1
|
Muntzar R, Carvajal-Agudelo JD, Tench L, Ofosua Apienti TA, Franz-Odendaal TA. BMP and WNT signaling are involved in tracheal cartilage development in chicken embryos. Dev Biol 2025; 524:69-79. [PMID: 40324741 DOI: 10.1016/j.ydbio.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The respiratory system consists of the tracheal tube which extends from the back of the mouth, down the neck and branches into the bronchial tubes of the lungs, which are the major sites of respiration. Cartilaginous rings are present along the length of the trachea and are essential for keeping the airways open. Understanding trachea and cartilage development is crucial to better understanding respiratory disorders and diseases. We analyzed cartilage development across different chicken embryonic stages using a combination of cellular and molecular biology tools. We found that chondrogenic condensations are barely visible histologically from HH35 (E8.5) while differentiated cartilage rings are distinct by HH36 (E10). In situ hybridisation data shows that Bmp2 is expressed in a ring-like pattern along the length of the tracheal tube from HH36. We further show that BMP2, but not BMP4, colocalises with COL2A1. qPCR data shows that genes such as COL2A1, and WNT are substantially upregulated between HH34 to HH37, while other genes (e.g. SHH, TBX4/5) are downregulated. Within this three to four day period, we detected a reduction in SHH and WNT during cartilage condensation formation and an upregulation of COL2A1 and WNT during overt cartilage differentiation. We next used a known Bmp2 type 1 receptor inhibitor (DMH1) to attempt to disrupt tracheal cartilage development. Following inhibition, we observed a widening and lengthening of the tracheal cartilage rings with some narrowing of the spaces between the rings. Our gene expression analysis reveals significant increases in COL2A1, WNT, and BMP4 following BMP receptor blocking compared to sham controls and indicates that these genes are important for the molecular response that results in patterning the tracheal cartilage ring morphology. This study provides a framework to further understand development of these important airway cartilages in the avian model.
Collapse
Affiliation(s)
- Romman Muntzar
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada
| | | | - Langston Tench
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada
| | | | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada.
| |
Collapse
|
2
|
Jeon H, Jin S, Kim J, Joo S, Choe CP. Pax1a-EphrinB2a pathway in the first pharyngeal pouch controls hyomandibular plate formation by promoting chondrocyte formation in zebrafish. Front Cell Dev Biol 2025; 13:1482906. [PMID: 40109361 PMCID: PMC11919851 DOI: 10.3389/fcell.2025.1482906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The hyomandibular (HM) cartilage securing the lower jaw to the neurocranium in fish is a craniofacial skeletal element whose shape and function have changed dramatically in vertebrate evolution, yet the genetic mechanisms shaping this cartilage are less understood. Using mutants and rescue experiments in zebrafish, we reveal a previously unappreciated role of Pax1a in the anterior HM plate formation through EphrinB2a. During craniofacial development, pax1a is expressed in the pharyngeal endoderm from the pharyngeal segmentation stage to chondrocyte formation. Loss of pax1a leads to defects in the first pouch and to the absence of chondrocytes in the anterior region of the HM plate caused by increased cell death in differentiating osteochondral progenitors. In pax1 mutants, a forced expression of pax1a by the heat shock before pouch formation rescues the defects in the first pouch and HM plate together, whereas a forced expression of pax1a after pouch formation rescues only the defects in the HM plate without rescuing the first pouch defects. In pax1a mutants, ephrinb2a expressed in the first pouch is downregulated when adjacent osteochondral progenitors differentiate into the chondrocytes, with mutations in ephrinb2a causing hyomandibular plate defects. Lastly, pax1 mutants rescue the anterior hyomandibular plate defects by pouch-specific restoration of EphrinB2a or a heat-shock-treated expression of ephrinb2a after pouch formation. We propose that the Pax1a-EphrinB2a pathway in the first pouch is directly required to shape the HM plate in addition to the early role of Pax1a in the first pouch formation.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sil Jin
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihyeon Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Saehoon Joo
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Wang M, Di Pietro-Torres A, Feregrino C, Luxey M, Moreau C, Fischer S, Fages A, Ritz D, Tschopp P. Distinct gene regulatory dynamics drive skeletogenic cell fate convergence during vertebrate embryogenesis. Nat Commun 2025; 16:2187. [PMID: 40038298 PMCID: PMC11880379 DOI: 10.1038/s41467-025-57480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Cell type repertoires have expanded extensively in metazoan animals, with some clade-specific cells being crucial to evolutionary success. A prime example are the skeletogenic cells of vertebrates. Depending on anatomical location, these cells originate from three different precursor lineages, yet they converge developmentally towards similar cellular phenotypes. Furthermore, their 'skeletogenic competency' arose at distinct evolutionary timepoints, thus questioning to what extent different skeletal body parts rely on truly homologous cell types. Here, we investigate how lineage-specific molecular properties are integrated at the gene regulatory level, to allow for skeletogenic cell fate convergence. Using single-cell functional genomics, we find that distinct transcription factor profiles are inherited from the three precursor states and incorporated at lineage-specific enhancer elements. This lineage-specific regulatory logic suggests that these regionalized skeletogenic cells are distinct cell types, rendering them amenable to individualized selection, to define adaptive morphologies and biomaterial properties in different parts of the vertebrate skeleton.
Collapse
Affiliation(s)
- Menghan Wang
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana Di Pietro-Torres
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maëva Luxey
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- MeLis, CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Institut NeuroMyo Gène, Lyon, France
| | - Chloé Moreau
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Antoine Fages
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Schneider RA. Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution. Annu Rev Genet 2024; 58:433-454. [PMID: 39227135 PMCID: PMC11777486 DOI: 10.1146/annurev-genet-111523-101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diverse research programs employing complementary strategies have been uncovering cellular, molecular, and genetic mechanisms essential to avian beak development and evolution. In reviewing these discoveries, I offer an interdisciplinary perspective on bird beaks that spans their derivation from jaws of dinosaurian reptiles, their anatomical and ecological diversification across major taxonomic groups, their common embryonic origins, their intrinsic patterning processes, and their structural integration. I describe how descriptive and experimental approaches, including gene expression and cell lineage analyses, tissue recombinations, surgical transplants, gain- and loss-of-function methods, geometric morphometrics, comparative genomics, and genome-wide association studies, have identified key constituent parts and putative genes regulating beak morphogenesis and evolution. I focus throughout on neural crest mesenchyme, which generates the beak skeleton and other components, and describe how these embryonic progenitor cells mediate species-specific pattern and link form and function as revealed by 20 years of research using chimeras between quail and duck embryos.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA;
| |
Collapse
|
5
|
Nguyen JKB, Gómez-Picos P, Liu Y, Ovens K, Eames BF. Common features of cartilage maturation are not conserved in an amphibian model. Dev Dyn 2023; 252:1375-1390. [PMID: 37083105 DOI: 10.1002/dvdy.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/04/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Mouse, chick, and zebrafish undergo a highly conserved program of cartilage maturation during endochondral ossification (bone formation via a cartilage template). Standard histological and molecular features of cartilage maturation are chondrocyte hypertrophy, downregulation of the chondrogenic markers Sox9 and Col2a1, and upregulation of Col10a1. We tested whether cartilage maturation is conserved in an amphibian, the western clawed frog Xenopus tropicalis, using in situ hybridization for standard markers and a novel laser-capture microdissection RNAseq data set. We also functionally tested whether thyroid hormone drives cartilage maturation in X tropicalis, as it does in other vertebrates. RESULTS The developing frog humerus mostly followed the standard progression of cartilage maturation. Chondrocytes gradually became hypertrophic as col2a1 and sox9 were eventually down-regulated, but col10a1 was not up-regulated. However, the expression levels of several genes associated with the early formation of cartilage, such as acan, sox5, and col9a2, remained highly expressed even as humeral chondrocytes matured. Greater deviances were observed in head cartilages, including the ceratohyal, which underwent hypertrophy within hours of becoming cartilaginous, maintained relatively high levels of col2a1 and sox9, and lacked col10a1 expression. Interestingly, treating frog larvae with thyroid hormone antagonists did not specifically reduce head cartilage hypertrophy, resulting rather in a global developmental delay. CONCLUSION These data reveal that basic cartilage maturation features in the head, and to a lesser extent in the limb, are not conserved in X tropicalis. Future work revealing how frogs deviate from the standard cartilage maturation program might shed light on both evolutionary and health studies.
