1
|
Knuutila JS, Riihilä P, Nissinen L, Heiskanen L, Kallionpää RE, Pellinen T, Kähäri VM. Cancer-associated fibroblast activation predicts progression, metastasis, and prognosis of cutaneous squamous cell carcinoma. Int J Cancer 2024; 155:1112-1127. [PMID: 38648387 DOI: 10.1002/ijc.34957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer and the metastatic disease is associated with poor prognosis. Cancer-associated fibroblasts (CAFs) promote progression of cancer, but their role in cSCC is largely unknown. We examined the potential of CAF markers in the assessment of metastasis risk and prognosis of primary cSCC. We utilized multiplexed fluorescence immunohistochemistry for profiling CAF landscape in metastatic and non-metastatic primary human cSCCs, in metastases, and in premalignant epidermal lesions. Quantitative high-resolution image analysis was performed with two separate panels of antibodies for CAF markers and results were correlated with clinical and histopathological parameters including disease-specific mortality. Increased stromal expression of fibroblast activation protein (FAP), α-smooth muscle actin, and secreted protein acidic and rich in cysteine (SPARC) were associated with progression to invasive cSCC. Elevation of FAP and platelet-derived growth factor receptor-β (PDGFRβ) expression was associated with metastasis risk of primary cSCCs. High expression of PDGFRβ and periostin correlated with poor prognosis. Multimarker combination defined CAF subset, PDGFRα-/PDGFRβ+/FAP+, was associated with invasion and metastasis, and independently predicted poor disease-specific survival. These results identify high PDGFRβ expression alone and multimarker combination PDGFRα-/PDGFRβ+/FAP+ by CAFs as potential biomarkers for risk of metastasis and poor prognosis.
Collapse
Affiliation(s)
- Jaakko S Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Lauri Heiskanen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Li J, Ma R, Wang X, Lu Y, Chen J, Feng D, Zhou J, Xia K, Klein O, Xie H, Lu P. Sprouty genes regulate activated fibroblasts in mammary epithelial development and breast cancer. Cell Death Dis 2024; 15:256. [PMID: 38600092 PMCID: PMC11006910 DOI: 10.1038/s41419-024-06637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.
Collapse
Affiliation(s)
- Jiyong Li
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Rongze Ma
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Xuebing Wang
- Institute of Aix-Marseille, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Chen
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Deyi Feng
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Jiecan Zhou
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Kun Xia
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
| | - Ophir Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA, 94143, California, USA
- Department of Pediatrics and Guerin Children's, Cedars-Sinai Medical Center, 8700 Gracie Allen Dr., Los Angeles, CA, USA
| | - Hao Xie
- Institute of Aix-Marseille, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengfei Lu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China.
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China.
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China.
| |
Collapse
|
3
|
Martínez-Martínez E, Tölle R, Donauer J, Gretzmeier C, Bruckner-Tuderman L, Dengjel J. Increased abundance of Cbl E3 ligases alters PDGFR signaling in recessive dystrophic epidermolysis bullosa. Matrix Biol 2021; 103-104:58-73. [PMID: 34706254 DOI: 10.1016/j.matbio.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
In recessive dystrophic epidermolysis bullosa (RDEB), loss of collagen VII, the main component of anchoring fibrils critical for epidermal-dermal cohesion, affects several intracellular signaling pathways and leads to impaired wound healing and fibrosis. In skin fibroblasts, wound healing is also affected by platelet-derived growth factor receptor (PDGFR) signaling. To study a potential effect of loss of collagen VII on PDGFR signaling we performed unbiased disease phosphoproteomics. Whereas RDEB fibroblasts exhibited an overall weaker response to PDGF, Cbl E3 ubiquitin ligases, negative regulators of growth factor signaling, were stronger phosphorylated. This increase in phosphorylation was linked to higher Cbl mRNA and protein levels due to increased TGFβ signaling in RDEB. In turn, increased Cbl levels led to increased PDGFR ubiquitination, internalization, and degradation negatively affecting MAPK and AKT downstream signaling pathways. Thus, our results indicate that elevated TGFβ signaling leads to an attenuated response to growth factors, which contributes to impaired dermal wound healing in RDEB.
