1
|
Chakraborty S, Wenzlitschke N, Anderson MJ, Eraso A, Baudic M, Thompson JJ, Evans AA, Shatford-Adams LM, Chari R, Awasthi P, Dale RK, Lewandoski M, Petros TJ, Rocha PP. Deletion of a single CTCF motif at the boundary of a chromatin domain with three FGF genes disrupts gene expression and embryonic development. Dev Cell 2025:S1534-5807(25)00064-4. [PMID: 40015278 DOI: 10.1016/j.devcel.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Chromatin domains delimited by CTCF can restrict the range of enhancer action. However, disruption of some domain boundaries results in mild gene dysregulation and phenotypes. We tested whether perturbing a domain with multiple developmental regulators would lead to more severe outcomes. We chose a domain with three FGF ligand genes-Fgf3, Fgf4, and Fgf15-that control different murine developmental processes. Heterozygous deletion of a 23.9-kb boundary defined by four CTCF sites led to ectopic interactions of the FGF genes with enhancers active in the brain and induced FGF expression. This caused orofacial clefts, encephalocele, and fully penetrant perinatal lethality. Loss of the single CTCF motif oriented toward the enhancers-but not the three toward the FGF genes-recapitulated these phenotypes. Our works shows that small sequence variants at particular domain boundaries can have a surprisingly outsized effect and must be considered as potential sources of gene dysregulation in development and disease.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Wenzlitschke
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manon Baudic
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia A Evans
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilly M Shatford-Adams
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Li R, Feng J, Li L, Luo G, Shi Y, Shen S, Yuan X, Wu J, Yan B, Yang L. Recombinant fibroblast growth factor 4 ameliorates axonal regeneration and functional recovery in acute spinal cord injury through altering microglia/macrophage phenotype. Int Immunopharmacol 2024; 134:112188. [PMID: 38728880 DOI: 10.1016/j.intimp.2024.112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3β and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3β signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.
Collapse
Affiliation(s)
- Rui Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Juerong Feng
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Liuxun Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guotian Luo
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yongpeng Shi
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shichao Shen
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xinrong Yuan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jianlong Wu
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bin Yan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Lei Yang
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
3
|
Zhao Z, Raza SHA, Luo Y, Wang J, Liu X, Li S, Shi B, Hu J. Characterization of the promoter region of bovine ATP5B: roles of MyoD and GATA1 in the regulation of basal transcription. Anim Biotechnol 2020; 33:757-764. [PMID: 33124493 DOI: 10.1080/10495398.2020.1837848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intramuscular fat (IMF) content is a key determinant of beef quality, making it a key topic of research interest. ATP5B serves as the catalytic component of the mitochondrial ATP synthase complex and plays essential roles in controlling fat contents and oxidative metabolism in bovine skeletal muscle. In this study, we determined that bovine ATP5B was highly expressed in longissimus thoracis. To elucidate the molecular mechanisms involved in bovine ATP5B regulation, we cloned and characterized the promoter region of ATP5B. Applying 5'-rapid amplification of cDNA end analysis (RACE), we identified two transcriptional start sites (TSSs) in its promoter region. Using a series of 5'-deletion promoter plasmids in luciferase reporter assay, we found that the proximal minimal promoter of ATP5B was located within the region -539/220 relative to the TSS. Site-directed mutation in combination with chromatin immunoprecipitation (ChIP) assays demonstrated that MyoD and GATA1 binding to the promoter region drives bovine ATP5B transcription. Taken together, these results provide new insight into the regulatory mechanisms of ATP5B transcription in mediating the IMF content of beef.