Collapse
Affiliation(s)
- Jason K B Nguyen
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patsy Gómez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yiwen Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Pitirri MK, Richtsmeier JT, Kawasaki M, Coupe AP, Perrine SM, Kawasaki K. Come together over me: Cells that form the dermatocranium and chondrocranium in mice. Anat Rec (Hoboken) 2023:10.1002/ar.25295. [PMID: 37497849 PMCID: PMC10818014 DOI: 10.1002/ar.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Most bone develops either by intramembranous ossification where bone forms within a soft connective tissue, or by endochondral ossification by way of a cartilage anlagen or model. Bones of the skull can form endochondrally or intramembranously or represent a combination of the two types of ossification. Contrary to the classical definition of intramembranous ossification, we have previously described a tight temporo-spatial relationship between cranial cartilages and dermal bone formation and proposed a mechanistic relationship between chondrocranial cartilage and dermal bone. Here, we further investigate this relationship through an analysis of how cells organize to form cranial cartilages and dermal bone. Using Wnt1-Cre2 and Mesp1-Cre transgenic mice, we determine the derivation of cells that comprise cranial cartilages from either cranial neural crest (CNC) or paraxial mesoderm (PM). We confirm a previously determined CNC-PM boundary that runs through the hypophyseal fenestra in the cartilaginous braincase floor and identify four additional CNC-PM boundaries in the chondrocranial lateral wall, including a boundary that runs along the basal and apical ends of the hypochiasmatic cartilage. Based on the knowledge that as osteoblasts differentiate from CNC- and PM-derived mesenchyme, the differentiating cells express the transcription factor genes RUNX2 and osterix (OSX), we created a new transgenic mouse line called R2Tom. R2Tom mice carry a tdTomato reporter gene joined with an evolutionarily well-conserved enhancer sequence of RUNX2. R2Tom mice crossed with Osx-GFP mice yield R2Tom;Osx-GFP double transgenic mice in which various stages of osteoblasts and their precursors are detected with different fluorescent reporters. We use the R2Tom;Osx-GFP mice, new data on the cell derivation of cranial cartilages, histology, immunohistochemistry, and detailed morphological observations combined with data from other investigators to summarize the differentiation of cranial mesenchyme as it forms condensations that become chondrocranial cartilages and associated dermal bones of the lateral cranial wall. These data advance our previous findings of a tendency of cranial cartilage and dermal bone development to vary jointly in a coordinated manner, promoting a role for cranial cartilages in intramembranous bone formation.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Susan Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Hallström GF, Jones DL, Locke RC, Bonnevie ED, Kim SY, Laforest L, Garcia DC, Mauck RL. Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression. Mol Biol Cell 2023; 34:ar73. [PMID: 37043309 PMCID: PMC10295477 DOI: 10.1091/mbc.e22-12-0543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Chondrocyte phenotype is preserved when cells are round and the actin cytoskeleton is cortical. Conversely, these cells rapidly dedifferentiate in vitro with increased mechanoactive Rho signaling, which increases cell size and causes large actin stress fiber to form. While the effects of Rho on chondrocyte phenotype are well established, the molecular mechanism is not yet fully elucidated. Yap, a transcriptional coregulator, is regulated by Rho in a mechanotransductive manner and can suppress chondrogenesis in vivo. Here, we sought to elucidate the relationship between mechanoactive Rho and Yap on chondrogenic gene expression. We first show that decreasing mechanoactive state through Rho inhibition results in a broad increase in chondrogenic gene expression. Next, we show that Yap and its coregulator Taz are negative regulators of chondrogenic gene expression, and removal of these factors promotes chondrogenesis even in environments that promote cell spreading. Finally, we establish that Yap/Taz is essential for translating Rho-mediated signals to negatively regulate chondrogenic gene expression, and that its removal negates the effects of increased Rho signaling. Together, these data indicate that Rho is a mechanoregulator of chondrogenic differentiation, and that its impact on chondrogenic expression is exerted principally through mechanically induced translocation and activity of Yap and Taz.
Collapse
Affiliation(s)
- Grey F. Hallström
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Dakota L. Jones
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
| | - Ryan C. Locke
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Edward D. Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Sung Yeon Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Lorielle Laforest
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
| | - Diana Cruz Garcia
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| |
Collapse
|
8
|
Liu H, Müller PE, Aszódi A, Klar RM. Osteochondrogenesis by TGF-β3, BMP-2 and noggin growth factor combinations in an ex vivo muscle tissue model: Temporal function changes affecting tissue morphogenesis. Front Bioeng Biotechnol 2023; 11:1140118. [PMID: 37008034 PMCID: PMC10060664 DOI: 10.3389/fbioe.2023.1140118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In the absence of clear molecular insight, the biological mechanism behind the use of growth factors applied in osteochondral regeneration is still unresolved. The present study aimed to resolve whether multiple growth factors applied to muscle tissue in vitro, such as TGF-β3, BMP-2 and Noggin, can lead to appropriate tissue morphogenesis with a specific osteochondrogenic nature, thereby revealing the underlying molecular interaction mechanisms during the differentiation process. Interestingly, although the results showed the typical modulatory effect of BMP-2 and TGF-β3 on the osteochondral process, and Noggin seemingly downregulated specific signals such as BMP-2 activity, we also discovered a synergistic effect between TGF-β3 and Noggin that positively influenced tissue morphogenesis. Noggin was observed to upregulate BMP-2 and OCN at specific time windows of culture in the presence of TGF-β3, suggesting a temporal time switch causing functional changes in the signaling protein. This implies that signals change their functions throughout the process of new tissue formation, which may depend on the presence or absence of specific singular or multiple signaling cues. If this is the case, the signaling cascade is far more intricate and complex than originally believed, warranting intensive future investigations so that regenerative therapies of a critical clinical nature can function properly.
Collapse
Affiliation(s)
- Heng Liu
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
- *Correspondence: Heng Liu, ; Roland M. Klar,
| | - Peter E. Müller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszódi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Roland M. Klar
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Heng Liu, ; Roland M. Klar,
| |
Collapse
|
9
|
Zinck NW, Franz-Odendaal TA. Quantification and comparison of teleost scleral cartilage development and growth. J Anat 2022; 241:1014-1025. [PMID: 36574601 PMCID: PMC9482698 DOI: 10.1111/joa.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022] Open
Abstract
The ocular skeleton is composed of the scleral cartilage and the scleral ossicles. Teleost scleral cartilage is composed of a single layer of chondrocytes embedded in the sclera of the eye. The teleost scleral cartilage ring can vary in depth across teleost families and species, from a narrow ring a few cells wide to a deeper ring that resembles a cup and surrounds the entire sclera. However, very little research has been conducted on the development and morphology of teleost scleral cartilage. Thus, this study aims to characterize the development of the scleral cartilage in the zebrafish and Mexican tetra, with respect to the timing of emergence, depth throughout development, and positioning within the eye. We hypothesized that the scleral cartilage would first emerge in the scleral tissue closely abutting the ora serrata, and that growth would proceed in an anterior-to-posterior direction, resulting in differences in scleral cartilage depth between different fish species. We found that the scleral cartilage ring does not develop uniformly along its circumference, and that its relationship to the ora serrata varies between the rostral and caudal regions. Furthermore, distinct differences in the growth trajectory of the scleral cartilage indicate that the deep scleral cartilage of the Pachón cavefish is the result of both decreased eye size and prolonged cartilage growth. A significant difference in the size of the scleral chondrocytes was also noted. Overall, this study provides the first characterization of early scleral cartilage development in teleost fish and indicates that some aspects of scleral cartilage development and morphology are highly conserved while others are not.
