 10.1002/stem.688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During skin wound healing, fibroblast-like cells reconstitute the dermal compartment of the repaired skin filling the wound gap. A subset of these cells are transcriptionally active for β-catenin/T-cell factor (TCF) signaling during the proliferative phase of the repair process, and β-catenin levels control the size of the scar that ultimately forms by regulating the number of dermal fibroblasts. Here, we performed cell lineage studies to reveal a source of the dermal cells in which β-catenin signaling is activated during wound repair. Using a reporter mouse, we found that cells in the early wound in which TCF-dependent transcription is activated express genes involved in muscle development. Using mice in which cells express Pax7 (muscle progenitors) or Mck (differentiated myocytes) are permanently labeled, we showed that one quarter of dermal cells in the healing wound are Pax7 expressing progeny, but none are Mck progeny. Removing one allele of β-catenin in Pax7 expressing progeny resulted in a significantly smaller scar size with fewer Pax7 expressing progeny cell contributing to wound repair. During wound healing, β-catenin activation causes muscle satellite cells to adopt a fibrotic phenotype and this is a source of dermal cells in the repair process.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Makarenkova HP, Meech R. Barx homeobox family in muscle development and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:117-73. [PMID: 22608559 DOI: 10.1016/b978-0-12-394308-8.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeobox transcription factors are key intrinsic regulators of myogenesis. In studies spanning several years, we have characterized the homeobox factor Barx2 as a novel marker for muscle progenitor cells and an important regulator of muscle growth and repair. In this review, we place the expression and function of Barx2 and its paralogue Barx1 in context with other muscle-expressed homeobox factors in both embryonic and adult myogenesis. We also describe the structure and regulation of Barx genes and possible gene/disease associations. The functional domains of Barx proteins, their molecular interactions, and cellular functions are presented with particular emphasis on control of genes and processes involved in myogenic differentiation. Finally, we describe the patterns of Barx gene expression in vivo and the phenotypes of various Barx gene perturbation models including null mice. We focus on the Barx2 null mouse model, which has demonstrated the critical roles of Barx2 in postnatal myogenesis including muscle maintenance during aging, and regeneration of acute and chronic muscle injury.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
13
|
Galli LM, Burrus LW. Differential palmit(e)oylation of Wnt1 on C93 and S224 residues has overlapping and distinct consequences. PLoS One 2011; 6:e26636. [PMID: 22046319 PMCID: PMC3202554 DOI: 10.1371/journal.pone.0026636] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/30/2011] [Indexed: 11/23/2022] Open
Abstract
Though the mechanisms by which cytosolic/intracellular proteins are regulated by the post-translational addition of palmitate adducts is well understood, little is known about how this lipid modification affects secreted ligands, such as Wnts. Here we use mutational analysis to show that differential modification of the two known palmit(e)oylated residues of Wnt1, C93 and S224, has both overlapping and distinct consequences. Though the relative roles of each residue are similar with respect to stability and secretion, two distinct biological assays in L cells show that modification of C93 primarily modulates signaling via a ß-catenin independent pathway while S224 is crucial for ß-catenin dependent signaling. In addition, pharmacological inhibition of Porcupine (Porcn), an upstream regulator of Wnt, by IWP1, specifically inhibited ß-catenin dependent signaling. Consistent with these observations, mapping of amino acids in peptide domains containing C93 and S224 demonstrate that acylation of C93 is likely to be Porcn-independent while that of S224 is Porcn-dependent. Cumulatively, our data strongly suggest that C93 and S224 are modified by distinct enzymes and that the differential modification of these sites has the potential to influence Wnt signaling pathway choice.
Collapse
Affiliation(s)
- Lisa M. Galli
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Laura W. Burrus
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ribas R, Moncaut N, Siligan C, Taylor K, Cross JW, Rigby PWJ, Carvajal JJ. Members of the TEAD family of transcription factors regulate the expression of Myf5 in ventral somitic compartments. Dev Biol 2011; 355:372-80. [PMID: 21527258 PMCID: PMC3123743 DOI: 10.1016/j.ydbio.2011.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 01/16/2023]
Abstract
The transcriptional regulation of the Mrf4/Myf5 locus depends on a multitude of enhancers that, in equilibria with transcription balancing sequences and the promoters, regulate the expression of the two genes throughout embryonic development and in the adult. Transcription in a particular set of muscle progenitors can be driven by the combined outputs of several enhancers that are not able to recapitulate the entire expression pattern in isolation, or by the action of a single enhancer the activity of which in isolation is equivalent to that within the context of the locus. We identified a new enhancer element of this second class, ECR111, which is highly conserved in all vertebrate species and is necessary and sufficient to drive Myf5 expression in ventro-caudal and ventro-rostral somitic compartments in the mouse embryo. EMSA analyses and data obtained from binding-site mutations in transgenic embryos show that a binding site for a TEA Domain (TEAD) transcription factor is essential for the function of this new enhancer, while ChIP assays show that at least two members of the family of transcription factors bind to it in vivo.
Collapse
Affiliation(s)
- Ricardo Ribas
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cortical intermediate progenitors (IPs) comprise a secondary neuronal progenitor pool that arises from radial glia (RG). IPs are essential for generating the correct number of cortical neurons, but the factors that regulate the expansion and differentiation of IPs in the embryonic cortex are essentially unknown. In this study, we show that the Wnt-β-catenin pathway (canonical Wnt pathway) regulates IP differentiation into neurons. Upregulation of Wnt-β-catenin signaling by overexpression of Wnt3a in the neocortex induced early differentiation of IPs into neurons and the accumulation of these newly born neurons at the subventricular zone/intermediate zone border. Long-term overexpression of Wnt3a led to cortical dysplasia associated with the formation of large neuronal heterotopias. Conversely, downregulation of Wnt-β-catenin signaling with Dkk1 during mid and late stages of neurogenesis inhibited neuronal production. Consistent with previous reports, we show that Wnt-β-catenin signaling also promotes RG self-renewal. Thus, our findings show differential effects of the Wnt-β-catenin pathway on distinct groups of cortical neuronal progenitors: RG self-renewal and IP differentiation. Moreover, our findings suggest that dysregulation of Wnt signaling can lead to developmental defects similar to human cortical malformation disorders.
Collapse
|
16
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
17
|
Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β. Cell Mol Life Sci 2010; 68:523-35. [PMID: 20694829 PMCID: PMC3021259 DOI: 10.1007/s00018-010-0467-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
Abstract
Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3β inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3β inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3β/NFATc3 and Wnt/GSK-3β/β-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or β-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, β-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3β inactivation.
