1
|
Lavorato M, Nakamaru-Ogiso E, Mathew ND, Herman E, Shah NK, Haroon S, Xiao R, Seiler C, Falk MJ. Dichloroacetate improves mitochondrial function, physiology, and morphology in FBXL4 disease models. JCI Insight 2022; 7:156346. [PMID: 35881484 PMCID: PMC9462489 DOI: 10.1172/jci.insight.156346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Pathogenic variants in the human F-box and leucine-rich repeat protein 4 (FBXL4) gene result in an autosomal recessive, multisystemic, mitochondrial disorder involving variable mitochondrial depletion and respiratory chain complex deficiencies with lactic acidemia. As no FDA-approved effective therapies for this disease exist, we sought to characterize translational C. elegans and zebrafish animal models, as well as human fibroblasts, to study FBXL4–/– disease mechanisms and identify preclinical therapeutic leads. Developmental delay, impaired fecundity and neurologic and/or muscular activity, mitochondrial dysfunction, and altered lactate metabolism were identified in fbxl-1(ok3741) C. elegans. Detailed studies of a PDHc activator, dichloroacetate (DCA), in fbxl-1(ok3741)C. elegans demonstrated its beneficial effects on fecundity, neuromotor activity, and mitochondrial function. Validation studies were performed in fbxl4sa12470 zebrafish larvae and in FBXL4–/– human fibroblasts; they showed DCA efficacy in preventing brain death, impairment of neurologic and/or muscular function, mitochondrial biochemical dysfunction, and stress-induced morphologic and ultrastructural mitochondrial defects. These data demonstrate that fbxl-1(ok3741) C. elegans and fbxl4sa12470 zebrafish provide robust translational models to study mechanisms and identify preclinical therapeutic candidates for FBXL4–/– disease. Furthermore, DCA is a lead therapeutic candidate with therapeutic benefit on diverse aspects of survival, neurologic and/or muscular function, and mitochondrial physiology that warrants rigorous clinical trial study in humans with FBXL4–/– disease.
Collapse
Affiliation(s)
- Manuela Lavorato
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Eiko Nakamaru-Ogiso
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Neal D Mathew
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Elizabeth Herman
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Nina K Shah
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Suraiya Haroon
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Christoph Seiler
- Aquatics Core Facility, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| |
Collapse
|
2
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
3
|
A 4D single-cell protein atlas of transcription factors delineates spatiotemporal patterning during embryogenesis. Nat Methods 2021; 18:893-902. [PMID: 34312566 DOI: 10.1038/s41592-021-01216-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Complex biological processes such as embryogenesis require precise coordination of cell differentiation programs across both space and time. Using protein-fusion fluorescent reporters and four-dimensional live imaging, we present a protein expression atlas of transcription factors (TFs) mapped onto developmental cell lineages during Caenorhabditis elegans embryogenesis, at single-cell resolution. This atlas reveals a spatiotemporal combinatorial code of TF expression, and a cascade of lineage-specific, tissue-specific and time-specific TFs that specify developmental states. The atlas uncovers regulators of embryogenesis, including an unexpected role of a skin specifier in neurogenesis and the critical function of an uncharacterized TF in convergent muscle differentiation. At the systems level, the atlas provides an opportunity to model cell state-fate relationships, revealing a lineage-dependent state diversity within functionally related cells and a winding trajectory of developmental state progression. Collectively, this single-cell protein atlas represents a valuable resource for elucidating metazoan embryogenesis at the molecular and systems levels.
Collapse
|
4
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
5
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
6
|
Pilon M. Developmental genetics of the Caenorhabditis elegans pharynx. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:263-80. [PMID: 25262818 PMCID: PMC4314705 DOI: 10.1002/wdev.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 11/07/2022]
Abstract
The Caenorhabditis elegans pharynx is a rhythmically pumping organ composed initially of 80 cells that, through fusions, amount to 62 cells in the adult worm. During the first 100 min of development, most future pharyngeal cells are born and gather into a double-plate primordium surrounded by a basal lamina. All pharyngeal cells express the transcription factor PHA-4, of which the concentration increases throughout development, triggering a sequential activation of genes with promoters responding differentially to PHA-4 protein levels. The oblong-shaped pharyngeal primordium becomes polarized, many cells taking on wedge shapes with their narrow ends toward the center, hence forming an epithelial cyst. The primordium then elongates, and reorientations of the cells at the anterior and posterior ends form the mouth and pharyngeal-intestinal openings, respectively. The 20 pharyngeal neurons establish complex but reproducible trajectories using 'fishing line' and growth cone-driven mechanisms, and the gland cells also similarly develop their processes. The genetics behind many fate decisions and morphogenetic processes are being elucidated, and reveal the pharynx to be a fruitful model for developmental biologists.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburg, Sweden
| |
Collapse
|
7
|
Olofsson B. The olfactory neuron AWC promotes avoidance of normally palatable food following chronic dietary restriction. ACTA ACUST UNITED AC 2014; 217:1790-8. [PMID: 24577446 PMCID: PMC4020945 DOI: 10.1242/jeb.099929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in metabolic state alter foraging behavior and food preference in animals. Here, I show that normally attractive food becomes repulsive to Caenorhabditis elegans if animals are chronically undernourished as a result of alimentary tract defects. This behavioral plasticity is achieved in two ways: increased food leaving and induction of aversive behavior towards food. A particularly strong food avoider is defective in the chitin synthase that makes the pharyngeal lining. Food avoidance induced by underfeeding is mediated by cGMP signaling in the olfactory neurons AWC and AWB, and the gustatory neurons ASJ and ASK. Food avoidance is enhanced by increased population density and is reduced if the animals are unable to correctly interpret their nutritional state as a result of defects in the AMP kinase or TOR/S6kinase pathways. The TGF-β/DBL-1 pathway suppresses food avoidance and the cellular basis for this is distinct from its role in aversive olfactory learning of harmful food. This study suggests that nutritional state feedback via nutrient sensors, population size and olfactory neurons guides food preference in C. elegans.
