1
|
Elashry MI, Schneider VC, Heimann M, Wenisch S, Arnhold S. CRISPR/Cas9-Targeted Myostatin Deletion Improves the Myogenic Differentiation Parameters for Muscle-Derived Stem Cells in Mice. J Dev Biol 2025; 13:5. [PMID: 39982358 PMCID: PMC11843916 DOI: 10.3390/jdb13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn-/-) were compared with C2C12 (Mstn+/+) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn-/- cells. Mstn-/- cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn-/- clones. The Mstn-/- editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn-/- cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Victoria C. Schneider
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Manuela Heimann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| |
Collapse
|
2
|
Alonso-Puyo J, Izagirre-Fernandez O, Crende O, Seco-Calvo J, Fernandez-Atutxa A, Fernandez-Lazaro D, Garcia-Gallastegi P, Sanz B. The Non-Linear Profile of Aging: U-Shaped Expression of Myostatin, Follistatin and Intermediate Signals in a Longitudinal In Vitro Murine Cell Sarcopenia Model. Proteomes 2024; 12:34. [PMID: 39585121 PMCID: PMC11587466 DOI: 10.3390/proteomes12040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Sarcopenia is linked to the decline in muscle mass, strength and function during aging. It affects the quality and life expectancy and can lead to dependence. The biological process underlying sarcopenia is unclear, but the proteins myostatin and follistatin are involved in the balance between muscle breakdown and synthesis. While myostatin promotes muscle breakdown, follistatin promotes muscle growth, but several works have shown an inconsistent association of these proteins with aging-related parameters in serum of older people. We aimed to know the evolution of these putative sarcopenia biomarkers along muscle aging in an in vitro model. We created and phenotyped a longitudinal murine model (C2C12 cells). Then, we analyzed the protein and genetic expression of myostatin and follistatin as well as the signaling pathway regulators mTOR and RPS6KB1. Myostatin and RPS6KB1 showed a similar tendency in both protein and genetic expression with aging (basal-up-down). Follistatin, on the other hand, shows the opposite tendency (basal-down-up). Regarding mTOR, the tendencies differ when analyzing proteins (basal-up-down) or genes (basal-down-down). Our work demonstrates a U-shape tendency for myostatin and follistatin and for the signaling pathway regulators. These results could be of the utmost importance when designing further research on seeking molecular biomarkers and/or targets for sarcopenia.
Collapse
Affiliation(s)
- Janire Alonso-Puyo
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
| | - Oihane Izagirre-Fernandez
- Cell Biology and Histology Department, Basque Country University School of Medicine, Nursery University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (O.I.-F.); (O.C.)
| | - Olatz Crende
- Cell Biology and Histology Department, Basque Country University School of Medicine, Nursery University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (O.I.-F.); (O.C.)
| | - Jesús Seco-Calvo
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
- Institute of Biomedicine (IBIOMED), Universidad de León, Vegazana Universitary Campus, 27071 León, Spain
| | - Ainhoa Fernandez-Atutxa
- Nursery I Department, Basque Country University School of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain;
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Diego Fernandez-Lazaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
| | - Begoña Sanz
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
3
|
Sharma S, Patil AS. Myostatin's marvels: From muscle regulator to diverse implications in health and disease. Cell Biochem Funct 2024; 42:e4106. [PMID: 39140697 DOI: 10.1002/cbf.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a pivotal regulator of skeletal muscle growth in mammals. Its discovery has sparked significant interest due to its multifaceted roles in various physiological processes and its potential therapeutic implications. This review explores the diverse functions of myostatin in skeletal muscle development, maintenance and pathology. We delve into its regulatory mechanisms, including its interaction with other signalling pathways and its modulation by various factors such as microRNAs and mechanical loading. Furthermore, we discuss the therapeutic strategies aimed at targeting myostatin for the treatment of muscle-related disorders, including cachexia, muscular dystrophy and heart failure. Additionally, we examine the impact of myostatin deficiency on craniofacial morphology and bone development, shedding light on its broader implications beyond muscle biology. Through a comprehensive analysis of the literature, this review underscores the importance of further research into myostatin's intricate roles and therapeutic potential in human health and disease.