Collapse
|
18
|
Bmp signaling at the tips of skeletal muscles regulates the number of fetal muscle progenitors and satellite cells during development. Dev Cell 2010; 18:643-54. [PMID: 20412778 DOI: 10.1016/j.devcel.2010.02.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/17/2009] [Accepted: 02/01/2010] [Indexed: 11/23/2022]
Abstract
Muscle progenitors, labeled by the transcription factor Pax7, are responsible for muscle growth during development. The signals that regulate the muscle progenitor number during myogenesis are unknown. We show, through in vivo analysis, that Bmp signaling is involved in regulating fetal skeletal muscle growth. Ectopic activation of Bmp signaling in chick limbs increases the number of fetal muscle progenitors and fibers, while blocking Bmp signaling reduces their numbers, ultimately leading to small muscles. The Bmp effect that we observed during fetal myogenesis is diametrically opposed to that previously observed during embryonic myogenesis and that deduced from in vitro work. We also show that Bmp signaling regulates the number of satellite cells during development. Finally, we demonstrate that Bmp signaling is active in a subpopulation of fetal progenitors and satellite cells at the extremities of muscles. Overall, our results show that Bmp signaling plays differential roles in embryonic and fetal myogenesis.
Collapse
|
19
|
Abu-Elmagd M, Robson L, Sweetman D, Hadley J, Francis-West P, Münsterberg A. Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis. Dev Biol 2010; 337:211-9. [PMID: 19850024 DOI: 10.1016/j.ydbio.2009.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 09/18/2009] [Accepted: 10/14/2009] [Indexed: 11/17/2022]
Abstract
Wnt signaling has been implicated in somite, limb, and branchial arch myogenesis but the mechanisms and roles are not clear. We now show that Wnt signaling via Lef1 acts to regulate the number of premyogenic cells in somites but does not regulate myogenic initiation in the limb bud or maintenance in the first or second branchial arch. We have also analysed the function and regulation of a putative downstream transcriptional target of canonical Wnt signaling, Pitx2. We show that loss-of-function of Pitx2 decreases the number of myogenic cells in the somite, whereas overexpression increases myocyte number particularly in the epaxial region of the myotome. Increased numbers of mitotic cells were observed following overexpression of Pitx2 or an activated form of Lef1, suggesting an effect on cell proliferation. In addition, we show that Pitx2 expression is regulated by canonical Wnt signaling in the epaxial somite and second branchial arch, but not in the limb or the first branchial arch. These results suggest that Wnt/Lef1 signaling regulates epaxial myogenesis via Pitx2 but that this link is uncoupled in other regions of the body, emphasizing the unique molecular networks that control the development of various muscles in vertebrates.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- University of East Anglia, School of Biological Sciences, Norwich, NR4 7TJ Earlham Road, UK
| | | | | | | | | | | |
Collapse
|
20
|
Piran R, Halperin E, Guttmann-Raviv N, Keinan E, Reshef R. Algorithm of myogenic differentiation in higher-order organisms. Development 2009; 136:3831-40. [PMID: 19855025 DOI: 10.1242/dev.041764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell fate determination is governed by complex signaling molecules at appropriate concentrations that regulate the cell decision-making process. In vertebrates, however, concentration and kinetic parameters are practically unknown, and therefore the mechanism by which these molecules interact is obscure. In myogenesis, for example, multipotent cells differentiate into skeletal muscle as a result of appropriate interplay between several signaling molecules, which is not sufficiently characterized. Here we demonstrate that treatment of biochemical events with SAT (satisfiability) formalism, which has been primarily applied for solving decision-making problems, can provide a simple conceptual tool for describing the relationship between causes and effects in biological phenomena. Specifically, we applied the Łukasiewicz logic to a diffusible protein system that leads to myogenesis. The creation of an automaton that describes the myogenesis SAT problem has led to a comprehensive overview of this non-trivial phenomenon and also to a hypothesis that was subsequently verified experimentally. This example demonstrates the power of applying Łukasiewicz logic in describing and predicting any decision-making problem in general, and developmental processes in particular.
Collapse
Affiliation(s)
- Ron Piran
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
21
|
Regulation of slow and fast muscle myofibrillogenesis by Wnt/beta-catenin and myostatin signaling. PLoS One 2009; 4:e5880. [PMID: 19517013 PMCID: PMC2690692 DOI: 10.1371/journal.pone.0005880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 11/22/2022] Open
Abstract
Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/β-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos, gain-of-Wnt/β-catenin function results in unscheduled muscle progenitor proliferation, leading to slow and fast muscle hypertrophy accompanied by fast muscle degeneration. The effects of Wnt/β-catenin signaling on fast muscle hypertrophy were rescued by misexpression of Myostatin or p21CIP/WAF, establishing an in vivo regulation of myofibrillogenesis by Wnt/β-catenin signaling and Myostatin. Epistatic analyses suggest a possible genetic interaction between Wnt/β-catenin and Myostatin in regulation of slow and fast twitch muscle myofibrillogenesis.
Collapse
|
22
|
Rodgers LS, Schnurr DC, Broka D, Camenisch TD. An improved protocol for the isolation and cultivation of embryonic mouse myocytes. Cytotechnology 2009; 59:93-102. [PMID: 19475494 DOI: 10.1007/s10616-009-9197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/14/2009] [Indexed: 12/28/2022] Open
Abstract
In vitro cultures of cardiomyocytes have proven to be a useful tool for toxicological, pharmacological, and developmental studies, as well as for the study of the cellular and molecular mechanisms responsible for proper myocyte function. One deficient area of research is that of myocyte proliferation. Cardiomyocyte proliferation dramatically diminishes soon after birth and has a very limited occurrence within the adult heart, thus limiting the use of adult cells for proliferation studies. An improved understanding of the requirements for myocyte proliferation will allow for the development of better approaches to repair damaged heart tissue. Here, we provide a protocol for the reliable isolation of embryonic mouse myocytes. These myocytes behave similarly to those in vivo, including their ability to proliferate, providing an ideal system for the study of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Laurel S Rodgers
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ, USA,
| | | | | | | |
Collapse
|
23
|
Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes Dev 2009; 23:997-1013. [PMID: 19346403 DOI: 10.1101/gad.1769009] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vertebrate muscle arises sequentially from embryonic, fetal, and adult myoblasts. Although functionally distinct, it is unclear whether these myoblast classes develop from common or different progenitors. Pax3 and Pax7 are expressed by somitic myogenic progenitors and are critical myogenic determinants. To test the developmental origin of embryonic and fetal myogenic cells in the limb, we genetically labeled and ablated Pax3(+) and Pax7(+) cells. Pax3(+)Pax7(-) cells contribute to muscle and endothelium, establish and are required for embryonic myogenesis, and give rise to Pax7(+) cells. Subsequently, Pax7(+) cells give rise to and are required for fetal myogenesis. Thus, Pax3(+) and Pax7(+) cells contribute differentially to embryonic and fetal limb myogenesis. To investigate whether embryonic and fetal limb myogenic cells have different genetic requirements we conditionally inactivated or activated beta-catenin, an important regulator of myogenesis, in Pax3- or Pax7-derived cells. beta-Catenin is necessary within the somite for dermomyotome and myotome formation and delamination of limb myogenic progenitors. In the limb, beta-catenin is not required for embryonic myoblast specification or myofiber differentiation but is critical for determining fetal progenitor number and myofiber number and type. Together, these studies demonstrate that limb embryonic and fetal myogenic cells develop from distinct, but related progenitors and have different cell-autonomous requirements for beta-catenin.