Collapse
Affiliation(s)
- Nicholas W Zinck
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Tamara A Franz-Odendaal
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Damle A, Sundaresan R, Rajwade JM, Srivastava P, Naik A. A concise review on implications of silver nanoparticles in bone tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213099. [PMID: 36088719 DOI: 10.1016/j.bioadv.2022.213099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Skeletal disorders represent a variety of degenerative diseases that affect bone and cartilage homeostasis. The regenerative capacity of bone is affected in osteoporosis, osteoarthritis, rheumatoid arthritis, bone fractures, congenital defects, and bone cancers. There is no viable, non-invasive treatment option and bone regeneration requires surgical intervention with the implantation of bone grafts. Incorporating nanoparticles in bone grafts have improved fracture healing by providing fine structures for bone tissue engineering. It is currently a revolutionary finding in the field of regenerative medicine. Silver nanoparticles (AgNPs) have garnered particular attention due to their well-known anti-microbial and potential osteoinductive properties. In addition, AgNPs have been demonstrated to regulate the proliferation and differentiation of mesenchymal stem cells (MSCs) involved in bone regeneration. Furthermore, AgNPs have shown toxicity towards cancer cells derived from bone. In the last decade, there have been multiple studies focusing on the effect of nanoparticles on the proliferation and/or differentiation of MSCs and bone cancer cells; however, the specific studies with AgNPs are limited. Although the reported investigations show promising in vitro and in vivo potential of AgNPs for application in bone regeneration, more studies are required to ensure their implications in bone tissue engineering. This review aims to highlight the current advances related to the production of AgNPs and their effect on MSCs and bone cancer cells, which will potentiate their possible implications in orthopedics. Moreover, this review article evaluates the future of AgNPs in bone tissue engineering.
Collapse
Affiliation(s)
- Atharva Damle
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rajapriya Sundaresan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India
| | - Priyanka Srivastava
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Amruta Naik
- National Centre for Cell Science, S. P. Pune University Campus, Pune 411007, Maharashtra, India.
| |
Collapse
|
11
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
13
|
Hu X, Zhang W, Li X, Zhong D, Li Y, Li J, Jin R. Strategies to Modulate the Redifferentiation of Chondrocytes. Front Bioeng Biotechnol 2021; 9:764193. [PMID: 34881234 PMCID: PMC8645990 DOI: 10.3389/fbioe.2021.764193] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
Because of the low self-healing capacity of articular cartilage, cartilage injuries and degenerations triggered by various diseases are almost irreversible. Previous studies have suggested that human chondrocytes cultured in vitro tend to dedifferentiate during the cell-amplification phase and lose the physiological properties and functions of the cartilage itself, which is currently a critical limitation in the cultivation of cartilage for tissue engineering. Recently, numerous studies have focused on the modulation of chondrocyte redifferentiation. Researchers discovered the effect of various conditions (extracellular environment, cell sources, growth factors and redifferentiation inducers, and gene silencing and overexpression) on the redifferentiation of chondrocytes during the in vitro expansion of cells, and obtained cartilage tissue cultured in vitro that exhibited physiological characteristics and functions that were similar to those of human cartilage tissue. Encouragingly, several studies reported positive results regarding the modulation of the redifferentiation of chondrocytes in specific conditions. Here, the various factors and conditions that modulate the redifferentiation of chondrocytes, as well as their limitations and potential applications and challenges are reviewed. We expect to inspire research in the field of cartilage repair toward the future treatment of arthropathy.
Collapse
Affiliation(s)
- Xiaoshen Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiyang Zhang
- Shool of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiang Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Vinod E, Johnson NN, Kumar S, Amirtham SM, James JV, Livingston A, Rebekah G, Daniel AJ, Ramasamy B, Sathishkumar S. Migratory chondroprogenitors retain superior intrinsic chondrogenic potential for regenerative cartilage repair as compared to human fibronectin derived chondroprogenitors. Sci Rep 2021; 11:23685. [PMID: 34880351 PMCID: PMC8654938 DOI: 10.1038/s41598-021-03082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Cell-based therapy for articular hyaline cartilage regeneration predominantly involves the use of mesenchymal stem cells and chondrocytes. However, the regenerated repair tissue is suboptimal due to the formation of mixed hyaline and fibrocartilage, resulting in inferior long-term functional outcomes. Current preclinical research points towards the potential use of cartilage-derived chondroprogenitors as a viable option for cartilage healing. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CP) and migratory chondroprogenitors (MCP) exhibit features suitable for neocartilage formation but are isolated using distinct protocols. In order to assess superiority between the two cell groups, this study was the first attempt to compare human FAA-CPs with MCPs in normoxic and hypoxic culture conditions, investigating their growth characteristics, surface marker profile and trilineage potency. Their chondrogenic potential was assessed using mRNA expression for markers of chondrogenesis and hypertrophy, glycosaminoglycan content (GAG), and histological staining. MCPs displayed lower levels of hypertrophy markers (RUNX2 and COL1A1), with normoxia-MCP exhibiting significantly higher levels of chondrogenic markers (Aggrecan and COL2A1/COL1A1 ratio), thus showing superior potential towards cartilage repair. Upon chondrogenic induction, normoxia-MCPs also showed significantly higher levels of GAG/DNA with stronger staining. Focused research using MCPs is required as they can be suitable contenders for the generation of hyaline-like repair tissue.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India. .,Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India.
| | | | - Sanjay Kumar
- Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India
| | | | - Jithu Varghese James
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - Abel Livingston
- Department of Orthopaedics, Christian Medical College and Hospital, Vellore, India
| | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Alfred Job Daniel
- Department of Orthopaedics, Christian Medical College and Hospital, Vellore, India
| | - Boopalan Ramasamy
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, Australia. .,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | | |
Collapse
|
15
|
Khurana S, Schivo S, Plass JRM, Mersinis N, Scholma J, Kerkhofs J, Zhong L, van de Pol J, Langerak R, Geris L, Karperien M, Post JN. An ECHO of Cartilage: In Silico Prediction of Combinatorial Treatments to Switch Between Transient and Permanent Cartilage Phenotypes With Ex Vivo Validation. Front Bioeng Biotechnol 2021; 9:732917. [PMID: 34869253 PMCID: PMC8634894 DOI: 10.3389/fbioe.2021.732917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
A fundamental question in cartilage biology is: what determines the switch between permanent cartilage found in the articular joints and transient hypertrophic cartilage that functions as a template for bone? This switch is observed both in a subset of OA patients that develop osteophytes, as well as in cell-based tissue engineering strategies for joint repair. A thorough understanding of the mechanisms regulating cell fate provides opportunities for treatment of cartilage disease and tissue engineering strategies. The objective of this study was to understand the mechanisms that regulate the switch between permanent and transient cartilage using a computational model of chondrocytes, ECHO. To investigate large signaling networks that regulate cell fate decisions, we developed the software tool ANIMO, Analysis of Networks with interactive Modeling. In ANIMO, we generated an activity network integrating 7 signal transduction pathways resulting in a network containing over 50 proteins with 200 interactions. We called this model ECHO, for executable chondrocyte. Previously, we showed that ECHO could be used to characterize mechanisms of cell fate decisions. ECHO was first developed based on a Boolean model of growth plate. Here, we show how the growth plate Boolean model was translated to ANIMO and how we adapted the topology and parameters to generate an articular cartilage model. In ANIMO, many combinations of overactivation/knockout were tested that result in a switch between permanent cartilage (SOX9+) and transient, hypertrophic cartilage (RUNX2+). We used model checking to prioritize combination treatments for wet-lab validation. Three combinatorial treatments were chosen and tested on metatarsals from 1-day old rat pups that were treated for 6 days. We found that a combination of IGF1 with inhibition of ERK1/2 had a positive effect on cartilage formation and growth, whereas activation of DLX5 combined with inhibition of PKA had a negative effect on cartilage formation and growth and resulted in increased cartilage hypertrophy. We show that our model describes cartilage formation, and that model checking can aid in choosing and prioritizing combinatorial treatments that interfere with normal cartilage development. Here we show that combinatorial treatments induce changes in the zonal distribution of cartilage, indication possible switches in cell fate. This indicates that simulations in ECHO aid in describing pathologies in which switches between cell fates are observed, such as OA.