Collapse
Affiliation(s)
- Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Amol S Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
4
|
Jun L, Ding XW, Robinson M, Jafari H, Knight E, Geetha T, Greene MW, Babu JR. Targeting Molecular Mechanisms of Obesity- and Type 2 Diabetes Mellitus-Induced Skeletal Muscle Atrophy with Nerve Growth Factor. Int J Mol Sci 2024; 25:4307. [PMID: 38673892 PMCID: PMC11050157 DOI: 10.3390/ijms25084307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Skeletal muscle plays a critical role in metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Muscle atrophy, characterized by a decrease in muscle mass and function, occurs due to an imbalance between the rates of muscle protein synthesis and degradation. This study aimed to investigate the molecular mechanisms that lead to muscle atrophy in obese and T2DM mouse models. Additionally, the effect of nerve growth factor (NGF) on the protein synthesis and degradation pathways was examined. Male mice were divided into three groups: a control group that was fed a standard chow diet, and two experimental groups that were fed a Western diet. After 8 weeks, the diabetic group was injected with streptozotocin to induce T2DM. Each group was then further divided into NGF-treated or non-treated control group. In the gastrocnemius muscles of the Western diet group, increased expressions of myostatin, autophagy markers, and ubiquitin ligases were observed. Skeletal muscle tissue morphology indicated signs of muscle atrophy in both obese and diabetic mice. The NGF-treated group showed a prominent decrease in the protein levels of myostatin and autophagy markers. Furthermore, the NGF-treated group showed an increased Cyclin D1 level. Western diet-induced obesity and T2DM may be linked to muscle atrophy through upregulation of myostatin and subsequent increase in the ubiquitin and autophagy systems. Moreover, NGF treatment may improve muscle protein synthesis and cell cycling.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Autophagy/drug effects
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diet, Western
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscular Atrophy/metabolism
- Muscular Atrophy/etiology
- Muscular Atrophy/pathology
- Myostatin/metabolism
- Nerve Growth Factor/metabolism
- Obesity/metabolism
- Obesity/complications
- Obesity/pathology
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiao-Wen Ding
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hassan Jafari
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Emily Knight
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Michael W. Greene
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Saxena G, Gallagher S, Law TD, Maschari D, Walsh E, Dudley C, Brault JJ, Consitt LA. Sex-specific increases in myostatin and SMAD3 contribute to obesity-related insulin resistance in human skeletal muscle and primary human myotubes. Am J Physiol Endocrinol Metab 2024; 326:E352-E365. [PMID: 38088865 PMCID: PMC11193514 DOI: 10.1152/ajpendo.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
The purpose of the present study was to determine the effects of obesity and biological sex on myostatin expression in humans and to examine the direct effects of myostatin, SMAD2, and SMAD3 on insulin signaling in primary human skeletal muscle cells (HSkMCs). For cohort 1, 15 lean [body mass index (BMI): 22.1 ± 0.5 kg/m2; n = 8 males; n = 7 females] and 14 obese (BMI: 40.6 ± 1.4 kg/m2; n = 7 males; n = 7 females) individuals underwent skeletal muscle biopsies and an oral glucose tolerance test. For cohort 2, 14 young lean (BMI: 22.4 ± 1.9 kg/m2; n = 6 males; n = 8 females) and 14 obese (BMI: 39.3 ± 7.9 kg/m2; n = 6 males; n = 8 females) individuals underwent muscle biopsies for primary HSkMC experiments. Plasma mature myostatin (P = 0.041), skeletal muscle precursor myostatin (P = 0.048), and skeletal muscle SMAD3 (P = 0.029) were elevated in obese females compared to lean females, and plasma mature myostatin (r = 0.58, P = 0.029) and skeletal muscle SMAD3 (r = 0.56, P = 0.037) were associated with insulin resistance in females but not males. Twenty-four hours of myostatin treatment impaired insulin signaling in primary HSkMCs derived from females (P < 0.024) but not males. Overexpression of SMAD3, but not SMAD2, impaired insulin-stimulated AS160 phosphorylation in HSkMCs derived from lean females (-27%, P = 0.040), whereas silencing SMAD3 improved insulin-stimulated AS160 phosphorylation and insulin-stimulated glucose uptake (25%, P < 0.014) in HSkMCs derived from obese females. These results suggest for the first time that myostatin-induced impairments in skeletal muscle insulin signaling are sex specific and that increased body fat in females is associated with detrimental elevations in myostatin and SMAD3, which contribute to obesity-related insulin resistance.NEW & NOTEWORTHY Obesity is considered a main risk factor for the development of insulin resistance and type 2 diabetes. The present study utilizes in vivo and in vitro experiments in human skeletal muscle to demonstrate for the first time that females are inherently more susceptible to myostatin-induced insulin resistance, which is further enhanced with obesity due to increased myostatin and SMAD3 expression.