Collapse
Affiliation(s)
- David A Hutcheson
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Wnt proteins and their signaling cascades are involved in a wide variety of developmental processes, and deregulation of this pathway is frequently associated with tumorigenesis. Unlike many other growth factors, Wnts long eluded biochemical purification, in large part because of their hydrophobic nature, which is imparted by one or more lipid modifications. Here I describe a complete protocol that outlines the purification process for Wnt proteins. While this protocol has not been applied to all known Wnt proteins, it has been successfully applied to the purification of a large subset of Wnts, including the very divergent Wnt protein, Drosophila Wnt8 (Dwnt8 or WntD), indicating that this protocol is likely applicable to all Wnts.
Collapse
|
25
|
Brauner I, Spicer DB, Krull CE, Venuti JM. Identification of responsive cells in the developing somite supports a role for β-catenin-dependent Wnt signaling in maintaining the DML myogenic progenitor pool. Dev Dyn 2009; 239:222-36. [DOI: 10.1002/dvdy.22098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
26
|
Galli LM, Knight SR, Barnes TL, Doak AK, Kadzik RS, Burrus LW. Identification and characterization of subpopulations of Pax3 and Pax7 expressing cells in developing chick somites and limb buds. Dev Dyn 2008; 237:1862-74. [PMID: 18521946 DOI: 10.1002/dvdy.21585] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Pax3 and Pax7 are closely related paired-boxed family transcription factors that are known to play important roles in embryonic and adult myogenesis. Previous reports describing the expression of Pax3 and Pax7 transcripts reveal expression in many overlapping domains. In this manuscript, we extend these studies by examining the protein expression profiles for Pax3 and Pax7 in developing chick somites and limbs with cellular resolution. Our studies show the existence of distinct subpopulations of cells in the somite and developing limb that are defined by the relative expression levels of Pax3 and Pax7. We also show that Pax3 and Pax7 negatively regulate each other's expression in the dermomyotome, thus providing a possible mechanism for the maintenance of observed expression patterns in the dermomyotome. Further characterization of Pax3- and/or Pax7-positive cells in the dermomyotome and myotome with respect to proliferation and differentiation reveals subpopulations of cells with distinct properties.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | | | |
Collapse
|
27
|
Formation and Differentiation of Avian Somite Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:1-41. [DOI: 10.1007/978-0-387-09606-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, Lawrence-Watt D, Patel K. Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci 2008; 121:2939-50. [DOI: 10.1242/jcs.026534] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Satellite cells represent the stem cell population of adult skeletal muscle. The molecular mechanisms that control the proliferation of satellite cells are not well understood. In this study, we show that in response to injury, myofibres activate Wnt ligand transcription and activate a reporter cell line that is sensitive to the canonical Wnt-signalling pathway. Activated satellite cells on isolated cultured myofibres show robust expression of activated-β-catenin (Act-β-Cat), a key downstream transcriptional coactivator of canonical Wnt signalling. We provide evidence that the Wnt family of secreted glycoproteins act on satellite cells in a ligand-specific manner. Overexpression of Wnt1, Wnt3a or Wnt5a protein causes a dramatic increase in satellite-cell proliferation. By contrast, exposure of satellite cells to Wnt4 or Wnt6 diminishes this process. Moreover, we show that the prolonged satellite-cell quiescence induced by inhibitory Wnt is reversible and exposing inhibited satellite cells to stimulatory Wnt signalling restores their proliferation rate. Stimulatory Wnt proteins induce premature satellite cell BrdU incorporation as well as nuclear translocation of Act-β-Cat. Finally, we provide evidence that the Act-β-Cat translocation observed in single fibres during in vitro culture also occurs in cases of acute and chronic skeletal muscle regeneration in rodents and humans. We propose that Wnt proteins may be key factors that regulate the rate of satellite-cell proliferation on adult muscle fibres during the wound-healing response.
Collapse
Affiliation(s)
- Anthony Otto
- School of Biological Sciences, AMS Building, University of Reading, Whiteknights, PO Box 228, Reading, Berkshire RG6 6AJ, UK
| | - Corina Schmidt
- Institute of Anatomy, Ludwigs-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Graham Luke
- School of Biological Sciences, AMS Building, University of Reading, Whiteknights, PO Box 228, Reading, Berkshire RG6 6AJ, UK
| | - Steve Allen
- Department of Veterinary Basic Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Petr Valasek
- School of Biological Sciences, AMS Building, University of Reading, Whiteknights, PO Box 228, Reading, Berkshire RG6 6AJ, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Unit, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| | | | - Ketan Patel
- School of Biological Sciences, AMS Building, University of Reading, Whiteknights, PO Box 228, Reading, Berkshire RG6 6AJ, UK
| |
Collapse
|
29
|
Draghia-Akli R, Khan AS. Muscle and fat mass modulation in different clinical models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 423:449-60. [PMID: 18370221 DOI: 10.1007/978-1-59745-194-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Studies described in the recent literature support the idea that gene therapy can lead to genuine clinical benefits when mediated by plasmid delivery in conjunction with electroporation. Plasmid-mediated muscle-targeted gene transfer offers the potential of a cost-effective pharmaceutical-grade therapy delivered by simple intramuscular injection. This approach is particularly appropriate for modulating muscle and fat mass and their intrinsic properties, from treatment of conditions such as cachexia associated with chronic diseases, autoimmune diseases, e.g., myasthenia gravis, to stimulation or suppression of appetite, and further to in vivo manipulation of glucose metabolism and fat deposition in patients with diabetes, or to basic studies of muscle-specific transcription factors and their impact in development. Recent innovations, including in situ electroporation, enabling sustained systemic protein delivery within the therapeutic range, are reviewed. Translation of these advances to human clinical trials will enable muscle- and fat-targeted gene therapy to become a viable therapeutic alternative.