Collapse
Affiliation(s)
| | - Regine Tölle
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Julia Donauer
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland.
| |
Collapse
|
4
|
Tian M, Qi Y, Zhang X, Wu Z, Chen J, Chen F, Guan W, Zhang S. Regulation of the JAK2-STAT5 Pathway by Signaling Molecules in the Mammary Gland. Front Cell Dev Biol 2020; 8:604896. [PMID: 33282878 PMCID: PMC7705115 DOI: 10.3389/fcell.2020.604896] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Janus kinase 2 (JAK2) and signal transducers and activators of transcription 5 (STAT5) are involved in the proliferation, differentiation, and survival of mammary gland epithelial cells. Dysregulation of JAK2-STAT5 activity invariably leads to mammary gland developmental defects and/or diseases, including breast cancer. Proper functioning of the JAK2-STAT5 signaling pathway relies on crosstalk with other signaling pathways (synergistically or antagonistically), which leads to normal biological performance. This review highlights recent progress regarding the critical components of the JAK2-STAT5 pathway and its crosstalk with G-protein coupled receptor (GPCR) signaling, PI3K-Akt signaling, growth factors, inflammatory cytokines, hormone receptors, and cell adhesion.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Spurlin JW, Nelson CM. Building branched tissue structures: from single cell guidance to coordinated construction. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0527. [PMID: 28348257 DOI: 10.1098/rstb.2015.0527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
Branched networks are ubiquitous throughout nature, particularly found in tissues that require large surface area within a restricted volume. Many tissues with a branched architecture, such as the vasculature, kidney, mammary gland, lung and nervous system, function to exchange fluids, gases and information throughout the body of an organism. The generation of branched tissues requires regulation of branch site specification, initiation and elongation. Branching events often require the coordination of many cells to build a tissue network for material exchange. Recent evidence has emerged suggesting that cell cooperativity scales with the number of cells actively contributing to branching events. Here, we compare mechanisms that regulate branching, focusing on how cell cohorts behave in a coordinated manner to build branched tissues.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- James W Spurlin
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Östman A. PDGF receptors in tumor stroma: Biological effects and associations with prognosis and response to treatment. Adv Drug Deliv Rev 2017; 121:117-123. [PMID: 28970051 DOI: 10.1016/j.addr.2017.09.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/17/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Platelet-derived growth factor (PDGF) ligands and their receptors (PDGFRα and PDGFRβ) regulate mesenchymal cells, such as fibroblasts and pericytes. These cells are important constituents of tumor stroma where they impact on tumor growth, metastasis and drug response. Studies in model systems have demonstrated ability of the PDGF system to regulate the tumor-stimulatory effects of fibroblasts, as well as their ability to promote cancer cell migration and invasion. Animal studies imply PDGFR-signaling as a regulator of tumor drug uptake. Emerging correlative analyses of different tumor collections are identifying clinically relevant variations in stromal PDGFR status, and associations between PDGFR status in tumor stroma and survival. These associations could either relate to effects of stromal PDGFR signaling on the natural course of the disease or response to treatment. The availability of clinically approved PDGFR-inhibitory drugs suggest interesting possibilities for novel clinical studies, performed on selected patient sub-groups, which further exploits tumor stroma-derived PDGFR signaling.