Collapse
Affiliation(s)
- Gunjan Saxena
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Sean Gallagher
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Timothy D Law
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
| | - Dominic Maschari
- College of Health Sciences and Professions, Ohio University, Athens, Ohio, United States
| | - Erin Walsh
- Biological Sciences Department, Ohio University, Athens, Ohio, United States
| | - Courtney Dudley
- Biological Sciences Department, Ohio University, Athens, Ohio, United States
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, United States
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
- Diabetes Institute, Ohio University, Athens, Ohio, United States
| |
Collapse
|
6
|
Lian J, Walker RG, D'Amico A, Vujic A, Mills MJ, Messemer KA, Mendello KR, Goldstein JM, Leacock KA, Epp S, Stimpfl EV, Thompson TB, Wagers AJ, Lee RT. Functional substitutions of amino acids that differ between GDF11 and GDF8 impact skeletal development and skeletal muscle. Life Sci Alliance 2023; 6:e202201662. [PMID: 36631218 PMCID: PMC9834663 DOI: 10.26508/lsa.202201662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-β family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.
Collapse
Affiliation(s)
- John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrea D'Amico
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kourtney R Mendello
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Krystynne A Leacock
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Soraya Epp
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emma V Stimpfl
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
7
|
Zhang D, Tao J, Zhang X, Ma X, Li C, Li H, Li W, Chen J, Liu H. Novel Pro-myogenic Factor Neoruscogenin Induces Muscle Fiber Hypertrophy by Inhibiting MSTN Maturation and Activating the Akt/mTOR Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:499-511. [PMID: 36563293 DOI: 10.1021/acs.jafc.2c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neoruscogenin is a plant-origin sapogenin that has the potential to modulate muscle growth among the small-molecule compounds that we previously predicted by artificial intelligence to target myostatin (MSTN). This study aimed to elucidate the biological role of neoruscogenin on muscle growth and its relationship with MSTN. Using molecular biological techniques, we found that neoruscogenin inhibited MSTN maturation, thereby repressing its signal transduction; further facilitated protein synthesis metabolism and reduced protein degradation metabolism, ultimately promoting the differentiation of myoblasts and hypertrophy of muscle fibers; and had the effect of repairing muscle injury. This study enriched the biological functions of neoruscogenin and provided a theoretical basis for the treatment of human myopathy and its application in the livestock industry.
Collapse
Affiliation(s)
- Dingding Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongmin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
9
|
Baumgartner M, Lischka J, Schanzer A, de Gier C, Walleczek NK, Greber-Platzer S, Zeyda M. Plasma Myostatin Increases with Age in Male Youth and Negatively Correlates with Vitamin D in Severe Pediatric Obesity. Nutrients 2022; 14:nu14102133. [PMID: 35631274 PMCID: PMC9144022 DOI: 10.3390/nu14102133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity already causes non-communicable diseases during childhood, but the mechanisms of disease development are insufficiently understood. Myokines such as myostatin and irisin are muscle-derived factors possibly involved in obesity-associated diseases. This explorative study aims to investigate whether myostatin and irisin are associated with metabolic parameters, including the vitamin D status in pediatric patients with severe obesity. Clinical, anthropometric and laboratory data from 108 patients with severe obesity (>97th percentile) aged between 9 and 19 years were assessed. Myostatin, its antagonist follistatin, and irisin, were measured from plasma by ELISA. Myostatin concentrations, particularly in males, positively correlated with age and pubertal stage, as well as metabolic parameters such as insulin resistance. Irisin concentrations correlated positively with HDL and negatively with LDL cholesterol values. For follistatin, the associations with age and pubertal stage were inverse. Strikingly, a negative correlation of myostatin with serum vitamin D levels was observed that remained significant after adjusting for age and pubertal stage. In conclusion, there is an independent association of low vitamin D and elevated myostatin levels. Further research may focus on investigating means to prevent increased myostatin levels in interventional studies, which might open several venues to putative options to treat and prevent obesity-associated diseases.