Collapse
|
30
|
Geetha-Loganathan P, Nimmagadda S, Scaal M, Huang R, Christ B. Wnt signaling in somite development. Ann Anat 2008; 190:208-22. [DOI: 10.1016/j.aanat.2007.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 01/30/2023]
|
31
|
Anderson BC, Christiansen SP, McLoon LK. Myogenic growth factors can decrease extraocular muscle force generation: a potential biological approach to the treatment of strabismus. Invest Ophthalmol Vis Sci 2008; 49:221-9. [PMID: 18172096 DOI: 10.1167/iovs.07-0600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Future pharmacologic treatment of strabismus may be optimized if drugs that are less potentially toxic to patients can be developed. Prior studies have shown that direct injection of extraocular muscles (EOMs) with insulin growth factor or fibroblast growth factor results in significant increases in the generation of EOM force. The purpose of this study was to examine the morphometric and physiological effects of direct EOM injection with the growth factors BMP4, TGFbeta1, Shh, and Wnt3A. METHODS One superior rectus muscle of normal adult rabbits was injected with BMP4, TGFbeta1, Shh, or Wnt3A. The contralateral muscle was injected with an equal volume of saline to serve as a control. After 1 week, the animals were euthanatized, and both superior rectus muscles were removed and assayed physiologically. The muscles were stimulated at increasing frequencies to determine force generation. A separate group of treated and control superior rectus muscles were examined histologically for alterations in total muscle cross-sectional area and myosin heavy chain isoform (MyHC) composition. RESULTS One week after a single injection of BMP4, TGFbeta1, Shh, or Wnt3A, all treated muscles showed significant decreases in generation of force compared with control muscles. BMP4, TGFbeta1, Shh, and Wnt3A significantly decreased the mean myofiber cross-sectional area of fast MyHC-positive myofibers. BMP4 resulted in a conversion of fast-to-slow myofibers and a significant decrease in the percentage of developmental and neonatal MyHC-positive myofibers. Alterations in mean cross-sectional area and proportion of MyHCs were seen after injection with TGFbeta1, Shh, and Wnt3A. TGFbeta1 and BMP4 injections resulted in increased Pax7-positive satellite cells, whereas BMP4, TGFbeta1, and Wnt3A resulted in a decrease in MyoD-positive satellite cells. CONCLUSIONS These results suggest that, rather than using toxins or immunotoxins, a more biological approach to decrease muscle strength is possible and demonstrate the potential utility of myogenic signaling factors for decreasing EOM strength. Ongoing drug-delivery studies will elucidate means of extending treatment effect to make such agents clinically useful.
Collapse
Affiliation(s)
- Brian C Anderson
- Department of Ophthalmology, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
32
|
Abstract
Somitogenesis is the process of division of the anterior-posterior vertebrate embryonic axis into similar morphological units known as somites. These segments generate the prepattern which guides formation of the vertebrae, ribs and other associated features of the body trunk. In this work, we review and discuss a series of mathematical models which account for different stages of somite formation. We begin by presenting current experimental information and mechanisms explaining somite formation, highlighting features which will be included in the models. For each model we outline the mathematical basis, show results of numerical simulations, discuss their successes and shortcomings and avenues for future exploration. We conclude with a brief discussion of the state of modeling in the field and current challenges which need to be overcome in order to further our understanding in this area.
Collapse
Affiliation(s)
- Ruth E Baker
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford OX1 3LB, United Kingdom
| | | | | |
Collapse
|
33
|
Portilho DM, Martins ER, Costa ML, Mermelstein CS. A soluble and active form of Wnt-3a protein is involved in myogenic differentiation after cholesterol depletion. FEBS Lett 2007; 581:5787-95. [PMID: 18037380 DOI: 10.1016/j.febslet.2007.11.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 11/24/2022]
Abstract
Cholesterol is one of the major lipids of plasma membranes. Recently, we have shown that cholesterol depletion by methyl-beta-cyclodextrin (M beta CD) induces the activation of the Wnt/beta-catenin pathway and enhances myogenic differentiation. Here, we show that M beta CD-conditioned media accelerates myogenesis in a similar way as M beta CD does, suggesting that the effects induced by M beta CD could be caused by soluble factors present in the culture medium. Soluble Wnt-3 protein is significantly enhanced in M beta CD-conditioned medium. Wnt-3a-enriched media induces myogenesis as much as M beta CD does, whereas Wnt-5a-enriched media inhibits. We suggest that Wnt-3a is involved in the myogenic induction observed after cholesterol depletion.