Collapse
Affiliation(s)
- Birgitta Olofsson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
8
|
Arterbery AS, Bogue CW. Endodermal and mesenchymal cross talk: a crossroad for the maturation of foregut organs. Pediatr Res 2014; 75:120-6. [PMID: 24192700 DOI: 10.1038/pr.2013.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/27/2013] [Indexed: 01/30/2023]
Abstract
The developmental stages of each foregut organ are intimately linked to the development of the other foregut organs such that the ultimate function of any one foregut organ, such as the metabolic function of the liver, depends on organizational changes associated with the maturation of multiple foregut organs. These changes include: (i) proliferation of the intrahepatic bile ducts and hepatoblasts within the liver coinciding with parenchymal expansion, (ii) elongation of extrahepatic bile ducts, which allows for proper gallbladder (GB) formation, and (iii) duodenal elongation and rotation, which coincides with all of the above to connect the intrahepatic, extrahepatic, and pancreatic ductal systems with the intestine. It is well established that cross talk between endodermal and mesenchymal components of the foregut occurs, particularly regarding the vascularization of developing organs. Furthermore, genetic mutations in mesenchymal and hepatic compartments of the developing foregut result in similar foregut pathologies: hypoplastic liver, absence of GB, biliary atresia (intrahepatic and/or extrahepatic), and failure of gut elongation and rotation. Finally, these shared pathologies can be linked to deficiencies in genes specific to the septum transversum mesenchyme (Hes1, Hlx, and Foxf1) or liver (Hhex and Hnf6), illustrating the complexity of such cross talk.
Collapse
Affiliation(s)
- Adam S Arterbery
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Clifford W Bogue
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Refai O, Rohs P, Mains PE, Gaudet J. Extension of the Caenorhabditis elegans Pharyngeal M1 neuron axon is regulated by multiple mechanisms. G3 (BETHESDA, MD.) 2013; 3:2015-29. [PMID: 24048649 PMCID: PMC3815062 DOI: 10.1534/g3.113.008466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023]
Abstract
The guidance of axons to their correct targets is a critical step in development. The C. elegans pharynx presents an attractive system to study neuronal pathfinding in the context of a developing organ. The worm pharynx contains relatively few cells and cell types, but each cell has a known lineage and stereotyped developmental patterns. We found that extension of the M1 pharyngeal axon, which spans the entire length of the pharynx, occurs in two distinct phases. The first proximal phase does not require genes that function in axon extension (unc-34, unc-51, unc-115, and unc-119), whereas the second distal phase does use these genes and is guided in part by the adjacent g1P gland cell projection. unc-34, unc-51, and unc-115 had incompletely penetrant defects and appeared to act in conjunction with the g1P cell for distal outgrowth. Only unc-119 showed fully penetrant defects for the distal phase. Mutations affecting classical neuronal guidance cues (Netrin, Semaphorin, Slit/Robo, Ephrin) or adhesion molecules (cadherin, IgCAM) had, at best, weak effects on the M1 axon. None of the mutations we tested affected the proximal phase of M1 elongation. In a forward genetic screen, we isolated nine mutations in five genes, three of which are novel, showing defects in M1, including axon overextension, truncation, or ectopic branching. One of these mutations appeared to affect the generation or differentiation of the M1 neuron. We conclude that M1 axon extension is a robust process that is not completely dependent on any single guidance mechanism.