Collapse
|
10
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
11
|
Sandoval C, Lambo CA, Beason K, Dunlap KA, Satterfield MC. Effect of maternal nutrient restriction on skeletal muscle mass and associated molecular pathways in SGA and Non-SGA sheep fetuses. Domest Anim Endocrinol 2020; 72:106443. [PMID: 32222553 DOI: 10.1016/j.domaniend.2020.106443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
Abstract
Maternal nutrient restriction causes small for gestational age (SGA) offspring, which exhibit a higher risk for metabolic syndrome in adulthood. Fetal skeletal muscle is particularly sensitive to maternal nutrient restriction, which impairs muscle mass and metabolism. Using a 50% nutrient restriction treatment from gestational day (GD) 35 to GD 135 in sheep, we routinely observe a spectral phenotype of fetal weights within the nutrient-restricted (NR) group. Thus, our objective was to evaluate the effect of maternal NR on muscle mass, myofiber hypertrophy, myonuclear dotation, and molecular markers for protein synthesis and degradation, while accounting for the observed fetal weight variation. Within the NR group, we classified upper-quartile fetuses into NR(Non-SGA) (n = 11) and lower-quartile fetuses into NR(SGA) (n = 11). A control group (n = 12) received 100% of nutrient requirements throughout pregnancy. At GD 135, fetal plasma and organs were collected, and gastrocnemius and soleus muscles were sampled for investigation. Results showed decreased (P < 0.05) absolute tissue/organ weights, including soleus and gastrocnemius muscles, in NR(SGA) fetuses compared to NR(Non-SGA) and control. Myofiber cross-sectional area was smaller in NR(SGA) vs control for gastrocnemius (P = 0.0092) and soleus (P = 0.0097) muscles. Within the gastrocnemius muscle, the number of myonuclei per myofiber was reduced (P = 0.0442) in NR(SGA) compared to control. Cortisol may induce protein degradation. However, there were no differences in fetal cortisol among groups. Nevertheless, for gastrocnemius muscle, cortisol receptor (NR3C1; P = 0.0124), and FOXO1 (P = 0.0131) were upregulated in NR(SGA) compared to control while NR(Non-SGA) did not differ from the other 2 groups. KLF15 was upregulated (P = 0.0002) in both NR(SGA) and NR(Non-SGA); while FBXO32, TRIM63, BCAT2 or MSTN did not differ. For soleus muscle, KLF15 mRNA was upregulated (P = 0.0145) in NR(SGA) compared to control, and expression of MSTN was increased (P = 0.0259) in NR(SGA) and NR(Non-SGA) compared to control. At the protein level, none of the mentioned molecules nor total ubiquitin-labeled proteins differed among groups (P > 0.05). Indicators of protein synthesis (total and phosphorylated MTOR, EI4EBP1, and RPS6KB1) did not differ among groups in either muscle (P > 0.05). Collectively, results highlight that maternal NR unequally affects muscle mass in NR(SGA) and NR(Non-SGA) fetuses, and alterations in myofiber cross-sectional area and myonuclei number partially explain those differences.
Collapse
Affiliation(s)
- C Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - C A Lambo
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - K Beason
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
12
|
Kim DH, Choi YM, Suh Y, Shin S, Lee J, Hwang S, Lee K. Research Note: Association of temporal expression of myostatin with hypertrophic muscle growth in different Japanese quail lines. Poult Sci 2020; 99:2926-2930. [PMID: 32475426 PMCID: PMC7597642 DOI: 10.1016/j.psj.2019.12.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/28/2019] [Accepted: 12/22/2019] [Indexed: 01/06/2023] Open
Abstract
Myostatin (MSTN) negatively regulates in muscle growth and development. Among alternative splicing isoforms of avian MSTN, MSTN-A has antimyogenic activities and MSTN-B functions as a promyogenic factor. In this study, different lines of Japanese quail were used: a random bred control (RBC) and a heavy weight (HW) quail line with muscle hypertrophy. The objectives of the current study are to compare temporal expression of the MSTN isoforms in pectoralis major muscle (PM) between 2 quail lines and to relate MSTN expression with temporal changes in muscle growth and total amounts of DNA in PM. Gains of body weight (BW) and PM weight were greater until posthatch day (D) 28 (P < 0.001), and the fold increases in total DNA contents of PM were greater in the HW line compared with the RBC line during D7 to D28 (P < 0.05). PCR analysis showed that MSTN-A expression was greater at 14 D (E14) of embryonic age (P < 0.01), D7 (P = 0.052), and D14 (P < 0.01) in the RBC line compared with the HW line. At D28 and D75, expression of MSTN-A was greater in the HW line compared with the RBC line (P < 0.05). MSTN-B expression was barely detectable from E14 to D14 and measurable from D28 to D75 in the muscle of both lines. Ratios of the MSTN-B/-A form ranging from 0.15 to 0.29 indicate a minor expression of the B form. Taken together, the lesser expression levels of MSTN-A at E14, D7, and D14 are associated with the fast growth of PM, and greater MSTN-A expression at D28 and D75 are associated with a slowdown of PM growth in the HW line. These data indicate a negative association of MSTN expression with PM growth and provide a scientific basis for potential usage of MSTN expression as a selection marker for greater muscle growth in poultry.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus OH 43210, The United States
| | - Young Min Choi
- Department of Animal Sciences, Kyungpook National University, Sangju 37224, South Korea
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus OH 43210, The United States
| | - Sangsu Shin
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, South Korea
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus OH 43210, The United States; Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH 43210, The United States
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus OH 43210, The United States; Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH 43210, The United States.