Collapse
Affiliation(s)
- Zhidong Zhao
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, P. R. China
| | | | - Yuzhu Luo
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Jiqing Wang
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Xiu Liu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Shaobin Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Bingang Shi
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Jiang Hu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, P. R. China
| |
Collapse
|
4
|
Lu Y, Bradley JS, Siegel PB, Yang N, Johnson SE. Selection for divergent body size alters rates of embryonic skeletal muscle formation and muscle gene expression patterns. Dev Growth Differ 2015; 57:614-24. [PMID: 26660844 DOI: 10.1111/dgd.12250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022]
Abstract
The impact of divergent selection for body size on embryogenesis is poorly understood. The objective of this experiment was to document skeletal muscle development during embryogenesis in two lines of chickens that display divergent growth as adults. Results reveal that after 54 generations of opposing selection from a common founder population, the embryos from the low weight select (LWS) line develop more rapidly during early embryogenesis than those from the high weight select (HWS) line. Muscle formation during the late embryonic period is more rapid and extensive in the HWS embryo than in the LWS contemporary. Isolated muscle progenitors from embryonic day 10 HWS embryos proliferated more rapidly, forming fibers sooner with a larger size than the LWS cells. The limited myogenic capacity of the LWS progenitor cells is not attributed to altered patterns of expression of Pax7, Pax3 or the myogenic regulatory factor genes. Members of the fibroblast growth factor family are potent mitogens and inhibitors of myoblast differentiation. Transcript abundance of FGF2 and FGF4 was measured in cultures of HWS and LWS progenitors as a function of time. The pattern of expression of FGF4 was similar between HWS and LWS with a large increase between days 1 and 3 followed by a reduction at day 5 of culture. Expression of FGF2 in LWS muscle cells did not change while a significant reduction in FGF2 expression was observed by day 5 in the HWS. Our results indicate that divergent selection for postnatal growth has altered embryonic development.
Collapse
Affiliation(s)
- Yue Lu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| | - Jennifer S Bradley
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
5
|
Dailey L. High throughput technologies for the functional discovery of mammalian enhancers: new approaches for understanding transcriptional regulatory network dynamics. Genomics 2015; 106:151-158. [PMID: 26072436 DOI: 10.1016/j.ygeno.2015.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/18/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023]
Abstract
Completion of the human and mouse genomes has inspired new initiatives to obtain a global understanding of the functional regulatory networks governing gene expression. Enhancers are primary regulatory DNA elements determining precise spatio- and temporal gene expression patterns, but the observation that they can function at any distance from the gene(s) they regulate has made their genome-wide characterization challenging. Since traditional, single reporter approaches would be unable to accomplish this enormous task, high throughput technologies for mapping chromatin features associated with enhancers have emerged as an effective surrogate for enhancer discovery. However, the last few years have witnessed the development of several new innovative approaches that can effectively screen for and discover enhancers based on their functional activation of transcription using massively parallel reporter systems. In addition to their application for genome annotation, these new high throughput functional approaches open new and exciting avenues for modeling gene regulatory networks.
Collapse
Affiliation(s)
- Lisa Dailey
- NYU School of Medicine, Department of Microbiology, Kimmel Center for Stem Cell Biology, 550 First Avenue, MSB 252, New York, NY 10016, United States.
| |
Collapse
|
6
|
Kawaguchi N. Stem cells for cardiac regeneration and possible roles of the transforming growth factor-β superfamily. Biomol Concepts 2014; 3:99-106. [PMID: 25436527 DOI: 10.1515/bmc.2011.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 10/25/2011] [Indexed: 11/15/2022] Open
Abstract
Abstract Heart failure is a leading cause of death worldwide. Studies of stem cell biology are essential for developing efficient treatments. Recently, we established and characterized c-kit-positive cardiac stem cells from the adult rat heart. Using a MethoCult culture system with a methyl-cellulose-based medium, stem-like left-atrium-derived pluripotent cells could be regulated to differentiate into skeletal/cardiac myocytes or adipocytes with almost 100% purity. Microarray and pathway analyses of these cells showed that transforming growth factor-β1 (TGF-β1) and noggin were significantly involved in the differentiation switch. Furthermore, TGF-β1 may act as a regulator for this switch because it simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with developmental stage, dosage, and timing of treatment. In the present review, the findings of recent studies, in particular the use of c-kit-positive cardiac stem cells, are discussed. The effects of the TGF-β superfamily on differentiation, especially on adipogenesis and/or myogenesis, have important implications for future regenerative medicine.