Collapse
Affiliation(s)
- Osama Refai
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Patricia Rohs
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul E. Mains
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
10
|
Feng H, Hope IA. The Caenorhabditis elegans homeobox gene ceh-19 is required for MC motorneuron function. Genesis 2013; 51:163-78. [PMID: 23315936 PMCID: PMC3638342 DOI: 10.1002/dvg.22365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/18/2012] [Accepted: 12/24/2012] [Indexed: 12/29/2022]
Abstract
Simplicity has made C. elegans pharyngeal development a particularly well-studied subject. Nevertheless, here we add the previously uncharacterized homeobox gene F20D12.6/ceh-19 to the set of transcription factor genes involved. GFP reporter assays revealed that ceh-19 is expressed in three pairs of neurons, the pharyngeal pace-maker neurons MC, the amphid neurons ADF and the phasmid neurons PHA. ceh-19(tm452) mutants are viable and fertile, but grow slightly slower, produce less progeny over a prolonged period, and live longer than the wild type. These phenotypes are likely due to the moderately reduced pharyngeal pumping speed arising from the impairment of MC activity. MC neurons are still born in the ceh-19 mutants but display various morphological defects. ceh-19 expression in MC is completely lost in progeny from animals subject to RNAi for pha-4, which encodes an organ-specifying forkhead transcription factor. CEH-19 is required for the activation in MCs of the excitatory FMRFamide-like neuropeptide-encoding gene flp-2. A regulatory pathway from pha-4 through ceh-19 to flp-2 is thereby defined. The resilience of MC identity in the absence of CEH-19 may reflect the buffering qualities of transcription factor regulatory networks. genesis 51:163–178, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Huiyun Feng
- School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
11
|
Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 2011; 6:e26594. [PMID: 22073173 PMCID: PMC3206800 DOI: 10.1371/journal.pone.0026594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/29/2011] [Indexed: 01/30/2023] Open
Abstract
We describe a novel screen to isolate pharyngeal cell morphology mutants in Caenorhabditis elegans using myo-2::GFP to rapidly identify abnormally shaped pharynxes in EMS (Ethyl Methanesulfonate) mutagenized worms. We observed over 83 C. elegans lines with distinctive pharyngeal phenotypes in worms surviving to the L1 larval stage, with phenotypes ranging from short pharynx, unattached pharynx, missing cells, asymmetric morphology, and non-adherent pharynx cells. Thirteen of these mutations have been chromosomally mapped using Single Nucleotide Polymorphisms (SNPs) and deficiency strain complementation. Our studies have focused on genetically mapping and functionally testing two phenotypes, the short pharynx and the loss of muscle cohesion phenotypes. We have also identified new alleles of sma-1, and our screen suggests many genes directing pharynx assembly and structure may be either pharynx specific or less critical in other tissues.
Collapse
|
12
|
Cell architecture: surrounding muscle cells shape gland cell morphology in the Caenorhabditis elegans pharynx. Genetics 2011; 189:885-97. [PMID: 21868609 PMCID: PMC3213386 DOI: 10.1534/genetics.111.132449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The acquisition and maintenance of shape is critical for the normal function of most cells. Here we investigate the morphology of the pharyngeal glands of Caenorhabditis elegans. These unicellular glands have long cellular processes that extend discrete lengths through the pharyngeal musculature and terminate at ducts connected to the pharyngeal lumen. From a genetic screen we identified several mutants that affect pharyngeal gland morphology. The most severe such mutant is an allele of sma-1, which encodes a β-spectrin required for embryonic elongation, including elongation of the pharynx. In sma-1 mutants, gland projections form normally but become increasingly abnormal over time, acquiring additional branches, outgrowths, and swelling, suggestive of hypertrophy. Rather than acting in pharyngeal glands, sma-1 functions in the surrounding musculature, suggesting that pharyngeal muscles play a critical role in maintenance of gland morphology by restricting their growth, and analysis of other mutants known to affect pharyngeal muscles supports this hypothesis. We suggest that gland morphology is maintained by a balance of forces from the muscles and the glands.
Collapse
|
13
|
Gaudet J, McGhee JD. Recent advances in understanding the molecular mechanisms regulating C. elegans transcription. Dev Dyn 2010; 239:1388-404. [PMID: 20175193 DOI: 10.1002/dvdy.22246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We review recent studies that have advanced our understanding of the molecular mechanisms regulating transcription in the nematode C. elegans. Topics covered include: (i) general properties of C. elegans promoters; (ii) transcription factors and transcription factor combinations involved in cell fate specification and cell differentiation; (iii) new roles for general transcription factors; (iv) nucleosome positioning in C. elegans "chromatin"; and (v) some characteristics of histone variants and histone modifications and their possible roles in controlling C. elegans transcription.
Collapse
Affiliation(s)
- Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
14
|
Kormish JD, Gaudet J, McGhee JD. Development of the C. elegans digestive tract. Curr Opin Genet Dev 2010; 20:346-54. [PMID: 20570129 DOI: 10.1016/j.gde.2010.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/20/2010] [Accepted: 04/24/2010] [Indexed: 12/11/2022]
Abstract
The C. elegans digestive tract (pharynx, intestine, and rectum) contains only approximately 100 cells but develops under the control of the same types of transcription factors (e.g. FoxA and GATA factors) that control digestive tract development in far more complex animals. The GATA-factor dominated core regulatory hierarchy directing development of the homogenous clonal intestine from oocyte to mature organ is now known with some degree of certainty, setting the stage for more biochemical experiments to understand developmental mechanisms. The FoxA-factor dominated development of the pharynx (and rectum) is less well understood but is beginning to reveal how transcription factor combinations produce unique cell types within organs.