| |
Collapse
|
13
|
Muscle Hyperplasia in Japanese Quail by Single Amino Acid Deletion in MSTN Propeptide. Int J Mol Sci 2020; 21:ijms21041504. [PMID: 32098368 PMCID: PMC7073117 DOI: 10.3390/ijms21041504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/07/2022] Open
Abstract
Mutation in myostatin (MSTN), a negative regulator of muscle growth in skeletal muscle, resulted in increased muscle mass in mammals and fishes. However, MSTN mutation in avian species has not been reported. The objective of this study was to generate MSTN mutation in quail and investigate the effect of MSTN mutation in avian muscle growth. Recently, a new targeted gene knockout approach for the avian species has been developed using an adenoviral CRISPR/Cas9 system. By injecting the recombinant adenovirus containing CRISPR/Cas9 into the quail blastoderm, potential germline chimeras were generated and offspring with three base-pair deletion in the targeted region of the MSTN gene was identified. This non-frameshift mutation in MSTN resulted in deletion of cysteine 42 in the MSTN propeptide region and homozygous mutant quail showed significantly increased body weight and muscle mass with muscle hyperplasia compared to heterozygous mutant and wild-type quail. In addition, decreased fat pad weight and increased heart weight were observed in MSTN mutant quail in an age- and sex-dependent manner, respectively. Taken together, these data indicate anti-myogenic function of MSTN in the avian species and the importance of cysteine 42 in regulating MSTN function.
Collapse
|
14
|
Li R, Zeng W, Ma M, Wei Z, Liu H, Liu X, Wang M, Shi X, Zeng J, Yang L, Mo D, Liu X, Chen Y, He Z. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs. Transgenic Res 2020; 29:149-163. [PMID: 31927726 DOI: 10.1007/s11248-020-00188-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, is a negative regulator of muscle growth and development. Disruption of the MSTN gene in various mammalian species markedly promotes muscle growth. Previous studies have mainly focused on the disruption of the MSTN peptide coding region in pigs but not on the modification of the signal peptide region. In this study, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system was used to successfully introduce two mutations (PVD20H and GP19del) in the MSTN signal peptide region of the indigenous Chinese pig breed, Liang Guang Small Spotted pig. Both mutations in signal peptide increased the muscle mass without inhibiting the production of mature MSTN peptide in the cells. Histological analysis revealed that the enhanced muscle mass in MSTN+/PVD20H pig was mainly due to an increase in the number of muscle fibers. The expression of MSTN in the longissimus dorsi muscle of MSTN+/PVD20H and MSTNKO/PVD20H pigs was significantly downregulated, whereas that of myogenic regulatory factors, including MyoD, Myogenin, and Myf-5, was significantly upregulated when compared to those in the longissimus dorsi muscle of wild-type pigs. Meanwhile, the mutations also activated the PI3K/Akt pathway. The results of this study indicated that precise editing of the MSTN signal peptide can enhance porcine muscle development without markedly affecting the expression of mature MSTN peptide, which could exert other beneficial biological functions in the edited pigs.