Collapse
Affiliation(s)
- Débora M Portilho
- Laboratório de Diferenciação Muscular e Citoesqueleto, Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21949-590, Brazil
| | | | | | | |
Collapse
|
34
|
Yablonka-Reuveni Z, Day K, Vine A, Shefer G. Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci 2007; 86:E207-16. [PMID: 17878281 PMCID: PMC4450102 DOI: 10.2527/jas.2007-0473] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Satellite cells, the main source of myoblasts in postnatal muscle, are located beneath the myofiber basal lamina. The myogenic potential of satellite cells was initially documented based on their capacity to produce progeny that fused into myotubes. More recently, molecular markers of resident satellite cells were identified, further contributing to defining these cells as myogenic stem cells that produce differentiating progeny and self-renew. Herein, we discuss aspects of the satellite cell transcriptional milieu that have been intensively investigated in our research. We elaborate on the expression patterns of the paired box (Pax) transcription factors Pax3 and Pax7, and on the myogenic regulatory factors myogenic factor 5 (Myf5), myogenic determination factor 1 (MyoD), and myogenin. We also introduce original data on MyoD upregulation in newly activated satellite cells, which precedes the first round of cell proliferation. Such MyoD upregulation occurred even when parent myofibers with their associated satellite cells were exposed to pharmacological inhibitors of hepatocyte growth factor and fibroblast growth factor receptors, which are typically involved in promoting satellite cell proliferation. These observations support the hypothesis that most satellite cells in adult muscle are committed to rapidly entering myogenesis. We also detected expression of serum response factor in resident satellite cells prior to MyoD expression, which may facilitate the rapid upregulation of MyoD. Aspects of satellite cell self-renewal based on the reemergence of cells expressing Pax7, but not MyoD, in myogenic cultures are discussed further herein. We conclude by describing our recent studies using transgenic mice in which satellite cells are traced and isolated based on their expression of green fluorescence protein driven by regulatory elements of the nestin promoter (nestin-green fluorescence protein). This feature provides us with a novel means of studying satellite cell transcriptional signatures, heterogeneity among muscle groups, and the role of the myogenic niche in directing satellite cell self-renewal.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
35
|
Galli LM, Barnes TL, Secrest SS, Kadowaki T, Burrus LW. Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development 2007; 134:3339-48. [PMID: 17720697 DOI: 10.1242/dev.02881] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A long-term goal of developmental biology is to understand how morphogens establish gradients that promote proper tissue patterning. A number of reports describe the formation of the Wg (Wnt1) gradient in Drosophila and have shown that Porcupine, a predicted membrane-bound O-acyl transferase, is required for the correct distribution of Wg protein. The discovery that Wnts are palmitoylated on a conserved cysteine residue suggests that porcupine activity and Wnt palmitoylation are important for the generation of Wnt gradients. To establish the role of porcupine in Wnt gradient formation in vertebrates, we tested the role of porcupine/Wnt palmitoylation in human embryonic kidney 293T cells and in the chick neural tube. Our results lead us to conclude that: (1) vertebrate Wnt1 and Wnt3a possess at least one additional site for porcupine-mediated lipid-modification; (2)porcupine-mediated lipid-modification of Wnt proteins promotes their activity in 293T cells and in the chick neural tube; and (3) porcupine-mediated lipid-modification reduces the range of activity of Wnt1 and Wnt3a in the chick neural tube. These findings highlight the importance of porcupine-mediated lipid modifications in the formation of vertebrate Wnt activity gradients.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | | | | | | |
Collapse
|
36
|
Narita T, Nishimatsu SI, Wada N, Nohno T. A
Wnt3a
variant participates in chick apical ectodermal ridge formation: Distinct biological activities of Wnt3a splice variants in chick limb development. Dev Growth Differ 2007; 49:493-501. [PMID: 17488271 DOI: 10.1111/j.1440-169x.2007.00938.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Wnt/beta-catenin signaling is involved in the formation of the apical ectodermal ridge (AER) during vertebrate limb development. Although Wnt3a is a potent ligand for chick AER formation, whether chick Wnt3a can induce Fgf8 expression in chick embryos is unclear and the Wnt ligand involved in chick AER formation remains unknown. Here, we examined whether another Wnt3a isoform is expressed in the AER, and whether Wnt3 contributes to AER formation in chick as well as mouse embryos. We found that chick Wnt3 was not expressed in the presumptive limb ectoderm at the early stages of AER formation. Using 5'-rapid amplification of cDNA ends, we isolated another chick Wnt3a transcript. This novel variant, Wnt3a variant 2, induced Fgf8 in the limb ectoderm and activated the beta-catenin pathway in vivo and in vitro. These data showed that Wnt3a variant 2 is an active form of chick Wnt3a that regulates chick AER formation.
Collapse
Affiliation(s)
- Tomohiro Narita
- Department of Molecular Biology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | | | | | | |
Collapse
|
37
|
Lee WJ, Kim DU, Lee MY, Choi KY. Identification of proteins interacting with the catalytic subunit of PP2A by proteomics. Proteomics 2007; 7:206-14. [PMID: 17163575 DOI: 10.1002/pmic.200600480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of multiple signaling pathways including the Wnt/beta-catenin and the ERK pathways. To understand the complex signaling networking associated with PP2A, we searched proteins interacting with the catalytic subunit of protein phosphatase 2A (PP2Ac) by a pull-down analysis followed by 2-D gel electrophoresis and proteomic analyses. The probability of identification of the proteins interacting with PP2Ac was increased by searching proteins differently interacting with PP2Ac according to stimulation of Wnt3a, which regulates both the Wnt/beta-catenin and the ERK pathways. Around 100 proteins, pulled-down by His-tagged PP2Ac, were identified in 2-D gels stained with CBB. By MALDI-TOF-MS analyses of 45 protein spots, we identified several proteins that were previously known to interact with PP2A, such as Axin and CaMK IV. In addition, we also identified many proteins that potentially interact with PP2Ac. The interactions of several candidate proteins, such as tuberous sclerosis complex 2, RhoB, R-Ras, and Nm23H2, with PP2Ac, were confirmed by in vitro binding analyses and/or coimmunoprecipitation experiments.
Collapse
Affiliation(s)
- Won-Jeong Lee
- National Laboratory of Molecular Complex Control, Department of Biotechnology, College of Engineering and Protein Network Research Center, Yonsei University, Seoul, Korea
| | | | | | | |
Collapse
|
38
|
Stricker S, Verhey van Wijk N, Witte F, Brieske N, Seidel K, Mundlos S. Cloning and expression pattern of chicken Ror2 and functional characterization of truncating mutations in Brachydactyly type B and Robinow syndrome. Dev Dyn 2007; 235:3456-65. [PMID: 17061261 DOI: 10.1002/dvdy.20993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ror2 is a receptor tyrosine kinase mutated in the human syndromes Brachydactyly type B (BDB) and recessive Robinow syndrome (RS). In this study, we used the chick as a model to investigate the role of Ror2 in skeletogenesis and to elucidate the functional consequences of Ror2 mutations. For this purpose, we cloned chicken Ror2 and analyzed its expression pattern at various embryonic stages by in situ hybridization and immunolabeling. We document expression of cRor2 in several organs, including mesonephros, heart, nervous system, intestine and cartilage. The high conservation of expression when compared with the mouse underlines the validity of the chick as a model system. Using replication-competent retroviral vector-mediated overexpression, we analyzed the functional consequences of truncating BDB and RS mutations in the developing chick limb. Overexpression of Ror2 mutants led to a disturbance of growth plate architecture and a severe block of chondrocyte differentiation, demonstrating the functional importance of Ror2 in skeletogenesis.