Collapse
Affiliation(s)
- Jay D Kormish
- Department of Molecular Biology and Biochemistry, Department of Medical Genetics, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
15
|
Cai Q, Wang W, Gao Y, Yang Y, Zhu Z, Fan Q. Ce-wts-1plays important roles inCaenorhabditis elegansdevelopment. FEBS Lett 2009; 583:3158-64. [DOI: 10.1016/j.febslet.2009.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
16
|
Abstract
The digestive tracts of many animals are epithelial tubes with specialized compartments to break down food, remove wastes, combat infection, and signal nutrient availability. C. elegans possesses a linear, epithelial gut tube with foregut, midgut, and hindgut sections. The simple anatomy belies the developmental complexity that is involved in forming the gut from a pool of heterogeneous precursor cells. Here, I focus on the processes that specify cell fates and control morphogenesis within the embryonic foregut (pharynx) and the developmental roles of the pharynx after birth. Maternally donated factors in the pregastrula embryo converge on pha-4, a FoxA transcription factor that specifies organ identity for pharyngeal precursors. Positive feedback loops between PHA-4 and other transcription factors ensure commitment to pharyngeal fate. Binding-site affinity of PHA-4 for its target promoters contributes to the progression of the pharyngeal precursors towards differentiation. During morphogenesis, the pharyngeal precursors form an epithelial tube in a process that is independent of cadherins, catenins, and integrins but requires the kinesin zen-4/MKLP1. After birth, the pharynx and/or pha-4 are involved in repelling pathogens and controlling aging.
Collapse
Affiliation(s)
- Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
17
|
Pilon M. Fishing lines, time-delayed guideposts, and other tricks used by developing pharyngeal neurons in Caenorhabditis elegans. Dev Dyn 2008; 237:2073-80. [PMID: 18651660 DOI: 10.1002/dvdy.21636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The 20 neurons that innervate the Caenorhabditis elegans pharynx form a simple nervous system that develops and operates in near complete isolation from the rest of the worm body and, therefore, offers a manageable degree of complexity for developmental genetics studies. This review discusses the progress that has been made in determining the mechanisms by which 4 of the 20 pharyngeal neurons develop, and emphasizes surprising processes that add to the classic growth cone guidance model which is usually thought to explain how most axons establish their trajectories.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Cell Molecular Biology, University of Göteborg, Göteborg, Sweden.
| |
Collapse
|
18
|
Smit RB, Schnabel R, Gaudet J. The HLH-6 transcription factor regulates C. elegans pharyngeal gland development and function. PLoS Genet 2008; 4:e1000222. [PMID: 18927627 PMCID: PMC2563036 DOI: 10.1371/journal.pgen.1000222] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/11/2008] [Indexed: 12/22/2022] Open
Abstract
The Caenorhabditis elegans pharynx (or foregut) functions as a pump that draws in food (bacteria) from the environment. While the “organ identity factor” PHA-4 is critical for formation of the C. elegans pharynx as a whole, little is known about the specification of distinct cell types within the pharynx. Here, we use a combination of bioinformatics, molecular biology, and genetics to identify a helix-loop-helix transcription factor (HLH-6) as a critical regulator of pharyngeal gland development. HLH-6 is required for expression of a number of gland-specific genes, acting through a discrete cis-regulatory element named PGM1 (Pharyngeal Gland Motif 1). hlh-6 mutants exhibit a frequent loss of a subset of glands, while the remaining glands have impaired activity, indicating a role for hlh-6 in both gland development and function. Interestingly, hlh-6 mutants are also feeding defective, ascribing a biological function for the glands. Pharyngeal pumping in hlh-6 mutants is normal, but hlh-6 mutants lack expression of a class of mucin-related proteins that are normally secreted by pharyngeal glands and line the pharyngeal cuticle. An interesting possibility is that one function of pharyngeal glands is to secrete a pharyngeal lining that ensures efficient transport of food along the pharyngeal lumen. To make an organ, cells must be instructed to be part of a common structure yet must also be assigned specific roles or identities within that structure. For example, the stomach contains a variety of different kinds of cells, including muscles, nerves, and glands. This same complexity is seen even in relatively simple organs, like the pharynx (foregut) of the nematode C. elegans. The pharynx is a neuromuscular organ that pumps in food (bacteria) from the environment. This organ is relatively simple (containing only 80 cells) yet contains five distinct kinds of cells. How these different cells are specified is unclear but likely involves combinations of developmental regulators known as transcription factors. Here, we examine one cell type, the pharyngeal glands, and identify a key regulator of their development, the transcription factor HLH-6. Interestingly, HLH-6 is closely related to a mammalian transcription factor, Sgn1, which is involved in development of mammalian salivary glands, suggesting that C. elegans pharyngeal glands are evolutionarily related to mammalian salivary glands. A further connection is that the pharyngeal glands of C. elegans appear to be required for efficient feeding, possibly by secreting mucin-like proteins that ensure the smooth passage of food along the digestive tract.