Collapse
Affiliation(s)
- Ruiqiang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Wu Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Miao Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Zixuan Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Hongbo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Jianhua Zeng
- Guangdong YIHAO Food Co., Ltd., Guangzhou, 510620, People's Republic of China
| | - Linfang Yang
- Guangdong YIHAO Food Co., Ltd., Guangzhou, 510620, People's Republic of China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
15
|
Exogenous Expression of an Alternative Splicing Variant of Myostatin Prompts Leg Muscle Fiber Hyperplasia in Japanese Quail. Int J Mol Sci 2019; 20:ijms20184617. [PMID: 31540432 PMCID: PMC6770055 DOI: 10.3390/ijms20184617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/03/2022] Open
Abstract
Myostatin (MSTN) negatively regulates muscle growth and development through inhibiting myoblast proliferation and differentiation. Five alternative splicing isoforms of MSTN (MSTN-A to MSTN-E) have been discovered in domestic avian species. MSTN-A has high expression in skeletal muscle and encodes the full-length peptide with anti-myogenic activity. Another isoform, MSTN-B, is also highly expressed in skeletal muscle and encodes a truncated peptide that has pro-myogenic capabilities in vitro, which include promoting the proliferation and differentiation of quail muscle precursor cells. The objective of this study was to investigate overexpression of MSTN-B in vivo by using two independent lines of transgenic Japanese quail with expression directed in the skeletal muscle. Unexpectedly, the chicken skeletal muscle alpha actin 1 (cACTA1) promoter resulted in restricted exogenous MSTN-B protein expression to certain skeletal muscles, such as the gastrocnemius and tibialis anterior, but not the pectoralis major muscle. Gastrocnemius weight as a percentage of body weight in transgenic quail was increased compared to non-transgenic quail at posthatch day 21 (D21) and posthatch D42. An increase in the size of the gastrocnemius in transgenic quail was attributed to an increase in fiber number but not fiber cross-sectional area (CSA). During embryonic development, paired box 7 (PAX7) expression was prolonged in the transgenic embryos, but other myogenic regulatory factors (MRFs) were unchanged after MSTN-B overexpression. Taken together, these data provide novel insights into the regulation of skeletal muscle development by alternative splicing mechanisms in avians.
Collapse
|
16
|
Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol 2019; 10:32. [PMID: 31044074 PMCID: PMC6477727 DOI: 10.1186/s40104-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- 1Universidade Federal da Integração Latino-Americana, UNILA, Instituto Latino-Americano de Ciências da Vida e da Natureza, Avenida Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR CEP 85870-901 Brazil
| | - Carolina Stefano Mantovani
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| | - Lúcia Elvira Alvares
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
17
|
Chen PR, Lee K. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development. J Anim Sci 2017; 94:3125-3134. [PMID: 27695802 DOI: 10.2527/jas.2016-0532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.
Collapse
|
18
|
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016; 118:1125-41; discussion 1142. [PMID: 27034275 DOI: 10.1161/circresaha.116.308391] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Tommaso Poggioli
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lida Katsimpardi
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sean M Buchanan
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Juhyun Oh
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sam Wattrus
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Bettina Heidecker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Yick W Fong
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lee L Rubin
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Peter Ganz
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Thomas B Thompson
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Amy J Wagers
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| | - Richard T Lee
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| |
Collapse
|
19
|
De Lima Jùnior DM, de Carvalho FF, Da Silva FJ, do N Rangel AH, Novaes LP, Difante G. Intrinsic factors affecting sheep meat quality: a review. REV COLOMB CIENC PEC 2016. [DOI: 10.17533/udea.rccp.v29n1a01] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Walpurgis K, Thomas A, Schänzer W, Thevis M. Myostatin inhibitors in sports drug testing: Detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and Western blotting. Proteomics Clin Appl 2015. [DOI: 10.1002/prca.201500043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katja Walpurgis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne/Bonn Germany
| |
Collapse
|
21
|
Sharma M, McFarlane C, Kambadur R, Kukreti H, Bonala S, Srinivasan S. Myostatin: expanding horizons. IUBMB Life 2015; 67:589-600. [PMID: 26305594 DOI: 10.1002/iub.1392] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022]
Abstract
Myostatin is a secreted growth and differentiation factor that belongs to the TGF-β superfamily. Myostatin is predominantly synthesized and expressed in skeletal muscle and thus exerts a huge impact on muscle growth and function. In keeping with its negative role in myogenesis, myostatin expression is tightly regulated at several levels including epigenetic, transcriptional, post-transcriptional, and post-translational. New revelations regarding myostatin regulation also offer mechanisms that could be exploited for developing myostatin antagonists. Increasingly, it is becoming clearer that besides its conventional role in muscle, myostatin plays a critical role in metabolism. Hence, molecular mechanisms by which myostatin regulates several key metabolic processes need to be further explored.