Collapse
Affiliation(s)
- Sakshi Khurana
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Stefano Schivo
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands.,Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands
| | - Jacqueline R M Plass
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Nikolas Mersinis
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Jetse Scholma
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Johan Kerkhofs
- Biomechanics Research Unit, GIGA In Silico Medicine, ULiège, Liège, Belgium
| | - Leilei Zhong
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Jaco van de Pol
- Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands.,Dept. of Computer Science, Aarhus University, Aarhus, Denmark
| | - Rom Langerak
- Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands
| | - Liesbet Geris
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Marcel Karperien
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Janine N Post
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| |
Collapse
|
16
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
17
|
Fan X, Loebel DAF, Bildsoe H, Wilkie EE, Qin J, Wang J, Tam PPL. Tissue interactions, cell signaling and transcriptional control in the cranial mesoderm during craniofacial development. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractThe cranial neural crest and the cranial mesoderm are the source of tissues from which the bone and cartilage of the skull, face and jaws are constructed. The development of the cranial mesoderm is not well studied, which is inconsistent with its importance in craniofacial morphogenesis as a source of precursor tissue of the chondrocranium, muscles, vasculature and connective tissues, mechanical support for tissue morphogenesis, and the signaling activity that mediate interactions with the cranial neural crest. Phenotypic analysis of conditional knockout mouse mutants, complemented by the transcriptome analysis of differentially enriched genes in the cranial mesoderm and cranial neural crest, have identified signaling pathways that may mediate cross-talk between the two tissues. In the cranial mesenchyme, Bmp4 is expressed in the mesoderm cells while its signaling activity could impact on both the mesoderm and the neural crest cells. In contrast, Fgf8 is predominantly expressed in the cranial neural crest cells and it influences skeletal development and myogenesis in the cranial mesoderm. WNT signaling, which emanates from the cranial neural crest cells, interacts with BMP and FGF signaling in monitoring the switch between tissue progenitor expansion and differentiation. The transcription factor Twist1, a critical molecular regulator of many aspects of craniofacial development, coordinates the activity of the above pathways in cranial mesoderm and cranial neural crest tissue compartments.
Collapse
Affiliation(s)
- Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Heidi Bildsoe
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Emilie E Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
- Bioinformatics Group, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Junwen Wang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, and Department of Biomedical Informatics, Arizona State University, Scottsdale AZ 85259, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
- School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
19
|
Newton AH, Pask AJ. Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Commun Biol 2020; 3:771. [PMID: 33319865 PMCID: PMC7738678 DOI: 10.1038/s42003-020-01501-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is critical for the development of the vertebrate bony skeleton. Unlike other RUNX family members, RUNX2 possesses a variable poly-glutamine, poly-alanine (QA) repeat domain. Natural variation within this repeat is able to alter the transactivation potential of RUNX2, acting as an evolutionary 'tuning knob' suggested to influence mammalian skull shape. However, the broader role of the RUNX2 QA repeat throughout vertebrate evolution is unknown. In this perspective, we examine the role of the RUNX2 QA repeat during skeletal development and discuss how its emergence and expansion may have facilitated the evolution of morphological novelty in vertebrates.
Collapse
Affiliation(s)
- Axel H Newton
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
- Anatomy and Developmental Biology, The School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Andrew J Pask
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
20
|
Zinck NW, Jeradi S, Franz-Odendaal TA. Elucidating the early signaling cues involved in zebrafish chondrogenesis and cartilage morphology. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:18-31. [PMID: 33184938 DOI: 10.1002/jez.b.23012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Across the teleost skeleton, cartilages are diverse in their composition suggesting subtle differences in their developmental mechanisms. This study aims to elucidate the regulatory role of bone morphogenetic protein (BMPs) during the morphogenesis of two cartilage elements in zebrafish: the scleral cartilage in the eye and the caudal fin endoskeleton. Zebrafish larvae were exposed to a BMP inhibitor (LDN193189) at a series of timepoints preceding the initial appearance of the scleral cartilage and caudal fin endoskeleton. Morphological assessments of the cartilages in later stages, revealed that BMP-inhibited fish harbored striking disruptions in caudal fin endoskeletal morphology, regardless of the age at which the inhibitor treatment was performed. In contrast, scleral cartilage morphology was unaffected in all age groups. Morphometric and principal component analysis, performed on the caudal fin endoskeleton, revealed differential clustering of principal components one and two in BMP-inhibited and control fish. Additionally, the expression of sox9a and sox9b were reduced in BMP-inhibited fish when compared to controls, indicating that LDN193189 acts via a Sox9-dependent pathway. Further examination of notochord flexion also revealed a disruptive effect of BMP inhibition on this process. This study provides a detailed characterization of the effects of BMP inhibition via LDN193189 on zebrafish cartilage morphogenesis and development. It highlights the specific, localized role of the BMP-signaling pathways during the development of different cartilage elements and sheds some light on the morphological characteristics of fossil teleosts that together suggest an uncoupling of the developmental processes between the upper and lower lobes of the caudal fin.
Collapse
Affiliation(s)
- Nicholas W Zinck
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Shirine Jeradi
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Tamara A Franz-Odendaal
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Zhang LY, Bi Q, Zhao C, Chen JY, Cai MH, Chen XY. Recent Advances in Biomaterials for the Treatment of Bone Defects. Organogenesis 2020; 16:113-125. [PMID: 32799735 DOI: 10.1080/15476278.2020.1808428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects or fractures generally heal in the absence of major interventions due to the high regenerative capacity of bone tissue. However, in situations of severe/large bone defects, these orchestrated regeneration mechanisms are impaired. With advances in modern medicine, natural and synthetic bio-scaffolds from bioceramics and polymers that support bone growth have emerged and gained intense research interest. In particular, scaffolds that recapitulate the molecular cues of extracellular signals, particularly growth factors, offer potential as therapeutic bone biomaterials. The current challenges for these therapies include the ability to engineer materials that mimic the biological and mechanical properties of the real bone tissue matrix, whilst simultaneously supporting bone vascularization. In this review, we discuss the very recent innovative strategies in bone biomaterial technology, including those of endogenous biomaterials and cell/drug delivery systems that promote bone regeneration. We present our understanding of their current value and efficacy, and the future perspectives for bone regenerative medicine.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology , Hangzhou, Zhejiang Province, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| |
Collapse
|
22
|
Svandova E, Anthwal N, Tucker AS, Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel's Cartilage. Front Cell Dev Biol 2020; 8:821. [PMID: 32984323 PMCID: PMC7484903 DOI: 10.3389/fcell.2020.00821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Meckel's cartilage was first described by the German anatomist Johann Friedrich Meckel the Younger in 1820 from his analysis of human embryos. Two hundred years after its discovery this paper follows the development and largely transient nature of the mammalian Meckel's cartilage, and its role in jaw development. Meckel's cartilage acts as a jaw support during early development, and a template for the later forming jaw bones. In mammals, its anterior domain links the two arms of the dentary together at the symphysis while the posterior domain ossifies to form two of the three ear ossicles of the middle ear. In between, Meckel's cartilage transforms to a ligament or disappears, subsumed by the growing dentary bone. Several human syndromes have been linked, directly or indirectly, to abnormal Meckel's cartilage formation. Herein, the evolution, development and fate of the cartilage and its impact on jaw development is mapped. The review focuses on developmental and cellular processes that shed light on the mechanisms behind the different fates of this cartilage, examining the control of Meckel's cartilage patterning, initiation and maturation. Importantly, human disorders and mouse models with disrupted Meckel's cartilage development are highlighted, in order to understand how changes in this cartilage impact on later development of the dentary and the craniofacial complex as a whole. Finally, the relative roles of tissue interactions, apoptosis, autophagy, macrophages and clast cells in the removal process are discussed. Meckel's cartilage is a unique and enigmatic structure, the development and function of which is starting to be understood but many interesting questions still remain.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
23
|
Serowoky MA, Arata CE, Crump JG, Mariani FV. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 2020; 147:147/5/dev179325. [PMID: 32161063 DOI: 10.1242/dev.179325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal stem cells (SSCs) generate the progenitors needed for growth, maintenance and repair of the skeleton. Historically, SSCs have been defined as bone marrow-derived cells with inconsistent characteristics. However, recent in vivo tracking experiments have revealed the presence of SSCs not only within the bone marrow but also within the periosteum and growth plate reserve zone. These studies show that SSCs are highly heterogeneous with regard to lineage potential. It has also been revealed that, during digit tip regeneration and in some non-mammalian vertebrates, the dedifferentiation of osteoblasts may contribute to skeletal regeneration. Here, we examine how these research findings have furthered our understanding of the diversity and plasticity of SSCs that mediate skeletal maintenance and repair.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E Arata
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Nguyen JKB, Eames BF. Evolutionary repression of chondrogenic genes in the vertebrate osteoblast. FEBS J 2020; 287:4354-4361. [PMID: 31994313 DOI: 10.1111/febs.15228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Gene expression in extant animals might reveal how skeletal cells have evolved over the past 500 million years. The cells that make up cartilage (chondrocytes) and bone (osteoblasts) express many of the same genes, but they also have important molecular differences that allow us to distinguish them as separate cell types. For example, traditional studies of later-diverged vertebrates, such as mouse and chick, defined the genes Col2a1 and sex-determining region Y-box 9 as cartilage-specific. However, recent studies have shown that osteoblasts of earlier-diverged vertebrates, such as frog, gar, and zebrafish, express these 'chondrogenic' markers. In this review, we examine the resulting hypothesis that chondrogenic gene expression became repressed in osteoblasts over evolutionary time. The amphibian is an underexplored skeletal model that is uniquely positioned to address this hypothesis, especially given that it diverged when life transitioned from water to land. Given the relationship between phylogeny and ontogeny, a novel discovery for skeletal cell evolution might bolster our understanding of skeletal cell development.