Collapse
Affiliation(s)
- Ryan B. Smit
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeb Gaudet
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
19
|
Ghai V, Gaudet J. The CSL transcription factor LAG-1 directly represses hlh-6 expression in C. elegans. Dev Biol 2008; 322:334-44. [PMID: 18706403 DOI: 10.1016/j.ydbio.2008.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans gene hlh-6 is expressed specifically in pharyngeal glands, one of five distinct pharyngeal cell types. Expression of hlh-6 is controlled by a discrete set of cis-regulatory elements, including a negative element called HRL1. Here we demonstrate that HRL1 is a functional binding site for LAG-1, the CSL transcriptional effector of Notch in C. elegans, and that regulation of hlh-6 by LAG-1 is direct. Regulation of hlh-6 by LAG-1 is strictly negative: removal of HRL1 or LAG-1 regulation results in ectopic expression of hlh-6, but does not affect expression in pharyngeal glands. Furthermore, direct regulation of hlh-6 expression does not appear to involve Notch signaling, contrary to the canonical mechanism by which CSL factors regulate target genes. We also identify an additional cis-regulatory element in the hlh-6 promoter that, together with previously identified elements, is sufficient to overcome repression by LAG-1 and activate hlh-6 expression in pharyngeal glands.
Collapse
Affiliation(s)
- Vikas Ghai
- Genes and Development Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
20
|
Soufi A, Jayaraman PS. PRH/Hex: an oligomeric transcription factor and multifunctional regulator of cell fate. Biochem J 2008; 412:399-413. [PMID: 18498250 PMCID: PMC2570084 DOI: 10.1042/bj20080035] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 12/31/2022]
Abstract
The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a critical regulator of vertebrate development. PRH is able to regulate cell proliferation and differentiation and is required for the formation of the vertebrate body axis, the haematopoietic and vascular systems and the formation of many vital organs. PRH is a DNA-binding protein that can repress and activate the transcription of its target genes using multiple mechanisms. In addition, PRH can regulate the nuclear transport of specific mRNAs making PRH a member of a select group of proteins that control gene expression at the transcriptional and translational levels. Recent biophysical analysis of the PRH protein has shown that it forms homo-oligomeric complexes in vivo and in vitro and that the proline-rich region of PRH forms a novel dimerization interface. Here we will review the current literature on PRH and discuss the complex web of interactions centred on this multifunctional protein.
Collapse
Key Words
- development
- gene regulation
- haematopoiesis
- haematopoietically expressed homeobox (hex)
- homeodomain
- oligomerization
- proline-rich homeodomain (prh)
- transcription
- ade, anterior definitive endoderm
- aml, acute myelogenous leukaemia
- ap-1, activator protein-1
- apl, acute promyelocytic leukaemia
- auc, analytical ultracentrifugation
- ave, anterior visceral endoderm
- bmp, bone morphogenetic protein
- bre, bmp-responsive element
- cml, chronic myelogenous leukaemia
- cre, camp-response-element
- creb, cre-binding protein
- e, embryonic day
- eif-4e, eukaryotic initiation factor 4e
- emsa, electrophoretic mobility-shift assay
- es, embryonic stem
- esm-1, endothelial cell-specific molecule-1
- fgf, fibroblast growth factor
- hex, haematopoietically expressed homeobox
- hnf, hepatocyte nuclear factor
- hox, homeobox
- hsc, haematopoietic stem cell
- huvec, human umbilical-vein endothelial cell
- nk, nuclear body-associated kinase
- nmhc-b, non-muscle myosin heavy chain b
- ntcp, sodium-dependent bile acid co-transporter
- pml, promyelocytic leukaemic
- prh, proline-rich homeodomain
- rarα, retinoic acid receptor α
- sm, smooth muscle
- srf, serum-response factor
- tbp, tata-box-binding protein
- tg, thyroglobulin
- tie, tk with immunoglobulin-like and egf (endothelial growth factor)-like domains
- tk, thymidine kinase
- tle, transducin-like enhancer
- tn, tinman
- tsh, thyroid-stimulating hormone
- ttf, thyroid transcription factor
- ve, visceral endoderm
- vegf, vascular endothelial growth factor
- vegfr, vegf receptor
- vsmc, vascular smooth muscle cell
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute of Biomedical Research, Division of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Padma-Sheela Jayaraman
- Institute of Biomedical Research, Division of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| |
Collapse
|
21
|
Axäng C, Rauthan M, Hall DH, Pilon M. Developmental genetics of the C. elegans pharyngeal neurons NSML and NSMR. BMC DEVELOPMENTAL BIOLOGY 2008; 8:38. [PMID: 18400083 PMCID: PMC2375884 DOI: 10.1186/1471-213x-8-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/09/2008] [Indexed: 01/02/2023]
Abstract