Collapse
Affiliation(s)
- Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Craig McFarlane
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Ravi Kambadur
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Himani Kukreti
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Sabeera Bonala
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Shruti Srinivasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
22
|
Bergen HR, Farr JN, Vanderboom PM, Atkinson EJ, White TA, Singh RJ, Khosla S, LeBrasseur NK. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet Muscle 2015; 5:21. [PMID: 26180626 PMCID: PMC4502935 DOI: 10.1186/s13395-015-0047-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Myostatin is a protein synthesized and secreted by skeletal muscle that negatively regulates muscle mass. The extent to which circulating myostatin levels change in the context of aging is controversial, largely due to methodological barriers. METHODS We developed a specific and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure concentrations of myostatin and two of its key inhibitors, follistatin-related gene (FLRG) protein and growth and serum protein-1 (GASP-1) in 80 younger (<40 years), 80 older (>65 years), and 80 sarcopenic older women and men. RESULTS Older women had 34 % higher circulating concentrations of myostatin than younger women. Per unit of lean mass, both older and sarcopenic older women had >23 % higher myostatin levels than younger women. By contrast, younger men had higher myostatin concentrations than older men with and without sarcopenia. Younger men had approximately twofold higher concentrations of myostatin than younger women; however, older women and sarcopenic older women had significantly higher relative myostatin levels than the corresponding groups of men. In both sexes, sarcopenic older subjects had the highest concentrations of FLRG. Circulating concentrations of myostatin exhibited positive, but not robust, correlations with relative muscle mass in both sexes. CONCLUSIONS Our data suggest that myostatin may contribute to the higher prevalence of sarcopenia in women but acts as a homeostatic regulator of muscle mass in men. Moreover, this new LC-MS/MS-based approach offers a means to determine the extent to which myostatin serves as a biomarker of muscle health in diverse conditions of muscle loss and deterioration.
Collapse
Affiliation(s)
- H Robert Bergen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.,Medical Genome Facility-Proteomics Core, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Joshua N Farr
- Division of Endocrinology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.,Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Patrick M Vanderboom
- Medical Genome Facility-Proteomics Core, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Elizabeth J Atkinson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Sundeep Khosla
- Division of Endocrinology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.,Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.,Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
23
|
Bassi D, Bueno PDG, Nonaka KO, Selistre-Araujo HS, Leal AMDO. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:148-53. [PMID: 25993678 DOI: 10.1590/2359-3997000000028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/17/2015] [Indexed: 11/22/2022]
|
24
|
|
25
|
Kambadur R. Reply to Rodgers: Does Myostatin Induce Insulin Resistance? J Biol Chem 2014; 289:21204. [DOI: 10.1074/jbc.o114.580621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Dschietzig TB. Myostatin — From the Mighty Mouse to cardiovascular disease and cachexia. Clin Chim Acta 2014; 433:216-24. [DOI: 10.1016/j.cca.2014.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 02/02/2023]
|
27
|
McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge X, Bonala S, Manickam R, Kambadur R, Sharma M. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One 2014; 9:e87687. [PMID: 24498167 PMCID: PMC3909192 DOI: 10.1371/journal.pone.0087687] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022] Open
Abstract
Growth factors, such as myostatin (Mstn), play an important role in regulating post-natal myogenesis. In fact, loss of Mstn has been shown to result in increased post-natal muscle growth through enhanced satellite cell functionality; while elevated levels of Mstn result in dramatic skeletal muscle wasting through a mechanism involving reduced protein synthesis and increased ubiquitin-mediated protein degradation. Here we show that miR-27a/b plays an important role in feed back auto-regulation of Mstn and thus regulation of post-natal myogenesis. Sequence analysis of Mstn 3' UTR showed a single highly conserved miR-27a/b binding site and increased expression of miR-27a/b was correlated with decreased expression of Mstn and vice versa both in vitro and in mice in vivo. Moreover, we also show that Mstn gene expression was regulated by miR-27a/b. Treatment with miR-27a/b-specific AntagomiRs resulted in increased Mstn expression, reduced myoblast proliferation, impaired satellite cell activation and induction of skeletal muscle atrophy that was rescued upon either blockade of, or complete absence of, Mstn. Consistent with this, miR-27a over expression resulted in reduced Mstn expression, skeletal muscle hypertrophy and an increase in the number of activated satellite cells, all features consistent with impaired Mstn function. Loss of Smad3 was associated with increased levels of Mstn, concomitant with decreased miR-27a/b expression, which is consistent with impaired satellite cell function and muscular atrophy previously reported in Smad3-null mice. Interestingly, treatment with Mstn resulted in increased miR-27a/b expression, which was shown to be dependent on the activity of Smad3. These data highlight a novel auto-regulatory mechanism in which Mstn, via Smad3 signaling, regulates miR-27a/b and in turn its own expression. In support, Mstn-mediated inhibition of Mstn 3' UTR reporter activity was reversed upon miR-27a/b-specific AntagomiR transfection. Therefore, miR-27a/b, through negatively regulating Mstn, plays a role in promoting satellite cell activation, myoblast proliferation and preventing muscle wasting.