Collapse
Affiliation(s)
- Jason K B Nguyen
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
25
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
26
|
Giffin JL, Gaitor D, Franz-Odendaal TA. The Forgotten Skeletogenic Condensations: A Comparison of Early Skeletal Development Amongst Vertebrates. J Dev Biol 2019; 7:jdb7010004. [PMID: 30717314 PMCID: PMC6473759 DOI: 10.3390/jdb7010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023] Open
Abstract
The development of a skeletogenic condensation is perhaps the most critical yet considerably overlooked stage of skeletogenesis. Described in this comprehensive review are the mechanisms that facilitate skeletogenic condensation formation, growth, and maintenance to allow for overt differentiation into a skeletal element. This review discusses the current knowledge of gene regulation and characterization of skeletogenic condensations in the chicken, mouse, zebrafish, and other developmental models. We limited our scope to condensations that give rise to the bones and cartilages of the vertebrate skeleton, with a particular focus on craniofacial and limb bud regions. While many of the skeletogenic processes are similar among vertebrate lineages, differences are apparent in the site and timing of the initial epithelial⁻mesenchymal interactions as well as in whether the condensation has an osteogenic or chondrogenic fate, both within and among species. Further comparative studies are needed to clarify and broaden the existing knowledge of this intricate phenomenon.
Collapse
Affiliation(s)
- Jennifer L Giffin
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
| | - Danielle Gaitor
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
27
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Ferguson J, Atit RP. A tale of two cities: The genetic mechanisms governing calvarial bone development. Genesis 2019; 57:e23248. [PMID: 30155972 PMCID: PMC7433025 DOI: 10.1002/dvg.23248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
The skull bones must grow in a coordinated, three-dimensional manner to coalesce and form the head and face. Mammalian skull bones have a dual embryonic origin from cranial neural crest cells (CNCC) and paraxial mesoderm (PM) and ossify through intramembranous ossification. The calvarial bones, the bones of the cranium which cover the brain, are derived from the supraorbital arch (SOA) region mesenchyme. The SOA is the site of frontal and parietal bone morphogenesis and primary center of ossification. The objective of this review is to frame our current in vivo understanding of the morphogenesis of the calvarial bones and the gene networks regulating calvarial bone initiation in the SOA mesenchyme.
Collapse
Affiliation(s)
- James Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| |
Collapse
|
29
|
Differences in the intrinsic chondrogenic potential of equine umbilical cord matrix and cord blood mesenchymal stromal/stem cells for cartilage regeneration. Sci Rep 2018; 8:13799. [PMID: 30217993 PMCID: PMC6138671 DOI: 10.1038/s41598-018-28164-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Umbilical cord blood mesenchymal stromal/stem cells (UCB-MSCs) and umbilical cord matrix MSCs (UCM-MSCs) have chondrogenic potential and are alternative sources to standard surgically derived bone marrow or adipose tissue collection for cartilage engineering. However, the majority of comparative studies explore neonatal MSCs potential only on ISCT benchmark assays accounting for some bias in the reproducibility between in vitro and in clinical studies. Therefore, we characterized equine UCB-MSCs and UCM-MSCs and investigated with particular attention their chondrogenesis potential in 3D culture with BMP-2 + TGF-ß1 in normoxia or hypoxia. We carried out an exhaustive characterization of the extracellular matrix generated by both these two types of MSCs after the induction of chondrogenesis through evaluation of hyaline cartilage, hypertrophic and osteogenic markers (mRNA, protein and histology levels). Some differences in hypoxia sensitivity and chondrogenesis were observed. UCB-MSCs differentiated into chondrocytes express an abundant, dense and a hyaline-like cartilage matrix. By contrast, despite their expression of cartilage markers, UCM-MSCs failed to express a relevant cartilage matrix after chondrogenic induction. Both MSCs types also displayed intrinsic differences at their undifferentiated basal status, UCB-MSCs expressing higher levels of chondrogenic markers whereas UCM-MSCs synthesizing higher amounts of osteogenic markers. Our results suggest that UCB-MSCs should be preferred for ex-vivo horse cartilage engineering. How those results should be translated to in vivo direct cartilage regeneration remains to be determined through dedicated study.
Collapse
|
30
|
Al-Dujaili M, Milne TJ, Cannon RD, Farella M. Postnatal expression of chondrogenic and osteogenic regulatory factor mRNA in the rat condylar cartilage. Arch Oral Biol 2018; 93:126-132. [PMID: 29906711 DOI: 10.1016/j.archoralbio.2018.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVES The condylar cartilage is a key site of growth and development of the mandible. The aim of this research was to determine the mRNA expression levels of a number of chondrogenic and osteogenic regulatory factors in the condylar cartilage of the postnatal rat. MATERIALS AND METHODS Condyles were extracted from 40 rats aged 4, 10, 21 or 90 days with 10 rats assigned to each age group. The condyles from one rat from each age group was fixed and decalcified in 10% EDTA for histology. Using cryogenic grinding combined with QIAzol reagent total RNA was purified from pooled samples collected for each age group. Each pool contained six condyles (N = 3). mRNA expression levels for 28 genes were determined using qPCR. RESULTS Histological analysis revealed distinct morphological differences in the condyle tissue of the 4, 10, 21 and 90 day old postnatal rats. Expression of all examined genes was detected. High levels of mRNA for Alpl, Bglap, Col1a1, Col2a1, Runx2, Sox9 and Sp7 but not Msx1 were detected. Fgf1 and Fgf2 were expressed at a similar level. No significant difference (defined as ± fold-regulation > 2 and P < 0.05) in the gene mRNA expression levels was found when days 10, 21 or 90 were compared to day 4. CONCLUSIONS Apparent morphological changes of the rat condylar cartilage are not reflected in a change in the expression levels of the chondrogenic and osteogenic regulatory factor mRNA investigated in this study.
Collapse
Affiliation(s)
- Mohamad Al-Dujaili
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Richard D Cannon
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Mauro Farella
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
32
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
33
|
COUP-TFII is required for morphogenesis of the neural crest-derived tympanic ring. Sci Rep 2017; 7:12386. [PMID: 28959031 PMCID: PMC5620064 DOI: 10.1038/s41598-017-12665-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022] Open
Abstract
Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) plays pivotal roles in cell growth, cell differentiation, and cell fate determination. Although genome-wide studies have identified COUP-TFII binding on gene sets mainly involved in neural crest cell (NCC) development and craniofacial morphogenesis, the direct functional connection between COUP-TFII and NCCs in vivo has not been well characterized. In this study, we show that COUP-TFII is expressed in the subpopulation of NCCs and its derivatives, and targeted ablation of COUP-TFII in mouse NCCs results in markedly shortened and bifurcated tympanic rings, which in turn disturb the caudal direction of external acoustic meatus invagination. However, formation of the manubrium of the malleus (MM) in Wnt1-Cre/+;COUP-TFIIflox/flox mice is not perturbed, suggesting that the rostral half of the tympanic ring is sufficient to support proper MM development. Interestingly, we found that loss of COUP-TFII up-regulates Sox9 in the tympanic ring primordium and affects the distribution of preosteoblasts before mesenchymal condensation. Together, our results demonstrate that COUP-TFII plays an essential role in regulating the patterning of the NCC-derived tympanic ring.