Collapse
Affiliation(s)
- Sigmar Stricker
- Max Planck-Institute for Molecular Genetics, Development and Disease Group, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Kim SE, Choi KY. EGF receptor is involved in WNT3a-mediated proliferation and motility of NIH3T3 cells via ERK pathway activation. Cell Signal 2007; 19:1554-64. [PMID: 17374561 DOI: 10.1016/j.cellsig.2007.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 11/24/2022]
Abstract
WNT3a stimulates proliferation of NIH3T3 cells via activation of the extracellular signal-regulated kinase (ERK) pathway. The RAF-1-->MEK-->ERK cascade was immediately increased by WNT3a treatment, however, the upstream event triggering ERK pathway activation by WNT3a is not clear. WNT3a activated RAS and WNT3a-induced ERK activation was blocked by dominant-negative RAS, indicating that WNT3a might act upstream of RAS. WNT3a-induced ERK pathway activations were blocked by AG1478, the epidermal growth factor receptor (EGFR) inhibitor, and EGFR siRNA. The WNT3a-induced ERK pathway activation was not observed in fibroblasts retaining defective EGFR, but the WNT3a effect was restored by EGFR reconstitution. These results indicate involvement of EGFR in the WNT3a-induced ERK pathway activation. WNT3a-induced motility and cytoskeletal rearrangement as well as proliferation of NIH3T3 cells were blocked by AG1478 and EGFR siRNA or abolished in EGFR knock-out fibroblasts, indicating involvement of EGFR in those cellular processes. WNT3a-induced ERK pathway activation was not affected by Dickkoff-1 (DKK-1), although WNT3a-induced activations of the WNT/beta-catenin pathway and proliferation were reduced by DKK-1. EGFR is involved in WNT3a-induced proliferation via both routes dependent on and independent of the WNT/beta-catenin pathway. These results indicate that WNT3a stimulates proliferation and motility of NIH3T3 fibroblasts via EGFR-mediated ERK pathway activation.
Collapse
Affiliation(s)
- Sung-Eun Kim
- National Research Laboratory of Molecular Complex Control, Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | | |
Collapse
|
40
|
Handrigan GR, Wassersug RJ. The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biol Rev Camb Philos Soc 2007; 82:1-25. [PMID: 17313522 DOI: 10.1111/j.1469-185x.2006.00001.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anurans (frogs, toads, and their larvae) are among the most morphologically derived of vertebrates. While tightly conserved across the order, the anuran Bauplan (body plan) diverges widely from that of other vertebrates, particularly with respect to the skeleton. Here we address the adaptive, ontogenetic, and genetic bases of three such hallmark anuran features: (1) the absence of discrete caudal vertebrae, (2) a truncated axial skeleton, and (3) elongate hind limbs. We review the functional significance of each as it relates to the anuran lifestyle, which includes locomotor adaptations to both aquatic and terrestrial environments. We then shift our focus to the proximal origins of each feature, namely, ontogeny and its molecular regulation. Drawing on relatively limited data, we detail the development of each character and then, by extrapolating from comparative vertebrate data, propose molecular bases for these processes. Cast in this light, the divergent morphology of anurans emerges as a product of evolutionary modulation of the generalised vertebrate developmental machinery. Specifically, we hypothesise that: (1) the formation of caudal vertebrae is precluded due to a failure of sclerotomes to form cartilaginous condensations, perhaps resulting from altered expression of a suite of genes, including Pax1, Pax9, Msx1, Uncx-4.1, Sonic hedgehog, and noggin; (2) anteriorised Hox gene expression in the paraxial mesoderm has led to a rostral shift of morphological boundaries of the vertebral column; and, (3) spatial and temporal shifts in Hox expression may underlie the expanded tarsal elements of the anuran hind limb. Technology is currently in place to investigate each of these scenarios in the African clawed frog Xenopus. Experimental corroboration will further our understanding of the molecular regulation of the anuran Bauplan and provide insight into the origin of vertebrate morphological diversity as well as the role of development in evolution.
Collapse
Affiliation(s)
- Gregory R Handrigan
- Department of Biology, Dalhousie University 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H 4J1.
| | | |
Collapse
|
41
|
Shefer G, Yablonka-Reuveni Z. Reflections on lineage potential of skeletal muscle satellite cells: do they sometimes go MAD? Crit Rev Eukaryot Gene Expr 2007; 17:13-29. [PMID: 17341181 PMCID: PMC3276064 DOI: 10.1615/critreveukargeneexpr.v17.i1.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Postnatal muscle growth and repair is supported by satellite cells--myogenic progenitors positioned between the myofiber basal lamina and plasma membrane. In adult muscles, satellite cells are quiescent but become activated and contribute differentiated progeny when myofiber repair is needed. The development of cells expressing osteogenic and adipogenic genes alongside myoblasts in myofiber cultures raised the hypothesis that satellite cells possess mesenchymal plasticity. Clonal studies of myofiber-associated cells further suggest that satellite cell myogeneity and diversion into Mesenchymal Alternative Differentiation (MAD) occur in vitro by a stochastic mechanism. However, in vivo this potential may be executed only when myogenic signals are impaired and the muscle tissue is compromised. Such a mechanism may contribute to the increased adiposity of aging muscles. Alternatively, it is possible that mesenchymal interstitial cells (sometimes co-isolated with myofibers), rather than satellite cells, account for the nonmyogenic cells observed in myogenic cultures. Herein, we first elaborate on the myogenic potential of satellite cells. We then introduce definitions of adult stem-cell unipotency, multipotency, and plasticity, as well as elaborate on recent studies that established the status of satellite cells as myogenic stem cells. Last, we highlight evidence in favor of satellite cell plasticity and emerging hurdles restraining this hypothesis.
Collapse
Affiliation(s)
- Gabi Shefer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
42
|
Yusuf F, Brand-Saberi B. The eventful somite: patterning, fate determination and cell division in the somite. ACTA ACUST UNITED AC 2006; 211 Suppl 1:21-30. [PMID: 17024302 DOI: 10.1007/s00429-006-0119-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/18/2006] [Indexed: 11/29/2022]
Abstract
The segmental somites not only determine the vertebrate body plan, but also represent turntables of cell fates. The somite is initially naive in terms of its fate restriction as shown by grafting and rotation experiments whereby ectopically grafted or rotated tissue of newly formed somites yielded the same pattern of normal derivatives. Somitic derivatives are determined by local signalling between adjacent embryonic tissues, in particular the neural tube, notochord, surface ectoderm and the somitic compartments themselves. The correct spatio-temporal specification of the deriving tissues, skeletal muscle, cartilage, endothelia and connective tissue is achieved by a sequence of morphogenetic changes of the paraxial mesoderm, eventually leading to the three transitory somitic compartments: dermomyotome, myotome and sclerotome. These structures are specified along a double gradient from dorsal to ventral and from medial to lateral. The establishment and controlled disruption of the epithelial state of the somitic compartments are crucial for development. In this article, we give a synopsis of some of the most important signalling events involved in somite patterning and cell fate decisions. Particular emphasis has been laid on the issue of epithelio-mesenchymal transition and different types of cell division in the somite.