Collapse
|
7
|
TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 2012; 372:68-80. [PMID: 22985730 DOI: 10.1016/j.ydbio.2012.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/01/2012] [Accepted: 09/08/2012] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) can regulate different sets of genes to determine specific cell types by means of combinatorial codes. We previously identified closely-spaced TF binding motifs located 8.2-8.5 kb 5' to the ATG of the murine Pou4f3 gene, a gene required for late hair cell (HC) differentiation and survival. These motifs, 100% conserved among four mammalian species, include a cluster of E-boxes preferred by TCF3/ATOH1 heterodimers as well as motifs for GATA factors and SP1. We hypothesized that these factors might interact to regulate the Pou4f3 gene and possibly induce a HC phenotype in non-sensory cells of the cochlea. Cochlear sensory epithelium explants were prepared from postnatal day 1.5 transgenic mice in which expression of GFP is driven by 8.5 kb of Pou4f3 5' genomic DNA (Pou4f3/GFP). Electroporation was used to transfect cells of the greater epithelial ridge with multiple plasmids encoding human ATOH1 (hATOH1), hTCF3 (also known as E2A or TEF2), hGATA3, and hSP1. hATOH1 or hTCF3 alone induced Pou4f3/GFP cells but hGATA3 and hSP1 did not. hATOH1 but not hTCF3 induced conversion of greater epithelial ridge cells into Pou4f3/GFP and myosin VIIa double-positive cells. Transfection of hATOH1 in combination with hTCF3 or hGATA3 induced 2-3X more Pou4f3/GFP cells, and similarly enhanced Pou4f3/GFP and myosin VIIa double-positive cells, when compared to hATOH1 alone. Triple or quadruple TF combinations were generally not more effective than double TF combinations except in the middle turn, where co-transfection of hATOH1, hE2A, and hGATA3 was more effective than hATOH1 plus either hTCF3 or hGATA3. The results demonstrate that TFs can cooperate in regulation of the Pou4f3 gene and in the induction of at least one other element of a HC phenotype. Our data further indicate that combinations of TFs can be more effective than individual TFs in the inner ear.
Collapse
|
8
|
Himeda CL, Chen X, Hauschka SD. Design and testing of regulatory cassettes for optimal activity in skeletal and cardiac muscles. Methods Mol Biol 2011; 709:3-19. [PMID: 21194018 DOI: 10.1007/978-1-61737-982-6_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes. Since the relative importance of many control elements varies among different anatomical muscles, we are aiming to tailor these cassettes for high-level expression in cardiac muscle, and in fast and slow skeletal muscles. With the achievement of efficient intravascular gene delivery to isolated limbs, selected muscle groups, and heart in large animal models, the design of cassettes optimized for activity in different muscle types is now a practical goal. In this protocol, we outline the key steps involved in the design of regulatory cassettes for optimal activity in skeletal and cardiac muscle, and testing in mature muscle fiber cultures. The basic principles described here can also be applied to engineering tissue-specific regulatory cassettes for other cell types.
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
9
|
Kawaguchi N. Adult cardiac-derived stem cells: differentiation and survival regulators. VITAMINS AND HORMONES 2011; 87:111-25. [PMID: 22127240 DOI: 10.1016/b978-0-12-386015-6.00041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At present, heart failure is one of the most concerning diseases worldwide. To develop efficient treatments, it is necessary to gain a better understanding of the biological characteristics of stem cells in the heart. We recently established and characterized c-kit-positive cardiac stem cells obtained from adult rats. Moreover, we established left atrium-derived pluripotent cells that can differentiate either into skeletal/cardiac myocytes or adipocytes in a methylcellulose-based Methocult medium with almost 100% purity. Microarray and signaling pathway analyses showed that transforming growth factor (TGF)-β is a key molecule in the regulation of the differentiation switch. Indeed, TGF-β1 simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with the developmental stage, dosage, and timing of the treatment.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Patriotic Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
10
|
When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol 2010; 350:239-54. [PMID: 21130761 DOI: 10.1016/j.ydbio.2010.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found. Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.