Collapse
|
7
|
Mohapatra B, Zutshi N, An W, Goetz B, Arya P, Bielecki TA, Mushtaq I, Storck MD, Meza JL, Band V, Band H. An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance. Development 2017; 144:1072-1086. [PMID: 28100467 DOI: 10.1242/dev.138164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
The ubiquitin ligases CBL and CBL-B are negative regulators of tyrosine kinase signaling with established roles in the immune system. However, their physiological roles in epithelial tissues are unknown. Here, we used MMTV-Cre-mediated Cbl gene deletion on a Cbl-b null background, as well as a tamoxifen-inducible mammary stem cell (MaSC)-specific Cbl and Cbl-b double knockout (Cbl/Cbl-b DKO) using Lgr5-EGFP-IRES-CreERT2, to demonstrate a mammary epithelial cell-autonomous requirement of CBL and CBL-B in the maintenance of MaSCs. Using a newly engineered tamoxifen-inducible Cbl and Cbl-b deletion model with a dual fluorescent reporter (Cblflox/flox; Cbl-bflox/flox; Rosa26-CreERT; mT/mG), we show that Cbl/Cbl-b DKO in mammary organoids leads to hyperactivation of AKT-mTOR signaling with depletion of MaSCs. Chemical inhibition of AKT or mTOR rescued MaSCs from Cbl/Cbl-b DKO-induced depletion. Our studies reveal a novel, cell-autonomous requirement of CBL and CBL-B in epithelial stem cell maintenance during organ development and remodeling through modulation of mTOR signaling.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA .,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A 2016; 113:E8228-E8237. [PMID: 27930322 DOI: 10.1073/pnas.1615677113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.
Collapse
|
9
|
Bao Z, Lin J, Ye L, Zhang Q, Chen J, Yang Q, Yu Q. Modulation of Mammary Gland Development and Milk Production by Growth Hormone Expression in GH Transgenic Goats. Front Physiol 2016; 7:278. [PMID: 27445863 PMCID: PMC4926316 DOI: 10.3389/fphys.2016.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
Mammary gland development during puberty and reconstruction during pregnancy and lactation is under the control of circulating endocrine hormones, such as growth hormone, which are released from the pituitary. In this study, we explored the influence of overexpression of growth hormone in the mammary gland on breast development and milk production in goats. Using transcriptome sequencing, we found that the number of highly expressed genes was greater in GH transgenic goats than non-transgenic goats. Furthermore, KEGG pathway analysis showed that the majority of the genes belonged to the MAPK signaling pathway and the ECM-receptor interaction pathway. The expression of genes related to breast development was further confirmed using qRT-PCR. Interestingly, both milk production and milk quality were increased. The results of these experiments imply that overexpression of growth hormone in the breast may stimulate breast development and enhances milk production by modulating alveolar cell proliferation or branching through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zekun Bao
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Lulu Ye
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Qiang Zhang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | | | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
10
|
Sun X, Ingman WV. Cytokine networks that mediate epithelial cell-macrophage crosstalk in the mammary gland: implications for development and cancer. J Mammary Gland Biol Neoplasia 2014; 19:191-201. [PMID: 24924120 DOI: 10.1007/s10911-014-9319-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 05/19/2014] [Indexed: 01/28/2023] Open
Abstract
Dynamic interactions between the hormone responsive mammary gland epithelium and surrounding stromal macrophage populations are critical for normal development and function of the mammary gland. Macrophages are versatile cells capable of diverse roles in mammary gland development and maintenance of homeostasis, and their function is highly dependent on signals within the local cytokine microenvironment. The mammary epithelium secretes a number of cytokines, including colony stimulating factor 1 (CSF1), transforming growth factor beta 1 (TGFB1), and chemokine ligand 2 (CCL2) that affect the abundance, phenotype and function of macrophages. However, aberrations in these interactions have been found to increase the risk of tumour formation, and utilisation of stromal macrophage support by tumours can increase the invasive and metastatic potential of the cancer. Studies utilising genetically modified mouse models have shed light on the significance of epithelial cell-macrophage crosstalk, and the cytokines that mediate this communication, in mammary gland development and tumourigenesis. This article reviews the current status of our understanding of the roles of epithelial cell-derived cytokines in mammary gland development and cancer, with a focus on the crosstalk between epithelial cells and the local macrophage population.