BACKGROUND We are interested in understanding how the twenty neurons of the C. elegans pharynx develop in an intricate yet reproducible way within the narrow confines of the embryonic pharyngeal primordium. To complement an earlier study of the pharyngeal M2 motorneurons, we have now examined the effect of almost forty mutations on the morphology of a bilateral pair of pharyngeal neurosecretory-motor neurons, the NSMs. RESULTS A careful description of the NSM morphology led to the discovery of a third, hitherto unreported process originating from the NSM cell body and that is likely to play a proprioceptive function. We found that the three NSM processes are differently sensitive to mutations. The major dorsal branch was most sensitive to mutations that affect growth cone guidance and function (e.g. unc-6, unc-34, unc-73), while the major sub-ventral branch was more sensitive to mutations that affect components of the extracellular matrix (e.g. sdn-1). Of the tested mutations, only unc-101, which affects an adaptin, caused the loss of the newly described thin minor process. The major processes developed synaptic branches post-embryonically, and these exhibited activity-dependent plasticity. CONCLUSION By studying the effects of nearly forty different mutations we have learned that the different NSM processes require different genes for their proper guidance and use both growth cone dependent and growth cone independent mechanisms for establishing their proper trajectories. The two major NSM processes develop in a growth cone dependent manner, although the sub-ventral process relies more on substrate adhesion. The minor process also uses growth cones but uniquely develops using a mechanism that depends on the clathrin adaptor molecule UNC-101. Together with the guidance of the M2 neuron, this is the second case of a pharyngeal neuron establishing one of its processes using an unexpected mechanism.
Collapse
Affiliation(s)
- Claes Axäng
- Dept, Cell and Molecular Biology, Göteborg University, Box 462, S-405 30, Sweden.
| | | | | | | |
Collapse
|
22
|
Lagido C, Pettitt J, Flett A, Glover LA. Bridging the phenotypic gap: real-time assessment of mitochondrial function and metabolism of the nematode Caenorhabditis elegans. BMC PHYSIOLOGY 2008; 8:7. [PMID: 18384668 PMCID: PMC2364618 DOI: 10.1186/1472-6793-8-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/02/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ATP levels of an organism are an important physiological parameter that is affected by genetic make up, ageing, stress and disease. RESULTS We have generated luminescent C. elegans through ubiquitous, constitutive expression of firefly luciferase, widely used for in vitro ATP determination. We hypothesise that whole animal luminescence reflects its intracellular ATP levels in vivo. To test this, we characterised the bioluminescence response of C. elegans during sublethal exposure to, and recovery from azide, a treatment that inhibits mitochondrial respiration reversibly, and causes ATP depletion. Consistent with our expectations, in vivo luminescence decreased with increasing sublethal azide levels, and recovered fully when worms were removed from azide. Firefly luciferase expression levels, stability and activity did not influence the final luminescence. Bioluminescence also reflected the lowered activity of the electron transport chain achieved with RNA interference (RNAi) of genes encoding respiratory chain components. CONCLUSION Results indicated that C. elegans luminescence reports on ATP levels in real-time. For the first time, we are able to directly assess the metabolism of a whole, living, multicellular organism by determination of the relative ATP levels. This will enable genetic analysis based on a readily quantifiable metabolic phenotype and will provide novel insights into mechanisms of fitness and disease that are likely to be of relevance for other organisms, as well as the worm.
Collapse
Affiliation(s)
- Cristina Lagido
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Pettitt
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Aileen Flett
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - L Anne Glover
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
23
|
The C. elegans M3 neuron guides the growth cone of its sister cell M2 via the Krüppel-like zinc finger protein MNM-2. Dev Biol 2007; 311:185-99. [PMID: 17916347 DOI: 10.1016/j.ydbio.2007.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022]
Abstract
The invariant cell-cell interactions occurring during C. elegans development offer unique opportunities to discover how growing axons may receive guidance cues from neighboring cells. The mnm-2 mutant was isolated because of its defects in the axon trajectory of the bilateral M2 pharyngeal neurons in C. elegans. We found that mnm-2 enhances the effects of many growth cone guidance mutations on these axons, suggesting that it performs a novel function during axon guidance. We cloned mnm-2 and found that it encodes a protein with three C2H2 zinc finger domains related to the Krüppel-like Factor protein family. mnm-2 is expressed only transiently in the M2 neuron, but exhibits a sustained expression in its sister cell, the M3 neuron. Strikingly, the expression of mnm-2 is not sustained in the M3 cell of the mnm-2 mutant, indicating that this gene positively regulates itself in that cell. Electropharyngeograms also indicate that the M3 cell is functionally impaired in the mnm-2 mutant. We used an M3-specific promoter to show that the M2 axon defect can be rescued by expression of mnm-2 in its sister cell M3. The same promoter was used to express the pro-apoptotic gene egl-1 to kill the M3 cell, which resulted in an M2 axon guidance defect similar to that found in the mnm-2 mutant. Our results suggest an M2 axon guidance model in which the M3 cell provides an important signal to the growth cone of its sister M2 and that this signal and the proper differentiation of M3 both depend on mnm-2 expression. This mechanism of axon guidance regulation allows fine-tuning of trajectories between sister cells.