Collapse
|
11
|
Kamrul Hasan M, Komoike Y, Tsunesumi SI, Nakao R, Nagao H, Matsuoka R, Kawaguchi N. Myogenic differentiation in atrium-derived adult cardiac pluripotent cells and the transcriptional regulation of GATA4 and myogenin on ANP promoter. Genes Cells 2010; 15:439-54. [PMID: 20384792 DOI: 10.1111/j.1365-2443.2010.01394.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We established cardiac pluripotent stem-like cells from the left atrium (LA-PCs) of adult rat hearts. These cells could differentiate not only into beating myocytes but also into cells of other lineages, including adipocytes and endothelial cells in the methylcellulose-based medium containing interleukin-3 (IL-3), interleukin-6 (IL-6), and stem cell factor (SCF). In particular, IL-3 and SCF contributed to the differentiation into cardiac troponin I-positive cells. Notably, small population of LA-PCs coexpressed GATA4 and myogenin, which are markers specific to cardiomyocytes and skeletal myocytes, respectively, and could differentiate into both cardiac and skeletal myocytes. Therefore, we investigated the involvement of these two tissue-specific transcription factors in the cardiac transcriptional activity. Coexpression of GATA4 and myogenin synergistically activated GATA4-specific promoter of the atrial natriuretic peptide gene. This combinatorial function was shown to be dependant on the GATA site, but independent of the E-box. The results of chromatin immunoprecipitation and electrophoretic mobility shift assays suggested that myogenin bound to GATA4 on the GATA elements and the C-terminal Zn-finger domain of GATA4 and the N-terminal region of myogenin were required for this synergistic activation of transcription. Taken together, these two transcription factors could be involved in the myogenesis of LA-PCs.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Kosaka N, Sakamoto H, Terada M, Ochiya T. Pleiotropic function of FGF-4: its role in development and stem cells. Dev Dyn 2009; 238:265-76. [PMID: 18792115 DOI: 10.1002/dvdy.21699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) were initially recognized as fibroblast-specific growth factor, and it is now apparent that these growth factors regulate multiple biological functions. The diversity of FGFs function is paralleled by the emerging diversity of interactions between FGF ligands and their receptors. FGF-4 is a member of the FGF superfamily and is a mitogen exhibiting strong action on numerous different cell types. It plays a role in various stages of development and morphogenesis, as well as in a variety of biological processes. Recent studies reveal the molecular mechanisms of FGF-4 gene regulation in mammalian cells, which is involved in the developmental process. Furthermore, FGF-4 also acts on the regulation of proliferation and differentiation in embryonic stem cells and tissue stem cells. In this review, we focus on the diverse biological functions of FGF-4 in the developmental process and also discuss its putative roles in stem cell biology.
Collapse
Affiliation(s)
- Nobuyoshi Kosaka
- Section for Studies on Metastasis, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Jia Y, Warin R, Yu X, Epstein R, Noguchi CT. Erythropoietin signaling promotes transplanted progenitor cell survival. FASEB J 2009; 23:3089-99. [PMID: 19417086 DOI: 10.1096/fj.09-130237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We examine the potential for erythropoietin signaling to promote donor cell survival in a model of myoblast transplantation. Expression of a truncated erythropoietin receptor in hematopoietic stem cells has been shown to promote selective engraftment in mice. We previously demonstrated expression of endogenous erythropoietin receptor on murine myoblasts, and erythropoietin treatment can stimulate myoblast proliferation and delay differentiation. Here, we report that enhanced erythropoietin receptor expression, as well as exogenous erythropoietin treatment in myoblasts, provided a survival advantage and protection against apoptosis under serum-starvation conditions. When cultured in differentiation medium, expression of the myogenic regulatory proteins shifted toward early differentiation with increased erythropoietin receptor. Expression of early myogenic differentiation proteins Myf-5 and MyoD increased, while later stage protein myogenin decreased. Transplantation of C2C12 myoblasts overexpressing truncated erythropoietin receptor showed more transplanted cell incorporation into muscle fibers in muscular dystrophy mdx mice. These cells also restored dystrophin protein expression in mdx mice at 6 wk after cell treatment that was further increased with exogenous erythropoietin administration. In summary, enhanced erythropoietin receptor expression promotes transplanted cell survival in a mouse model for myoblast transplantation and provides dystrophin expression in mice with muscular dystrophy.