Collapse
Affiliation(s)
- Xuan Sun
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
11
|
Feuermann Y, Robinson GW, Zhu BM, Kang K, Raviv N, Yamaji D, Hennighausen L. The miR-17/92 cluster is targeted by STAT5 but dispensable for mammary development. Genesis 2012; 50:665-71. [PMID: 22389215 PMCID: PMC3560854 DOI: 10.1002/dvg.22023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/06/2022]
Abstract
Genome wide analysis revealed the miR-17/92 cluster as a STAT5 target. This cluster encodes six microRNAs, which predictably target genes that play a role in mammary gland development. In this study, we have deleted the miR-17/92 cluster in mammary stem cells and evaluated in the mouse its function during mammary gland development. Loss of the miR-17/92 cluster did not affect mammary development from prepuberty to lactation. Our studies demonstrated that, while expression of the miR-17/92 cluster is under control of the key mammary transcription factor STAT5, its presence is not required for normal mammary development or lactation.
Collapse
Affiliation(s)
- Yonatan Feuermann
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The mammary gland undergoes a spectacular series of changes as it develops, and maintains a remarkable capacity to remodel and regenerate for several decades. Mammary morphogenesis has been investigated for over 100 years, motivated by the dairy industry and cancer biologists. Over the past decade, the gland has emerged as a major model system in its own right for understanding the cell biology of tissue morphogenesis. Multiple signalling pathways from several cell types are orchestrated together with mechanical cues and cell rearrangements to establish the pattern of the mammary gland. The integrated mechanical and molecular pathways that control mammary morphogenesis have implications for the developmental regulation of other epithelial organs.
Collapse
|
13
|
Pavlovich A, Boghaert E, Nelson CM. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp Cell Res 2011; 317:1872-84. [PMID: 21459084 PMCID: PMC3123406 DOI: 10.1016/j.yexcr.2011.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/21/2011] [Accepted: 03/27/2011] [Indexed: 01/17/2023]
Abstract
During the branching morphogenesis process that builds epithelial trees, signaling from stimulatory and inhibitory growth factors is integrated to control branch initiation and extension into the surrounding stroma. Here, we examined the relative roles played by these stimulatory and inhibitory signals in the patterning of branch initiation and extension of model mammary epithelial tubules in culture. We found that although several growth factors could stimulate branching, they did not determine the sites at which new branches formed or the lengths to which branches extended. Instead, branch initiation and extension were defined by two separate signals downstream of the inhibitory morphogen, transforming growth factor (TGF)-β. Branch initiation was controlled by signaling through p38 mitogen-activated protein kinase, whereas branch extension was controlled by Smad-mediated induction of a second diffusible inhibitor, Wnt5a. These data suggest that mammary epithelial branching is patterned predominately by repulsive signaling, and that TGFβ activates multiple inhibitory pathways to refine the architecture of the tree.
Collapse
Affiliation(s)
- Amira Pavlovich
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Eline Boghaert
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| |
Collapse
|
14
|
Serra R, Easter SL, Jiang W, Baxley SE. Wnt5a as an effector of TGFβ in mammary development and cancer. J Mammary Gland Biol Neoplasia 2011; 16:157-67. [PMID: 21416313 PMCID: PMC3107509 DOI: 10.1007/s10911-011-9205-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/03/2011] [Indexed: 01/01/2023] Open
Abstract
Wnt5a is a member of the Wingless-related/MMTV-integration family of secreted growth factors, which are involved in a wide range of cellular processes. Wnt signaling can be broadly divided into two categories the canonical, ß-catenin-dependent pathway and the non-canonical ß-catenin-independent pathway. Wnt5a is a non-canonical signaling member of the Wnt family. Loss of Wnt5a is associated with early relapse of invasive breast cancer, increased metastasis, and poor survival in humans. It has been shown that TGF-ß directly regulates expression of Wnt5a in mammary gland and that Wnt5a mediates the effects of TGF-ß on branching during mammary gland development. Here we review the evidence suggesting Wnt5a acts as an effector of TGF-ß actions in breast cancer. It is suggested that the tumor suppressive functions of TGF-ß involve Wnt5a-mediated antagonism of Wnt/ß-catenin signaling and limiting the stem cell population. Interactions between TGF-ß and Wnt5a in metastasis appear to be more complex, and may depend on specific cues from the microenvironment as well as activation of specific intracellular signaling pathways.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
15
|
Duan L, Raja SM, Chen G, Virmani S, Williams SH, Clubb RJ, Mukhopadhyay C, Rainey MA, Ying G, Dimri M, Chen J, Reddi AL, Naramura M, Band V, Band H. Negative regulation of EGFR-Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J Biol Chem 2011; 286:620-33. [PMID: 20940296 PMCID: PMC3013022 DOI: 10.1074/jbc.m110.188086] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/04/2023] Open
Abstract
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.