Collapse
|
34
|
Koh S, Purser M, Wysk R, Piedrahita JA. Improved Chondrogenic Potential and Proteomic Phenotype of Porcine Chondrocytes Grown in Optimized Culture Conditions. Cell Reprogram 2017; 19:232-244. [PMID: 28749737 DOI: 10.1089/cell.2017.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
For successful cartilage tissue engineering, the ability to generate a high number of chondrocytes in vitro while avoiding terminal differentiation or de-differentiation is critical. The ability to accomplish this by using the abundant and easily sampled costal cartilage could provide a practical alternative to the use of articular cartilage and mesenchymal stem cells. Chondrocytes isolated from pig costal cartilage were expanded in either serum-free medium with FGF2 (SFM) or fetal bovine serum-containing medium (SCM), under either high (21%) or low (5%) oxygen conditions. Overall, chondrocytes cultured in SFM and low oxygen (Low-SFM) demonstrated the highest cell growth rate (p < 0.05). The effect of passage number on the differentiation status of the chondrocytes was analyzed by alkaline phosphatase (AP) staining and real-time PCR for known chondrocyte quality markers. AP staining indicated that chondrocytes grown in SCM had a higher proportion of terminally differentiated (hypertrophic) chondrocytes (p < 0.05). At the mRNA level, expression ratios of ACAN/VCAN and COL2/COL1 were significantly higher (p < 0.05) in cells expanded in Low-SFM, indicating reduced de-differentiation. In vitro re-differentiation capacity was assessed after a 6-week induction, and chondrocytes grown in Low-SFM showed similar expression ratios of COL2/COL1 and ACAN/VCAN to native cartilage. Proteomic analysis of in vitro produced cartilage indicated that the Low-SFM condition most closely matched the proteomic profile of native costal and articular cartilage. In conclusion, Low-SFM culture conditions resulted in improved cell growth rates, reduced levels of de-differentiation during expansion, greater ability to re-differentiate into cartilage on induction, and an improved proteomic profile that resembles that of in vivo cartilage.
Collapse
Affiliation(s)
- Sehwon Koh
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,3 Department of Cell Biology, Duke University , Durham, North Carolina
| | - Molly Purser
- 4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina.,5 RTI Health Solutions, Research Triangle International , Raleigh, North Carolina
| | - Richard Wysk
- 2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina
| | - Jorge A Piedrahita
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,6 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
35
|
Ling IT, Rochard L, Liao EC. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev Biol 2016; 421:219-232. [PMID: 27908786 PMCID: PMC5266562 DOI: 10.1016/j.ydbio.2016.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Formation of the mandible requires progressive morphologic change, proliferation, differentiation and organization of chondrocytes preceding osteogenesis. The Wnt signaling pathway is involved in regulating bone development and maintenance. Chondrocytes that are fated to become bone require Wnt to polarize and orientate appropriately to initiate the endochondral ossification program. Although the canonical Wnt signaling has been well studied in the context of bone development, the effects of non-canonical Wnt signaling in regulating the timing of cartilage maturation and subsequent bone formation in shaping ventral craniofacial structure is not fully understood.. Here we examined the role of the non-canonical Wnt signaling pathway (wls, gpc4, wnt5b and wnt9a) in regulating zebrafish Meckel's cartilage maturation to the onset of osteogenic differentiation. We found that disruption of wls resulted in a significant loss of craniofacial bone, whereas lack of gpc4, wnt5b and wnt9a resulted in severely delayed endochondral ossification. This study demonstrates the importance of the non-canonical Wnt pathway in regulating coordinated ventral cartilage morphogenesis and ossification.
Collapse
Affiliation(s)
- Irving Tc Ling
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; School of Medicine, Veterinary and Life Sciences, Glasgow University, UK
| | - Lucie Rochard
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA
| | - Eric C Liao
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Paul S, Crump JG. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BONEKEY REPORTS 2016; 5:853. [PMID: 27867499 DOI: 10.1038/bonekey.2016.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023]
Abstract
Three major mesenchymal cell types have important roles in determining the shapes of vertebrate animals: bone-producing osteoblasts, cartilage-producing chondrocytes, and fat-producing adipocytes. Although often considered discrete cell types, accumulating evidence is revealing mesenchymal cells of intermediate identities and interconversion of cell types. Such plasticity is particularly evident during adult skeletal repair. In this Review, we highlight recent work in zebrafish showing a role for hybrid cartilage-bone cells in large-scale regeneration of the adult jawbone, as well as their origins in the periosteum. An emerging theme is that the unique mechanical and signaling environment of the adult wound causes skeletal cell differentiation to diverge from the discrete lineages seen during development, which may aid in rapid and extensive regeneration of bone.
Collapse
Affiliation(s)
- Sandeep Paul
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|
37
|
Tussellino M, Ronca R, Carotenuto R, Pallotta MM, Furia M, Capriglione T. Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:630-640. [PMID: 27669663 DOI: 10.1002/em.22057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate insecticide used primarily to control foliage and soil-borne insect pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce dose-related abnormalities such as slower brain growth and cerebral cortex thinning. In lower vertebrates, for example, fish and amphibians, teratogenic activity of this compound is correlated with several anatomical alterations. Little is known about the effects of CPF on mRNA expression of genes involved in early development of the anatomical structures appearing abnormal in embryos. This study investigated the effects of exposure to different CPF concentrations (10, 15 and 20 mg/L) on Xenopus laevis embryos from stage 4/8 to stage 46. Some of the morphological changes we detected in CPF-exposed embryos included cranial neural crest cell (NCC)-derived structures. For this reason, we analyzed the expression of select genes involved in hindbrain patterning (egr2), cranial neural crest chondrogenesis, and craniofacial development (fgf8, bmp4, sox9, hoxa2 and hoxb2). We found that CPF exposure induced a reduction in transcription of all the genes involved in NCC-dependent chondrogenesis, with largest reductions in fgf8 and sox9; whereas, in hindbrain, we did not find any alterations in egr2 expression. Changes in the expression of fgf8, bmp4, and sox9, which are master regulators of several developmental pathways, have important implications. If these changes are confirmed to belong to a general pattern of alterations in vertebrates prenatally exposed to OP, they might be useful to assess damage during vertebrate embryo development. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margherita Tussellino
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Raffaele Ronca
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Rosa Carotenuto
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria M Pallotta
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria Furia
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Teresa Capriglione
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy.
| |
Collapse
|
38
|
Postlethwait JH, Yan YL, Desvignes T, Allard C, Titus T, Le François NR, Detrich HW. Embryogenesis and early skeletogenesis in the antarctic bullhead notothen, Notothenia coriiceps. Dev Dyn 2016; 245:1066-1080. [PMID: 27507212 DOI: 10.1002/dvdy.24437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Environmental temperature influences rates of embryonic development, but a detailed staging series for vertebrate embryos developing in the subzero cold of Antarctic waters is not yet available from fertilization to hatching. Given projected warming of the Southern Ocean, it is imperative to establish a baseline to evaluate potential effects of changing climate on fish developmental dynamics. RESULTS We studied the Bullhead notothen (Notothenia coriiceps), a notothenioid fish inhabiting waters between -1.9 and +2 °C. In vitro fertilization produced embryos that progressed through cleavage, epiboly, gastrulation, segmentation, organogenesis, and hatching. We compared morphogenesis spatially and temporally to Zebrafish and medaka. Experimental animals hatched after about 6 months to early larval stages. To help understand skeletogenesis, we analyzed late embryos for expression of sox9 and runx2, which regulate chondrogenesis, osteogenesis, and eye development. Results revealed that, despite their prolonged developmental time course, N. coriiceps embryos developed similarly to those of other teleosts with large yolk cells. CONCLUSIONS Our studies set the stage for future molecular analyses of development in these extremophile fish. Results provide a foundation for understanding the impact of ocean warming on embryonic development and larval recruitment of notothenioid fish, which are key factors in the marine trophic system. Developmental Dynamics 245:1066-1080, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Corey Allard
- Biodôme de Montréal, Division des collections vivantes et recherche, Montréal, Quebec, Canada
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Nathalie R Le François
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts
| | - H William Detrich
- Biodôme de Montréal, Division des collections vivantes et recherche, Montréal, Quebec, Canada
| |
Collapse
|
39
|
Celá P, Buchtová M, Veselá I, Fu K, Bogardi JP, Song Y, Barlow A, Buxton P, Medalová J, Francis-West P, Richman JM. BMP signaling regulates the fate of chondro-osteoprogenitor cells in facial mesenchyme in a stage-specific manner. Dev Dyn 2016; 245:947-62. [PMID: 27264541 DOI: 10.1002/dvdy.24422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/12/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petra Celá
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Iva Veselá
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kathy Fu
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Bogardi
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Yiping Song
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Barlow
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Paul Buxton
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Jirina Medalová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Philippa Francis-West
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Joy M Richman
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Sánchez-Villagra MR, Geiger M, Schneider RA. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160107. [PMID: 27429770 PMCID: PMC4929905 DOI: 10.1098/rsos.160107] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/03/2016] [Indexed: 05/02/2023]
Abstract
Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the 'domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.