Collapse
Affiliation(s)
- Yi Jia
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1822, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Ischemic heart disease is the most common cause of heart failure and is among the leading causes of mortality worldwide. Therapies used for the treatment of this disease aim to restore blood flow to severely narrowed or occluded coronary arteries by either catheter-based or surgical means. Although these strategies prove efficacious for many patients, a substantial number of individuals fail to improve following these procedures. Recently, a noninvasive strategy has been proposed, focusing on the use of endogenous growth factors that trigger the growth of new coronary arteries. Using the developing heart as a model, several groups have identified some of the key pathways that not only govern the development of the coronary vascular system but also promote the growth of the adult coronary vasculature. Here, we review the major morphological events and signaling cascades that mediate the formation of the coronary vasculature in the embryo. We further describe the mechanism by which many of these same pathways also regulate the adult coronary vasculature and their potential use in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Kory J. Lavine
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
15
|
Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet 2007; 24:33-40. [PMID: 18054407 DOI: 10.1016/j.tig.2007.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 11/21/2022]
Abstract
Over the past several years, increasing attention has been focused on understanding signaling pathways that control key events during midgestational heart development. During this period of development, the heart tube transforms into a functioning organ that must maintain its own blood supply and grow and respond to the physiologic needs of the organism. A critical event that occurs during midgestational heart development is the formation of the epicardium, which functions as a source of cells and as a signaling center that regulates myocardial growth and coronary vascular development. This review will describe our understanding of the role and the mechanism by which the epicardium governs these developmental events, primarily as a result of studies in the mouse. We focus on two key growth factor pathways: fibroblast growth factor and Hedgehog signaling.
Collapse
|
16
|
Di Lisi R, Picard A, Ausoni S, Schiaffino S. GATA elements control repression of cardiac troponin I promoter activity in skeletal muscle cells. BMC Mol Biol 2007; 8:78. [PMID: 17875210 PMCID: PMC2045674 DOI: 10.1186/1471-2199-8-78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 09/17/2007] [Indexed: 05/12/2023] Open
Abstract
Background We reported previously that the cardiac troponin I (cTnI) promoter drives cardiac-specific expression of reporter genes in cardiac muscle cells and in transgenic mice, and that disruption of GATA elements inactivates the cTnI promoter in cultured cardiomyocytes. We have now examined the role of cTnI promoter GATA elements in skeletal muscle cells. Results Mutation or deletion of GATA elements induces a strong transcriptional activation of the cTnI promoter in regenerating skeletal muscle and in cultured skeletal muscle cells. Electrophoretic mobility shift assays show that proteins present in nuclear extracts of C2C12 muscle cells bind the GATA motifs present in the cTnI promoter. However, GATA protein complex formation is neither reduced nor supershifted by antibodies specific for GATA-2, -3 and -4, the only GATA transcripts present in muscle cells. Conclusion These findings indicate that the cTnI gene promoter is repressed in skeletal muscle cells by GATA-like factors and open the way to further studies aimed at identifying these factors.
Collapse
Affiliation(s)
- Raffaella Di Lisi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Anne Picard
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Simonetta Ausoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefano Schiaffino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neurosciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
17
|
Abstract
With the availability of genomic sequence from numerous vertebrates, a paradigm shift has occurred in the identification of distant-acting gene regulatory elements. In contrast to traditional gene-centric studies in which investigators randomly scanned genomic fragments that flank genes of interest in functional assays, the modern approach begins electronically with publicly available comparative sequence datasets that provide investigators with prioritized lists of putative functional sequences based on their evolutionary conservation. However, although a large number of tools and resources are now available, application of comparative genomic approaches remains far from trivial. In particular, it requires users to dynamically consider the species and methods for comparison depending on the specific biological question under investigation. While there is currently no single general rule to this end, it is clear that when applied appropriately, comparative genomic approaches exponentially increase our power in generating biological hypotheses for subsequent experimental testing. It is anticipated that cardiac-related genes and the identification of their distant-acting transcriptional enhancers are particularly poised to benefit from these modern capabilities.