Collapse
Affiliation(s)
- Lei Duan
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Srikumar M. Raja
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Gengsheng Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Sumeet Virmani
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | | | - Robert J. Clubb
- From the Eppley Institute for Cancer and Allied Diseases, and
| | | | - Mark A. Rainey
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Guoguang Ying
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Manjari Dimri
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Jing Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Alagarsamy L. Reddi
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Mayumi Naramura
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Vimla Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950 and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Hamid Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Pharmacology and Neuroscience, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| |
Collapse
|
16
|
Koay EJ, Athanasiou KA. Development of serum-free, chemically defined conditions for human embryonic stem cell-derived fibrochondrogenesis. Tissue Eng Part A 2009; 15:2249-57. [PMID: 19231974 DOI: 10.1089/ten.tea.2008.0320] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study established serum-free, chemically defined conditions to generate fibrocartilage with human embryonic stem cells (hESCs). Three sequential experimental phases were performed to eliminate serum because of its variability and antigenic potential and characterize the performance of hESCs in serum-free and serum-based conditions. Each phase used a two-stage modular experiment: chondrogenic differentiation followed by scaffold-less tissue engineering, called self-assembly. Phase I studied serum effects, and showed that a 1% serum chondrogenic medium (CM) during differentiation resulted in uniform constructs, whereas a 20% serum CM did not. Furthermore, a no-serum CM during self-assembly led to a collagen content 50% to 200% greater than a 1% serum CM. Thus, a "serum standard" of 1% serum during differentiation and no serum during self-assembly was carried forward. Phase II compared this with serum-free formulations, using 5% knock-out serum replacer or 1-ng/mL transforming growth factor beta 1 (TGF-beta1). The TGF-beta1 group was chosen as a "serum-free standard" because it performed similarly to the serum standard in terms of morphological, biochemical, and biomechanical properties. In Phase III, the serum-free standard had significantly more collagen (100%) and greater tensile ( approximately 150%) and compressive properties ( approximately 80%) than the serum standard with TGF-beta1 treatment during self-assembly. These advances are important to the understanding of mechanisms of chondrogenesis and creating clinically relevant stem cell therapies.