Collapse
|
24
|
The twisted pharynx phenotype in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2007; 7:61. [PMID: 17540043 PMCID: PMC1904197 DOI: 10.1186/1471-213x-7-61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/01/2007] [Indexed: 11/10/2022]
Abstract
Background The pharynx of C. elegans is an epithelial tube whose development has been compared to that of the embryonic heart and the kidney and hence serves as an interesting model for organ development. Several C. elegans mutants have been reported to exhibit a twisted pharynx phenotype but no careful studies have been made to directly address this phenomenon. In this study, the twisting mutants dig-1, mig-4, mnm-4 and unc-61 are examined in detail and the nature of the twist is investigated. Results We find that the twisting phenotype worsens throughout larval development, that in most mutants the pharynx retains its twist when dissected away from the worm body, and that double mutants between mnm-4 and mutants with thickened pharyngeal domains (pha-2 and sma-1) have less twisting in these regions. We also describe the ultrastructure of pharyngeal tendinous organs that connect the pharyngeal basal lamina to that of the body wall, and show that these are pulled into a spiral orientation by twisted pharynges. Within twisted pharynges, actin filaments also show twisting and are longer than in controls. In a mini screen of adhesionmolecule mutants, we also identified one more twisting pharynx mutant, sax-7. Conclusion Defects in pharyngeal cytoskeleton length or its anchor points to the extracellular matrix are proposed as the actual source of the twisting force. The twisted pharynx is a useful and easy-to-score phenotype for genes required in extracellular adhesion or organ attachment, and perhaps forgenes required for cytoskeleton regulation.
Collapse
|
25
|
Mörck C, Axäng C, Goksör M, Pilon M. Misexpression of acetylcholinesterases in the C. elegans pha-2 mutant accompanies ultrastructural defects in pharyngeal muscle cells. Dev Biol 2006; 297:446-60. [PMID: 16806153 DOI: 10.1016/j.ydbio.2006.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 05/08/2006] [Accepted: 05/18/2006] [Indexed: 11/24/2022]
Abstract
pha-2 is the Caenorhabditis elegans homolog of the vertebrate homeobox gene Hex. Embryonic expression of pha-2 is mostly pharyngeal and the only described mutant allele of pha-2 results in a severe pharyngeal defect in which certain muscle cells (pm5 cells) and neurons are grossly deformed. Here, we performed a detailed characterization of the pha-2 phenotype using cell-type-specific reporters, physical manipulation of the nuclei in pharyngeal muscle cells using "optical tweezers", electron microscopy, staining of the actin cytoskeleton as well as phenotypic rescue and ectopic expression experiments. The main findings of the present study are (i) the pha-2 (ad472) mutation specifically impairs the pharyngeal expression of pha-2; (ii) in the pha-2 mutant, the cytoskeleton of the pm5 cells is measurably weaker than in normal cells and is severely disrupted by large tubular structures and organelles; (iii) the pm5 cells of the pha-2 mutant fail to express the acetylcholinesterase genes ace-1 and ace-2; (iv) ectopic expression of pha-2 can induce ectopic expression of ace-1 and ace-2; and (v) the anc-1 mutant with mislocalized pm5 cell nuclei occasionally shows an isthmus phenotype similar to that of pha-2 worms.