Collapse
Affiliation(s)
- Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
18
|
Pauley S, Lai E, Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 2006; 235:2470-82. [PMID: 16691564 PMCID: PMC3901532 DOI: 10.1002/dvdy.20839] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The forkhead genes are involved in patterning, morphogenesis, cell fate determination, and proliferation. Several Fox genes (Foxi1, Foxg1) are expressed in the developing otocyst of both zebrafish and mammals. We show that Foxg1 is expressed in most cell types of the inner ear of the adult mouse and that Foxg1 mutants have both morphological and histological defects in the inner ear. These mice have a shortened cochlea with multiple rows of hair cells and supporting cells. Additionally, they demonstrate striking abnormalities in cochlear and vestibular innervation, including loss of all crista neurons and numerous fibers that overshoot the organ of Corti. Closer examination shows that some anterior crista fibers exist in late embryos. Tracing these fibers shows that they do not project to the brain but, instead, to the cochlea. Finally, these mice completely lack a horizontal crista, although a horizontal canal forms but comes off the anterior ampulla. Anterior and posterior cristae, ampullae, and canals are reduced to varying degrees, particularly in combination with Fgf10 heterozygosity. Compounding Fgf10 heterozygotic effects suggest an additive effect of Fgf10 on Foxg1, possibly mediated through bone morphogenetic protein regulation. We show that sensory epithelia formation and canal development are linked in the anterior and posterior canal systems. Much of the Foxg1 phenotype can be explained by the participation of the protein binding domain in the delta/notch/hes signaling pathway. Additional Foxg1 effects may be mediated by the forkhead DNA binding domain.
Collapse
Affiliation(s)
- Sarah Pauley
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska
| | - Eseng Lai
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska
- Correspondence to: Bernd Fritzsch, Ph.D., Creighton University, Department of Biomedical Sciences, Omaha, NE 68178.
| |
Collapse
|
19
|
Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, Hui CC, Ornitz DM. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 2006; 20:1651-66. [PMID: 16778080 PMCID: PMC1482484 DOI: 10.1101/gad.1411406] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myocardial infarction and ischemic heart disease are the leading cause of death in the industrial world. Therapies employed for treating these diseases are aimed at promoting increased blood flow to cardiac tissue. Pharmacological induction of new coronary growth has recently been explored, however, clinical trials with known proangiogenic factors have been disappointing. To identify novel therapeutic targets, we have explored signaling pathways that govern embryonic coronary development. Using a combination of genetically engineered mice and an organ culture system, we identified novel roles for fibroblast growth factor (FGF) and Hedgehog (HH) signaling in coronary vascular development. We show that FGF signals promote coronary growth indirectly by signaling to the cardiomyoblast through redundant function of Fgfr1 and Fgfr2. Myocardial FGF signaling triggers a wave of HH activation that is essential for vascular endothelial growth factor (Vegf)-A, Vegf-B, Vegf-C, and angiopoietin-2 (Ang2) expression. We demonstrate that HH is necessary for coronary vascular development and activation of HH signaling is sufficient to promote coronary growth and to rescue coronary defects due to loss of FGF signaling. These studies implicate HH signaling as an essential regulator of coronary vascular development and as a potential therapeutic target for coronary neovascularization. Consistent with this, activation of HH signaling in the adult heart leads to an increase in coronary vessel density.
Collapse
Affiliation(s)
- Kory J Lavine
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kobiyama A, Hirayama M, Muramatsu-Uno M, Watabe S. Functional analysis on the 5′-flanking region of carp fast skeletal myosin heavy chain genes for their expression at different temperatures. Gene 2006; 372:82-91. [PMID: 16472943 DOI: 10.1016/j.gene.2005.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 12/03/2005] [Accepted: 12/14/2005] [Indexed: 12/01/2022]
Abstract
Two types of the fast skeletal myosin heavy chain (MYH) genes were cloned from a genomic DNA library of carp (Cyprinus carpio L.) and named MYH10 and MYH30, which showed the sequence similarity to the MYH cDNAs predominantly expressed in carp acclimated to 10 and 30 degrees C, respectively. The 5'-flanking region of about 3 kbp in size each from MYH10 and MYH30 contained various cis-elements to bind to transcriptional regulatory factors such as MyoD family and myocyte enhancer factor 2 (MEF2) family members. To localize functional regions responsible for the MYH gene expression in a temperature-dependent manner, a series of deletion constructs were prepared from the 5'-flanking region, inserted upstream the luciferase gene in a commercially available plasmid, and injected into the dorsal fast muscle of carp acclimated to 10 and 30 degrees C. The sequence of -1004 to -995 bp with the transcriptional activity in MYH30 was identified as an MEF2 binding site. While the activity given by a sequence of -921 to -824 bp in MYH10 contained only a GATA box, that of the activity of the -1 kbp construct from MYH10 was markedly higher in carp reared at 10 degrees C than fish reared at 30 degrees C. On the other hand, no temperature-dependent expressional regulation was observed for MYH30 even with the full-length construct of -3 kbp. The DNA fragment of -921 to -824 bp in MYH10 and MEF2 binding site in MYH30 interacted with nuclear proteins extracted from carp fast skeletal muscle as revealed by electrophoretic mobility shift assay. The signal intensity of a complex formed between the DNA fragment of MYH10 and nuclear extracts from the 10 degrees C-acclimated carp were higher than those with extracts from the 30 degrees C-acclimated fish. Although MEF2-binding site in MYH30 could form complex with nuclear extracts from the 30 degrees C-acclimated carp, the same or stronger signals were detected in complex formed with extracts from the 10 degrees C-acclimated fish.