Collapse
Affiliation(s)
- Eugene J Koay
- Department of Bioengineering, Rice University , Houston, Texas, USA
| | | |
Collapse
|
17
|
Abstract
Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Neuro-Oncology and Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer, Houston, Texas 77030;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037;
| |
Collapse
|
18
|
Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 2008; 321:77-87. [PMID: 18585375 PMCID: PMC2582391 DOI: 10.1016/j.ydbio.2008.06.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 01/05/2023]
Abstract
FGF signaling is associated with breast cancer and is required for mammary placode formation in the mouse. In this study, we employed a genetic mosaic analysis based on Cre-mediated recombination to investigate FGF receptor 2 (Fgfr2) function in the postnatal mammary gland. Mosaic inactivation of Fgfr2 by the MMTV-Cre transgene enabled us to compare the behavior of Fgfr2 null and Fgfr2 heterozygous cells in the same gland. Fgfr2 null cells were at a competitive disadvantage to their Fgfr2 heterozygous neighbors in the highly proliferative terminal end buds (TEBs) at the invasion front, owing to a negative effect of loss of Fgfr2 function on cell proliferation. However, Fgfr2 null cells were tolerated in mature ducts. In these genetic mosaic mammary glands, the epithelial network is apparently built by TEBs that over time are composed of a progressively larger proportion of Fgfr2-positive cells. However, subsequently, most cells lose Fgfr2 function, presumably due to additional rounds of Cre-mediated recombination. Using an independent strategy to create mosaic mammary glands, which employed an adenovirus-Cre that acts only once, we confirmed that Fgfr2 null cells were out-competed by neighboring Fgfr2 heterozygous cells. Together, our data demonstrate that Fgfr2 functions in the proliferating and invading TEBs, but it is not required in the mature ducts of the pubertal mammary gland.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Anatomy and Program in Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | | | |
Collapse
|
19
|
Roarty K, Serra R. Wnt5a is required for proper mammary gland development and TGF-beta-mediated inhibition of ductal growth. Development 2007; 134:3929-39. [PMID: 17898001 DOI: 10.1242/dev.008250] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta (TGF-beta) plays an essential role in growth and patterning of the mammary gland, and alterations in its signaling have been shown to illicit biphasic effects on tumor progression and metastasis. We demonstrate in mice that TGF-beta (Tgfbeta) regulates the expression of a non-canonical signaling member of the wingless-related protein family, Wnt5a. Loss of Wnt5a expression has been associated with poor prognosis in breast cancer patients; however, data are lacking with regard to a functional role for Wnt5a in mammary gland development. We show that Wnt5a is capable of inhibiting ductal extension and lateral branching in the mammary gland. Furthermore, Wnt5a(-/-) mammary tissue exhibits an accelerated developmental capacity compared with wild-type tissue, marked by larger terminal end buds, rapid ductal elongation, increased lateral branching and increased proliferation. Additionally, dominant-negative interference of TGF-beta signaling impacts not only the expression of Wnt5a, but also the phosphorylation of discoidin domain receptor 1 (Ddr1), a receptor for collagen and downstream target of Wnt5a implicated in cell adhesion/migration. Lastly, we show that Wnt5a is required for TGF-beta-mediated inhibition of ductal extension in vivo and branching in culture. This study is the first to show a requirement for Wnt5a in normal mammary development and its functional connection to TGF-beta.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
20
|
Abstract
Much progress has been made in recent years toward understanding mechanisms controlling branching morphogenesis, a fundamental aspect of development in a variety of invertebrate and vertebrate organs. To gain a deeper understanding of how branching morphogenesis occurs in the mammary gland, we compare and contrast the cellular and molecular events underlying this process in both invertebrate and vertebrate organs. Thus, in this review, we focus on the common themes that have emerged from such comparative analyses and discuss how they are implemented via a battery of signaling pathways to ensure proper branching morphogenesis in diverse systems.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | |
Collapse
|
21
|
Abstract
Unlike other branched organs, the mammary gland undergoes most of its branching during adolescent rather than embryonic development. Its morphogenesis begins in utero, pauses between birth and puberty, and resumes in response to ovarian estrogens to form an open ductal tree that eventually fills the entire mammary fat pad of the young female adult. Importantly, this "open" architecture leaves room during pregnancy for the organ to develop milk-producing alveoli like leaves on otherwise bare branches. Thereafter, the ducts serve to deliver the milk that is produced throughout lactation. The hormonal cues that elicit these various phases of mammary development utilize local signaling cascades and reciprocal stromal-epithelial interactions to orchestrate the tissue reorganization, differentiation and specific activities that define each phase. Fortunately, the mammary gland is rather amenable to experimental inquiry and, as a result, we have a fair, although incomplete, understanding of the mechanisms that control its development. This review discusses our current sense and understanding of those mechanisms as they pertain to mammary branching, with the caveat that many more aspects are still waiting to be solved.