Collapse
Affiliation(s)
- Catarina Mörck
- Department of Cell and Molecular Biology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
26
|
Franks DM, Izumikawa T, Kitagawa H, Sugahara K, Okkema PG. C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Dev Biol 2006; 296:409-20. [PMID: 16828468 DOI: 10.1016/j.ydbio.2006.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/18/2006] [Accepted: 06/02/2006] [Indexed: 11/21/2022]
Abstract
The C. elegans pharynx undergoes elongation and morphogenesis to its characteristic bi-lobed shape between the 2- and 3-fold stages of embryogenesis. During this period, the pharyngeal muscles and marginal cells forming the isthmus between the anterior and posterior pharyngeal bulbs elongate and narrow. We have identified the spontaneous mutant pyr-1(cu8) exhibiting defective pharyngeal isthmus elongation, cytoskeletal organization defects, and maternal effect lethality. pyr-1 encodes CAD, a trifunctional enzyme required for de novo pyrimidine synthesis, and pyr-1(cu8) mutants are rescued by supplying exogenous pyrimidines. Similar pharyngeal defects and maternal effect lethality were found in sqv-1, sqv-8, rib-1 and rib-2 mutants, which affect enzymes involved in heparan sulfate proteoglycan (HSPG) synthesis. rib-1 mutant lethality was enhanced in a pyr-1 mutant background, indicating that HSPG synthesis is very sensitive to decreased pyrimidine pools, and HS disaccharides are moderately decreased in both rib-1 and pyr-1 mutants. We hypothesize that HSPGs are necessary for pharyngeal isthmus elongation, and pyr-1 functions upstream of proteoglycan synthesizing enzymes by providing precursors of UDP-sugars essential for HSPG synthesis.
Collapse
Affiliation(s)
- Dawn M Franks
- Department of Biological Sciences and the Laboratory for Molecular Biology, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
27
|
Mörck C, Pilon M. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC DEVELOPMENTAL BIOLOGY 2006; 6:39. [PMID: 16884547 PMCID: PMC1559592 DOI: 10.1186/1471-213x-6-39] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 08/03/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutations that cause feeding defects in the nematode C. elegans are known to increase life span. Here we show that feeding defective mutants also have a second general trait in common, namely that they are small. RESULTS Our measurements of the body lengths of a variety of feeding defective mutants, or of a variety of double mutants affecting other pathways that regulate body length in C. elegans, i.e. the DBL-1/TGFbeta, TAX-6/calcineurin and the SMA-1/betaH-spectrin pathways, indicate that food uptake acts as a separate pathway regulating body length. In early stages, before eating begins, feeding defective worms have no defect in body length or, in some cases, have only slightly smaller body length compared to wild-type. A significant difference in body length is first noticeable at later larval stages, a difference that probably correlates with increasing starvation. We also show that autophagy is induced and that the quantity of fat is decreased in starved worms. CONCLUSION Our results indicate that the long-term starvation seen in feeding-defective C. elegans mutants activates autophagy, and leads to depletion of fat deposits, small cell size and small body size.
Collapse
Affiliation(s)
- Catarina Mörck
- Dept. Cell and Molecular Biology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| | - Marc Pilon
- Dept. Cell and Molecular Biology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| |
Collapse
|
28
|
Bort R, Signore M, Tremblay K, Martinez Barbera JP, Zaret KS. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol 2006; 290:44-56. [PMID: 16364283 DOI: 10.1016/j.ydbio.2005.11.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/26/2005] [Accepted: 11/04/2005] [Indexed: 11/18/2022]
Abstract
Little is known about the mechanism by which embryonic liver, lung, and pancreas progenitor cells emerge from the endodermal epithelium to initiate organogenesis. Understanding this process and its genetic control provides insight into ontogeny, developmental abnormalities, and tissue regeneration. We find that shortly after hepatic endoderm cells are specified, they undergo a transition from a columnar, gut morphology to a pseudostratified morphology, with concomitant "interkinetic nuclear migration" (INM) during cell division. INM is a hallmark of pseudostratified epithelia and the process used by neural progenitors to emerge from the neural epithelium. We find that the transition of the hepatic endoderm, but not the neural epithelium, to a pseudostratified epithelium is dependent upon the cell-autonomous activity of the homeobox gene Hex. In the absence of Hex, hepatic endoderm cells survive but maintain a columnar, simple epithelial phenotype and ectopically express Shh and other genes characteristic of the midgut epithelium. Thus, Hex promotes endoderm organogenesis by promoting the transition to a pseudostratified epithelium, which in turn allows hepatoblasts to emerge into the stromal environment and continue differentiating.
Collapse
Affiliation(s)
- Roque Bort
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The Caenorhabditis elegans pharynx is a neuromuscular tube of which the function is to pump and crush bacteria, and inject them into the intestine. The 80-cell pharynx develops via the morphogenesis and differentiation of the cells that compose its semi-spherical primordium, and requires the activity of several evolutionarily conserved genes, such as pha-4 (the homolog to the Drosophila forkhead and vertebrate FoxA), ceh-22 (the homolog to the Drosophila tinman and vertebrate Nkx2.5), and pha-2 (the homolog to the vertebrate Hex). There are 20 neurons in the pharynx, each with a reproducible unique trajectory. Developmental genetic analysis of axon guidance in the pharynx indicates that some axon trajectories are in part established without growth cones, whereas other parts necessitate growth cone function and guidance. Here we provide an overview of the developmental genetics of the Caenorhabditis elegans pharynx, with an emphasis on its nervous system.
Collapse
Affiliation(s)
- Marc Pilon
- Lundberg Laboratory, Chalmers University, Göteborg S-405 30, Sweden.
| | | |
Collapse
|