Collapse
Affiliation(s)
- Atsushi Kobiyama
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
21
|
Ide S, Han W, Kasai S, Hata H, Sora I, Ikeda K. Characterization of the 3' untranslated region of the human mu-opioid receptor (MOR-1) mRNA. Gene 2005; 364:139-45. [PMID: 16122888 DOI: 10.1016/j.gene.2005.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/07/2005] [Accepted: 05/30/2005] [Indexed: 11/30/2022]
Abstract
The mu-opioid receptor (MOR) plays a mandatory role in the action of most opioid drugs, such as morphine, fentanyl, and heroin. It has been revealed that a deficiency in the MOR gene (Oprm1) or a difference in the 3' noncoding region of the gene markedly affects the sensitivity of mice to opioids. As the 3' noncoding region of the human OPRM1 gene had not yet been characterized, in the present study we conducted 3'-rapid amplification of cDNA ends (3'RACE)-PCR and identified the 3' end of the human MOR-1 mRNA, the most abundant transcript among OPRM1 gene transcripts. The poly(A) signal was located at 13612-13617 nucleotides downstream from the stop codon in the OPRM1 gene. Reverse transcription PCR analyses showed that the region from the stop codon to the poly(A) signal was transcribed. In the 3'UTR, we identified 33 AU-rich regions and more than 300 putative transcription factor-binding sites. Furthermore, we compared the 3' noncoding regions of the human and mouse OPRM1/Oprm1 genes and found apparent homology. In Northern blotting with mouse brain mRNAs, a same-size band was detected by a probe for the MOR-1 coding region and by a probe for a mouse genome region corresponding to the human MOR-1 3'UTR. Since 3'UTRs affect gene expression, the present characterization of the 3' noncoding region in the human OPRM1 gene should lead to a better understanding of the mechanisms underlying OPRM1 gene regulation and individual differences in sensitivity to opioids.
Collapse
Affiliation(s)
- Soichiro Ide
- Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Smith TG, Sweetman D, Patterson M, Keyse SM, Münsterberg A. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development 2005; 132:1305-14. [PMID: 15716340 DOI: 10.1242/dev.01699] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cells in the early vertebrate somite receive cues from surrounding tissues,which are important for their specification. A number of signalling pathways involved in somite patterning have been described extensively. By contrast,the interactions between cells from different regions within the somite are less well characterised. Here, we demonstrate that myotomally derived FGFs act through the MAPK signal transduction cascade and in particular, ERK1/2 to activate scleraxis expression in a population of mesenchymal progenitor cells in the dorsal sclerotome. We show that the levels of active,phosphorylated ERK protein in the developing somite are crucial for the expression of scleraxis and Mkp3. MKP3 is a dual specificity phosphatase and a specific antagonist of ERK MAP kinases and we demonstrate that in somites Mkp3 transcription depends on the presence of active ERK. Therefore, MKP3 and ERK MAP kinase constitute a negative feedback loop activated by FGF in sclerotomal progenitor cells. We propose that tight control of ERK signalling strength by MKP3 is important for the appropriate regulation of downstream cellular responses including the activation of scleraxis. We show that increased or decreased levels of phosphorylated ERK result in the loss of scleraxis transcripts and the loss of distal rib development, highlighting the importance of the MKP3-ERK-MAP kinase mediated feedback loop for cell specification and differentiation.
Collapse
|