Collapse
Affiliation(s)
| | - Madeleine Geiger
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Street 4, 8006 Zurich, Switzerland
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of Californiaat San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA, USA
| |
Collapse
|
41
|
Paul S, Schindler S, Giovannone D, de Millo Terrazzani A, Mariani FV, Crump JG. Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration. Development 2016; 143:2066-76. [PMID: 27122168 DOI: 10.1242/dev.131292] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/12/2016] [Indexed: 12/29/2022]
Abstract
The healing of bone often involves a cartilage intermediate, yet how such cartilage is induced and utilized during repair is not fully understood. By studying a model of large-scale bone regeneration in the lower jaw of adult zebrafish, we show that chondrocytes are crucial for generating thick bone during repair. During jawbone regeneration, we find that chondrocytes co-express genes associated with osteoblast differentiation and produce extensive mineralization, which is in marked contrast to the behavior of chondrocytes during facial skeletal development. We also identify the likely source of repair chondrocytes as a population of Runx2(+)/Sp7(-) cells that emanate from the periosteum, a tissue that normally contributes only osteoblasts during homeostasis. Analysis of Indian hedgehog homolog a (ihha) mutants shows that the ability of periosteal cells to generate cartilage in response to injury depends on a repair-specific role of Ihha in the induction as opposed to the proliferation of chondrocytes. The large-scale regeneration of the zebrafish jawbone thus employs a cartilage differentiation program distinct from that seen during development, with the bone-forming potential of repair chondrocytes potentially due to their derivation from osteogenic cells in the periosteum.
Collapse
Affiliation(s)
- Sandeep Paul
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Simone Schindler
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dion Giovannone
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexandra de Millo Terrazzani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
42
|
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet 2016; 12:e1005967. [PMID: 27058748 PMCID: PMC4825933 DOI: 10.1371/journal.pgen.1005967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. The exquisite functions of the vertebrate face require the precise formation of its underlying bones. Remarkably, many of the genes required to shape the facial skeleton are the same from fish to man. In this study, we use the powerful zebrafish system to understand how the skeletal components of the face acquire different shapes during development. To do so, we analyze a series of mutants that disrupt patterning of the facial skeleton, and then assess how the genes affected in these mutants control cell fate in skeletal progenitor cells. From these genetic studies, we found that several pathways converge to control when and where progenitor cells commit to a cartilage fate, thus controlling the size and shape of cartilage templates for the later-arising bones. Our work thus reveals how regulating the timing of when progenitor cells make skeleton helps to shape the bones of the zebrafish face. As mutations in many of the genes studied are implicated in human craniofacial defects, differences in the timing of progenitor cell differentiation may also explain the wonderful diversity of human faces.
Collapse
|
43
|
Sonomoto K, Yamaoka K, Kaneko H, Yamagata K, Sakata K, Zhang X, Kondo M, Zenke Y, Sabanai K, Nakayamada S, Sakai A, Tanaka Y. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold. PLoS One 2016; 11:e0153231. [PMID: 27055270 PMCID: PMC4824423 DOI: 10.1371/journal.pone.0153231] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have immunosuppressive activity and can differentiate into bone and cartilage; and thus seem ideal for treatment of rheumatoid arthritis (RA). Here, we investigated the osteogenesis and chondrogenesis potentials of MSCs seeded onto nano-fiber scaffolds (NFs) in vitro and possible use for the repair of RA-affected joints. Methods MSCs derived from healthy donors and patients with RA or osteoarthritis (OA) were seeded on poly-lactic-glycolic acid (PLGA) electrospun NFs and cultured in vitro. Results Healthy donor-derived MSCs seeded onto NFs stained positive with von Kossa at Day 14 post-stimulation for osteoblast differentiation. Similarly, MSCs stained positive with Safranin O at Day 14 post-stimulation for chondrocyte differentiation. Surprisingly, even cultured without any stimulation, MSCs expressed RUNX2 and SOX9 (master regulators of bone and cartilage differentiation) at Day 7. Moreover, MSCs stained positive for osteocalcin, a bone marker, and simultaneously also with Safranin O at Day 14. On Day 28, the cell morphology changed from a spindle-like to an osteocyte-like appearance with processes, along with the expression of dentin matrix protein-1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE), suggesting possible differentiation of MSCs into osteocytes. Calcification was observed on Day 56. Expression of osteoblast and chondrocyte differentiation markers was also noted in MSCs derived from RA or OA patients seeded on NFs. Lactic acid present in NFs potentially induced MSC differentiation into osteoblasts. Conclusions Our PLGA scaffold NFs induced MSC differentiation into bone and cartilage. NFs induction process resembled the procedure of endochondral ossification. This finding indicates that the combination of MSCs and NFs is a promising therapeutic technique for the repair of RA or OA joints affected by bone and cartilage destruction.
Collapse
Affiliation(s)
- Koshiro Sonomoto
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
- Rheumatology, National hospital organization Beppu medical center, Beppu, Oita, Japan
| | - Kunihiro Yamaoka
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
- Internal medicine, division of rheumatology, Keio university, Shinjuku-ku, Tokyo, Japan
| | - Hiroaki Kaneko
- Integrative technology research institute, Teijin Limited, Hino, Tokyo, Japan
| | - Kaoru Yamagata
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
| | - Kei Sakata
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
- Research unit B, research division, Mitsubishi Tanabe pharma corporation, Yokohama, Kanagawa, Japan
| | - Xiangmei Zhang
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
| | - Masahiro Kondo
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
- Research unit B, research division, Mitsubishi Tanabe pharma corporation, Yokohama, Kanagawa, Japan
| | - Yukichi Zenke
- Department of orthopedics, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
| | - Ken Sabanai
- Department of orthopedics, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
| | - Shingo Nakayamada
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
| | - Akinori Sakai
- Department of orthopedics, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
| | - Yoshiya Tanaka
- The First department of internal medicine, school of medicine, University of occupational and environmental health, Kitakyushu, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
44
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
45
|
Ealba EL, Jheon AH, Hall J, Curantz C, Butcher KD, Schneider RA. Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Dev Biol 2015; 408:151-63. [PMID: 26449912 PMCID: PMC4698309 DOI: 10.1016/j.ydbio.2015.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm-derived osteoclasts, and in so doing enlists bone resorption as a key patterning mechanism underlying the functional morphology and evolution of the jaw.