Collapse
Affiliation(s)
- Faisal Yusuf
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, 79104, Freiburg, Germany.
| | | |
Collapse
|
43
|
Kim SE, Lee WJ, Choi KY. The PI3 kinase-Akt pathway mediates Wnt3a-induced proliferation. Cell Signal 2006; 19:511-8. [PMID: 17011750 DOI: 10.1016/j.cellsig.2006.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/18/2006] [Accepted: 08/14/2006] [Indexed: 12/01/2022]
Abstract
Wnt3a activates proliferation of fibroblasts cells via activation of both extracellular signal-regulated kinase (ERK) and Wnt/beta-catenin signaling pathways. In this study, we show that the phosphatidyl inositol 3 kinases (PI3K)-Akt pathway is also involved in the Wnt3a-induced proliferation. Akt was activated within 30 min by Wnt3a in NIH3T3 cells. By Wnt3a treatment, activated Akt was transiently accumulated in nucleus although beta-catenin was accumulated in the nucleus of cells in a prolonged manner. The Wnt3a-induced Akt activation was not affected by siRNA-mediated reduction of beta-catenin, indicating that Wnt3a-induced Akt activation may occur independently of beta-catenin. The Wnt3a-induced Akt activation was abolished by pre-treatment with PI3K inhibitor, LY294002 and Wortmanin, but not by MEK inhibitor, U0126, indicating that Wnt3a activates Akt via PI3K. The growth and proliferation induced by Wnt3a were blocked by treatments of the PI3K inhibitors. Furthermore, Wnt3a-induced proliferation was blocked by Akt siRNA. These results reveal that the PI3K-Akt pathway mediates the Wnt3a-induced growth and proliferation of NIH3T3 cells.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Biotechnology, National Research Laboratory of Molecular Complex Control, Seoul, South Korea
| | | | | |
Collapse
|
44
|
Schmidt C, Otto A, Luke G, Valasek P, Otto WR, Patel K. Expression and regulation of Nkd-1, an intracellular component of Wnt signalling pathway in the chick embryo. ACTA ACUST UNITED AC 2006; 211:525-34. [PMID: 16763811 DOI: 10.1007/s00429-006-0102-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
The Wnt family of secreted signalling molecules control a wide range of developmental processes in all metazoans. The intracellular response to Wnt signalling depends on the choice of signalling cascade activated in the responding cell. Cells can activate either the canonical pathway that modulates gene expression to control cellular differentiation and proliferation, or the non-canonical pathway that controls cell polarity and movement. Recent work has identified the protein Naked Cuticle to act as an intracellular switch to promote the non-canonical pathway at the expense of the canonical pathway. We have cloned chick Naked Cuticle-1 (cNkd-1) and show that it is expressed in a dynamic manner during early embryogenesis. We show that it is expressed in the somites and in particular regions where cells are undergoing movement. Lastly, we show that the expression of cNkd-1 is regulated by Wnt expression originating from the neural tube. This study provides evidence that non-canonical Wnt signalling plays a part in somite development.
Collapse
Affiliation(s)
- Corina Schmidt
- Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London, England, NW1 0TU
| | | | | | | | | | | |
Collapse
|
45
|
Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296:164-76. [PMID: 16730693 DOI: 10.1016/j.ydbio.2006.04.449] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/22/2022]
Abstract
Dorsal dermis and epaxial muscle have been shown to arise from the central dermomyotome in the chick. En1 is a homeobox transcription factor gene expressed in the central dermomyotome. We show by genetic fate mapping in the mouse that En1-expressing cells of the central dermomyotome give rise to dorsal dermis and epaxial muscle and, unexpectedly, to interscapular brown fat. Thus, the En1-expressing central dermomyotome normally gives rise to three distinct fates in mice. Wnt signals are important in early stages of dermomyotome development, but the signal that acts to specify the dermal fate has not been identified. Using a reporter transgene for Wnt signal transduction, we show that the En1-expressing cells directly underneath the surface ectoderm transduce Wnt signals. When the essential Wnt transducer beta-catenin is mutated in En1 cells, it results in the loss of Dermo1-expressing dorsal dermal progenitors and dermis. Conversely, when beta-catenin was activated in En1 cells, it induces Dermo1 expression in all cells of the En1 domain and disrupts muscle gene expression. Our results indicate that the mouse central dermomyotome gives rise to dermis, muscle, and brown fat, and that Wnt signalling normally instructs cells to select the dorsal dermal fate.
Collapse
Affiliation(s)
- Radhika Atit
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Anderson DM, Arredondo J, Hahn K, Valente G, Martin JF, Wilson-Rawls J, Rawls A. Mohawkis a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn 2006; 235:792-801. [PMID: 16408284 DOI: 10.1002/dvdy.20671] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Homeodomain-containing proteins comprise a superfamily of transcription factors that participate in the regulation of almost all aspects of embryonic development. Here, we describe the mouse embryonic expression pattern of Mohawk, a new member of the TALE superclass of atypical homeobox genes that is most-closely related to the Iroquois class. During mouse development, Mohawk was transcribed in cell lineages derived from the somites. As early as embryonic day 9.0, Mohawk was expressed in an anterior to posterior gradient in the dorsomedial and ventrolateral lips of the dermomyotome of the somites that normally give rise to skeletal muscle. Mohawk transcription in the dorsomedial region required the expression of the transcription factor paraxis. As somites matured, Mohawk transcription was observed in the tendon-specific syndetome and the sclerotome-derived condensing mesenchyme that prefigures the proximal ribs and vertebral bodies. In the limbs, Mohawk was expressed in a pattern consistent with the developing tendons that form along the dorsal and ventral aspect of the phalanges. Finally, Mohawk was detectable in the tips of the ureteric buds in the metanephric kidneys and the testis cords of the male gonad. Together, these observations suggest that Mohawk is an important regulator of vertebrate development.