Collapse
Affiliation(s)
- Mark D Sternlicht
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, CA 94143-0452, USA.
| | | | | | | |
Collapse
|
22
|
Crowley MR, Frost A, Chen DT, Baffi MO, Nicola T, Serra R. Transforming growth factor-beta signaling helps specify tumor type in DMBA and hormone-induced mammary cancers. Differentiation 2006; 74:40-52. [PMID: 16466399 DOI: 10.1111/j.1432-0436.2006.00056.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To determine the role of transforming growth factor-beta (TGF-beta) signaling in mammary development and tumor formation, we previously generated transgenic mice that expressed a dominant-negative form of the TGF-beta type II receptor (DNIIR) under the control of DNA regulatory elements from the metallothionein promoter (MT-DNIIR-28). In this report, we tested the hypothesis that loss of TGF-beta signaling in the mammary gland alters the development of chemically or hormonally induced tumors in mice. Four groups of mice were used in the study: wild-type and MT-DNIIR-28 mice on zinc with pituitary isograft, and wild-type and MT-DNIIR-28 mice on zinc with pituitary isograft treated with the carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA). Tumor-free survival over time, tumor growth rate, and tumor pathology were measured. Statistically significant differences in tumor free survival over time or tumor growth rate were not detected in wild-type versus transgenic mice treated with DMBA. In contrast, tumor-free survival was significantly altered in transgenic mice that were treated with the pituitary isograft alone with MT-DNIIR mice developing tumors more quickly. Alterations in the types of tumors that formed in wild-type versus MT-DNIIR DMBA-treated mice were detected. In wild-type mice, tumors with squamous differentiation or bicellular adenomyoepitheliomas were most common. Adenomyoepitheliomas were not detected in transgenic mice. Furthermore, there was reduced staining for alpha smooth muscle actin and keratin 14, markers for myoepithelial cells, in the glandular portion of tumors in transgenic mice. The pathology of tumors induced by pituitary isograft alone was also markedly different in wild-type and transgenic mice. All the tumors classified from wild-type mice demonstrated some form of squamous differentiation, whereas squamous differentiation was not detected in the pituitary-induced transgenic tumors. The results suggest that TGF-beta acts as a tumor suppressor for hormone-induced cancers and that TGF-beta has a role in determining tumor pathology by regulating myoepithelial or squamous differentiation, maintenance, or transformation.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Carcinogens/toxicity
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Female
- Genes, Dominant
- Mammary Neoplasms, Animal/etiology
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Transgenic
- Myoepithelioma/etiology
- Myoepithelioma/pathology
- Pituitary Hormones/toxicity
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Michael R Crowley
- Department of Cell Biology, University of Alabama at Birmingham 1918 University Blvd, 310 MCLM Birmingham, AL 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 2005; 7:245-51. [PMID: 16280048 PMCID: PMC1410762 DOI: 10.1186/bcr1331] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the rodent, epithelial end buds define the tips of elongating mammary ducts. These highly motile structures undergo repeated dichotomous branching as they aggressively advance through fatty stroma and, turning to avoid other ducts, they finally cease growth leaving behind the open, tree-like framework on which secretory alveoli develop during pregnancy. This review identifies the motility of end buds as a unique developmental marker that represents the successful integration of systemic and local mammotrophic influences, and covers relevant advances in ductal growth regulation, extracellular matrix (ECM) remodeling, and cell adhesion in the inner end bud. An unexpected growth-promoting synergy between insulin-like growth factor-1 and progesterone, in which ducts elongate without forming new end buds, is described as well as evidence strongly supporting self-inhibition of ductal elongation by end-bud-secreted transforming growth factor-beta acting on stromal targets. The influence of the matrix metalloproteinase ECM-remodeling enzymes, notably matrix metalloproteinase-2, on end bud growth is discussed in the broader context of enzymes that regulate the polysaccharide-rich glycosaminoglycan elements of the ECM. Finally, a critical, motility-enabling role for the cellular architecture of the end bud is identified and the contribution of cadherins, the netrin/neogenin system, and ErbB2 to the structure and motility of end buds is discussed.
Collapse
Affiliation(s)
- Lindsay Hinck
- Sinsheimer Laboratories, Department of Cell, Molecular and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|