Collapse
Affiliation(s)
- Erin L Ealba
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Andrew H Jheon
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Jane Hall
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Camille Curantz
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Kristin D Butcher
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Richard A Schneider
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA.
| |
Collapse
|
46
|
Abstract
Molecular and cellular mechanisms that control jaw length are becoming better understood. This is significant since the jaws are not only critical for species-specific adaptation and survival, but they are often affected by a variety of size-related anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting. This chapter overviews how jaw length is established during the allocation, proliferation, differentiation, and growth of jaw precursor cells, which originate from neural crest mesenchyme (NCM). The focus is mainly on results from experiments transplanting NCM between quail and duck embryos. Quail have short jaws whereas those of duck are relatively long. Quail-duck chimeras reveal that the determinants of jaw length are NCM mediated throughout development and include species-specific differences in jaw progenitor number, differential regulation of various signaling pathways, and the autonomous activation of programs for skeletal matrix deposition and resorption. Such insights help make the goal of devising new therapies for birth defects, diseases, and injuries to the jaw skeleton seem ever more likely.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|
47
|
Gómez-Picos P, Eames BF. On the evolutionary relationship between chondrocytes and osteoblasts. Front Genet 2015; 6:297. [PMID: 26442113 PMCID: PMC4585068 DOI: 10.3389/fgene.2015.00297] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022] Open
Abstract
Vertebrates are the only animals that produce bone, but the molecular genetic basis for this evolutionary novelty remains obscure. Here, we synthesize information from traditional evolutionary and modern molecular genetic studies in order to generate a working hypothesis on the evolution of the gene regulatory network (GRN) underlying bone formation. Since transcription factors are often core components of GRNs (i.e., kernels), we focus our analyses on Sox9 and Runx2. Our argument centers on three skeletal tissues that comprise the majority of the vertebrate skeleton: immature cartilage, mature cartilage, and bone. Immature cartilage is produced during early stages of cartilage differentiation and can persist into adulthood, whereas mature cartilage undergoes additional stages of differentiation, including hypertrophy and mineralization. Functionally, histologically, and embryologically, these three skeletal tissues are very similar, yet unique, suggesting that one might have evolved from another. Traditional studies of the fossil record, comparative anatomy and embryology demonstrate clearly that immature cartilage evolved before mature cartilage or bone. Modern molecular approaches show that the GRNs regulating differentiation of these three skeletal cell fates are similar, yet unique, just like the functional and histological features of the tissues themselves. Intriguingly, the Sox9 GRN driving cartilage formation appears to be dominant to the Runx2 GRN of bone. Emphasizing an embryological and evolutionary transcriptomic view, we hypothesize that the Runx2 GRN underlying bone formation was co-opted from mature cartilage. We discuss how modern molecular genetic experiments, such as comparative transcriptomics, can test this hypothesis directly, meanwhile permitting levels of constraint and adaptation to be evaluated quantitatively. Therefore, comparative transcriptomics may revolutionize understanding of not only the clade-specific evolution of skeletal cells, but also the generation of evolutionary novelties, providing a modern paradigm for the evolutionary process.
Collapse
Affiliation(s)
- Patsy Gómez-Picos
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
48
|
Hall J, Jheon AH, Ealba EL, Eames BF, Butcher KD, Mak SS, Ladher R, Alliston T, Schneider RA. Evolution of a developmental mechanism: Species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis. Dev Biol 2014; 385:380-95. [PMID: 24262986 PMCID: PMC3953612 DOI: 10.1016/j.ydbio.2013.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/02/2013] [Accepted: 11/10/2013] [Indexed: 12/27/2022]
Abstract
Neural crest mesenchyme (NCM) controls species-specific pattern in the craniofacial skeleton but how this cell population accomplishes such a complex task remains unclear. To elucidate mechanisms through which NCM directs skeletal development and evolution, we made chimeras from quail and duck embryos, which differ markedly in their craniofacial morphology and maturation rates. We show that quail NCM, when transplanted into duck, maintains its faster timetable for development and autonomously executes molecular and cellular programs for the induction, differentiation, and mineralization of bone, including premature expression of osteogenic genes such as Runx2 and Col1a1. In contrast, the duck host systemic environment appears to be relatively permissive and supports osteogenesis independently by providing circulating minerals and a vascular network. Further experiments reveal that NCM establishes the timing of osteogenesis by regulating cell cycle progression in a stage- and species-specific manner. Altering the time-course of D-type cyclin expression mimics chimeras by accelerating expression of Runx2 and Col1a1. We also discover higher endogenous expression of Runx2 in quail coincident with their smaller craniofacial skeletons, and by prematurely over-expressing Runx2 in chick embryos we reduce the overall size of the craniofacial skeleton. Thus, our work indicates that NCM establishes species-specific size in the craniofacial skeleton by controlling cell cycle, Runx2 expression, and the timing of key events during osteogenesis.
Collapse
Affiliation(s)
- Jane Hall
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Andrew H Jheon
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Erin L Ealba
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - B Frank Eames
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Kristin D Butcher
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Siu-Shan Mak
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku Kobe 650-0047, Japan
| | - Raj Ladher
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku Kobe 650-0047, Japan
| | - Tamara Alliston
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA.
| |
Collapse
|
49
|
Liu C, Sun J. Potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells. Biomacromolecules 2014; 15:436-43. [PMID: 24359018 DOI: 10.1021/bm401780v] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrolyzed fish collagen (HFC) has recently attracted considerable attention because of its outstanding bioactivity. However, few studies have been performed to determine the biological effects of HFC on bone marrow mesenchymal stem cells (BMSCs), which are often used in regenerative medicine. In this study, the molecular weight, amino acid composition, and contact angle of HFC were measured. The influence of HFC on cell viability and the multidirectional differentiation of BMSCs into osteogenic, endothelial, adipogenic, chondrogenic, and neural lineages were also assessed. Furthermore, the mechanism by which HFC promotes osteogenesis was investigated at the protein level. The molecular weight of HFC ranged from 700 to 1300 Da, the contact angle of HFC was approximately 26°, and HFC was found to be composed of various amino acids, including glycine, proline, and hydroxyproline. At a concentration of 0.2 mg/mL, HFC promoted cell viability, and significantly up-regulated the expression of osteogenic markers (RUNX2, ALP, OPN, and OCN), as well as endothelial markers (CD31, VE-cadherin, and VEGFR2). Western blot results indicated that treatment of BMSCs with 0.2 mg/mL HFC could activate the MAPK/ERK signaling pathway and then increase the protein level of RUNX2, while treatment with PD98059, a specific inhibitor of ERK1/2, could significantly inhibit the expression of P-ERK and RUNX2. Interestingly, real-time PCR demonstrated that HFC inhibited the expression of adipogenic markers (LPL and ADFP) and chondrogenic markers (aggrecan and COLII), whereas it had no effect on neural differentiation markers (MAP2 and β3-tubulin). In summary, this study suggests that without the use of any additional inducing reagent, HFC has the potential to actively promote osteogenic and endothelial differentiation because of its high hydrophilicity and the optimal extracellular microenvironment supplied by its amino acids. This research also revealed that HFC inhibited adipogenic and chondrogenic differentiation, but it had no influence on the neural differentiation of rat bone marrow mesenchymal stem cells (rBMSCs).
Collapse
Affiliation(s)
- Chao Liu
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Biomaterials Research and Testing Center , Shanghai 200023, China
| | | |
Collapse
|
50
|
An immunohistochemistry study of Sox9, Runx2, and Osterix expression in the mandibular cartilages of newborn mouse. BIOMED RESEARCH INTERNATIONAL 2013; 2013:265380. [PMID: 23762831 PMCID: PMC3671271 DOI: 10.1155/2013/265380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/07/2013] [Indexed: 01/20/2023]
Abstract
The purpose of this study is to investigate the spacial expression pattern and functional significance of three key transcription factors related to bone and cartilage formation, namely, Sox9, Runx2, and Osterix in cartilages during the late development of mouse mandible. Immunohistochemical examinations of Sox9, Runx2, and Osterix were conducted in the mandibular cartilages of the 15 neonatal C57BL/6N mice. In secondary cartilages, both Sox9 and Runx2 were weakly expressed in the polymorphic cell zone, strongly expressed in the flattened cell zone and throughout the entire hypertrophic cell zone. Similarly, both transcriptional factors were weakly expressed in the uncalcified Meckel's cartilage while strongly expressed in the rostral cartilage. Meanwhile, Osterix was at an extremely low level in cells of the flattened cell zone and the upper hypertrophic cell zone in secondary cartilages. Surprisingly, Osterix was intensely expressed in hypertrophic chondrocytes in the center of the uncalcified Meckel's cartilage while moderately expressed in part of hypertrophic chondrocytes in the rostral process. Consequently, it is suggested that Sox9 is a main and unique positive regulator in the hypertrophic differentiation process of mandibular secondary cartilages, in addition to Runx2. Furthermore, Osterix is likely responsible for phenotypic conversion of Meckel's chondrocytes during its degeneration.
Collapse
|