Collapse
Affiliation(s)
- Douglas M Anderson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Unraveling the complex tissue interactions necessary to generate the structural and functional diversity present among craniofacial muscles is challenging. These muscles initiate their development within a mesenchymal population bounded by the brain, pharyngeal endoderm, surface ectoderm, and neural crest cells. This set of spatial relations, and in particular the segmental properties of these adjacent tissues, are unique to the head. Additionally, the lack of early epithelialization in head mesoderm necessitates strategies for generating discrete myogenic foci that may differ from those operating in the trunk. Molecular data indeed indicate dissimilar methods of regulation, yet transplantation studies suggest that some head and trunk myogenic populations are interchangeable. The first goal of this review is to present key features of these diversities, identifying and comparing tissue and molecular interactions regulating myogenesis in the head and trunk. Our second focus is on the diverse morphogenetic movements exhibited by craniofacial muscles. Precursors of tongue muscles partly mimic migrations of appendicular myoblasts, whereas myoblasts destined to form extraocular muscles condense within paraxial mesoderm, then as large cohorts they cross the mesoderm:neural crest interface en route to periocular regions. Branchial muscle precursors exhibit yet another strategy, establishing contacts with neural crest populations before branchial arch formation and maintaining these relations through subsequent stages of morphogenesis. With many of the prerequisite stepping-stones in our knowledge of craniofacial myogenesis now in place, discovering the cellular and molecular interactions necessary to initiate and sustain the differentiation and morphogenesis of these neglected craniofacial muscles is now an attainable goal.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
48
|
Kawauchi S, Shou J, Santos R, Hébert JM, McConnell SK, Mason I, Calof AL. Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 2005; 132:5211-23. [PMID: 16267092 DOI: 10.1242/dev.02143] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate olfactory epithelium (OE), neurogenesis proceeds continuously, suggesting that endogenous signals support survival and proliferation of stem and progenitor cells. We used a genetic approach to test the hypothesis that Fgf8 plays such a role in developing OE. In young embryos, Fgf8 RNA is expressed in the rim of the invaginating nasal pit (NP), in a small domain of cells that overlaps partially with that of putative OE neural stem cells later in gestation. In mutant mice in which the Fgf8 gene is inactivated in anterior neural structures, FGF-mediated signaling is strongly downregulated in both OE proper and underlying mesenchyme by day 10 of gestation. Mutants survive gestation but die at birth, lacking OE, vomeronasal organ (VNO), nasal cavity, forebrain, lower jaw, eyelids and pinnae. Analysis of mutants indicates that although initial NP formation is grossly normal, cells in the Fgf8-expressing domain undergo high levels of apoptosis, resulting in cessation of nasal cavity invagination and loss of virtually all OE neuronal cell types. These findings demonstrate that Fgf8 is crucial for proper development of the OE, nasal cavity and VNO, as well as maintenance of OE neurogenesis during prenatal development. The data suggest a model in which Fgf8 expression defines an anterior morphogenetic center, which is required not only for the sustenance and continued production of primary olfactory (OE and VNO) neural stem and progenitor cells, but also for proper morphogenesis of the entire nasal cavity.
Collapse
Affiliation(s)
- Shimako Kawauchi
- Department of Anatomy and Neurobiology, and Developmental Biology Center, University of California, Irvine, CA 92697-1275, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C. beta-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 2005; 132:3895-905. [PMID: 16100089 DOI: 10.1242/dev.01961] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of cell adhesion in epithelia is a fundamental process governing morphogenesis in embryos and a key step in the progression of invasive cancers. Here, we have analysed the molecular pathways controlling the epithelial organisation of somites. Somites are mesodermal epithelial structures of vertebrate embryos that undergo several changes in cell adhesion during early embryonic life. We show that Wnt6 in the ectoderm overlaying the somites, but not Wnt1 in the neighbouring neural tube, is the most likely candidate molecule responsible for the maintenance of the epithelial structure of the dorsal compartment of the somite: the dermomyotome. We characterised the signalling pathway that mediates Wnt6 activity. Our experiments suggest that the Wnt receptor molecule Frizzled7 probably transduces the Wnt6 signal. Intracellularly, this leads to the activation of the beta-catenin/LEF1-dependent pathway. Finally, we demonstrate that the bHLH transcription factor paraxis, which was previously shown to be a major player in the epithelial organisation of somites, is a target of the beta-catenin signal. We conclude that beta-catenin activity, initiated by Wnt6 and mediated by paraxis, is required for the maintenance of the epithelial structure of somites.
Collapse
Affiliation(s)
- Claudia Linker
- Laboratoire de Génétique et de Physiologie du Développement (LGPD (IBDM), CNRS UMR 6545. Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille, Cedex 09, France.
| | | | | | | | | | | |
Collapse
|
50
|
Theriault FM, Nuthall HN, Dong Z, Lo R, Barnabe-Heider F, Miller FD, Stifani S. Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J Neurosci 2005; 25:2050-61. [PMID: 15728845 PMCID: PMC6726063 DOI: 10.1523/jneurosci.5108-04.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neurogenesis requires factors that regulate the decision of dividing progenitors to leave the cell cycle and activate the neuronal differentiation program. It is shown here that the murine runt-related gene Runx1 is expressed in proliferating cells on the basal side of the olfactory epithelium. These include both Mash1+ olfactory receptor neuron (ORN) progenitors and NeuroD+ ORN precursors. Disruption of Runx1 function in vivo does not cause a change in Mash1 expression but leads to a decrease in the number of NeuroD+ neuronal precursors and an increase in differentiated ORNs. These effects result in premature and ectopic ORN differentiation. It is shown further that exogenous Runx1 expression in cultured olfactory neural progenitors causes an expansion of the mitotic cell population. In agreement with these findings, exogenous Runx1 expression also promotes cortical neural progenitor cell proliferation without inhibiting neuronal differentiation. These effects are phenocopied by a chimeric protein containing ETO, the eight twenty one transcriptional repressor, fused to the Runx1 DNA-binding domain, which suggests the involvement of transcription repression mechanisms. Consistent with this possibility, Runx1 represses transcription driven by the promoter of the cell cycle inhibitor p21Cip 1 in cortical progenitors. Together, these findings suggest a previously unrecognized role for Runx1 in coordinating the proliferation and neuronal differentiation of selected populations of neural progenitors.
Collapse
Affiliation(s)
- Francesca M Theriault
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4 Canada
| | | | | | | | | | | | | |
Collapse
|