Collapse
Affiliation(s)
- Craig McFarlane
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anuradha Vajjala
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Harikumar Arigela
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - XiaoJia Ge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabeera Bonala
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ravikumar Manickam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ravi Kambadur
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
An alternate protocol for establishment of primary caprine fetal myoblast cell culture: an in vitro model for muscle growth study. In Vitro Cell Dev Biol Anim 2013; 49:589-97. [PMID: 23739872 DOI: 10.1007/s11626-013-9642-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/19/2013] [Indexed: 12/17/2022]
Abstract
Cultured myoblasts have been used extensively as an in vitro model in understanding the underlying mechanisms of myogenesis. Various protocols for establishing a pure myoblast culture have been reported which involve the use of special procedures like flow cytometry and density gradient centrifugation. In goat, only a few protocols for establishing a myogenic cell culture are available and these protocols use adult muscle tissues which often does not yield sufficient numbers of precursor cells with adequate proliferative capacity. Considering the disadvantages of adult myoblasts, we are proposing an alternate protocol using caprine fetus which does not require any special procedures. In the present study, more than 90-95% fetal-derived cell populations had the typical spindle to polyhedral shape of myoblast cell and stained positive for desmin, hence confirming their myogenic origin. These cells attained the maximum confluency as early as 3-4 d against 3 wk by adult myoblasts indicating a better growth potential. Further, quantitative real-time PCR analysis revealed a higher expression (p < 0.01) of myogenic regulatory factors (i.e., myogenic determination factor 1, myogenic factor 5, and myogenin) and myostatin (MSTN) in the fetal as compared to the adult myoblasts. Consequently, higher proliferation and differentiation ability along with higher abundance of myogenic markers and MSTN make the fetal myoblasts a better in vitro model.
Collapse
|
29
|
Abstract
Humoral and tumoral factors collectively promote cancer-induced skeletal muscle wasting by increasing protein degradation. Although several humoral proteins, namely TNFα (tumour necrosis factor α) and IL (interleukin)-6, have been shown to induce skeletal muscle wasting, there is a lack of information regarding the tumoral factors that contribute to the atrophy of muscle during cancer cachexia. Therefore, in the present study, we have characterized the secretome of C26 colon cancer cells to identify the tumoral factors involved in cancer-induced skeletal muscle wasting. In the present study, we show that myostatin, a procachectic TGFβ (transforming growth factor β) superfamily member, is abundantly secreted by C26 cells. Consistent with myostatin signalling during cachexia, treating differentiated C2C12 myotubes with C26 CM (conditioned medium) resulted in myotubular atrophy due to the up-regulation of muscle-specific E3 ligases, atrogin-1 and MuRF1 (muscle RING-finger protein 1), and enhanced activity of the ubiquitin–proteasome pathway. Furthermore, the C26 CM also activated ActRIIB (activin receptor type II B)/Smad and NF-κB (nuclear factor κB) signalling, and reduced the activity of the IGF-I (insulin-like growth factor 1)/PI3K (phosphoinositide 3-kinase)/Akt pathway, three salient molecular features of myostatin action in skeletal muscles. Antagonists to myostatin prevented C26 CM-induced wasting in muscle cell cultures, further confirming that tumoral myostatin may be a key contributor in the pathogenesis of cancer cachexia. Finally, we show that treatment with C26 CM induced the autophagy–lysosome pathway and reduced the number of mitochondria in myotubes. These two previously unreported observations were recapitulated in skeletal muscles collected from C26 tumour-bearing mice.
Collapse
|
30
|
Peiris HN, Mitchell MD. The expression and potential functions of placental myostatin. Placenta 2012; 33:902-7. [PMID: 22818745 DOI: 10.1016/j.placenta.2012.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 01/09/2023]
Abstract
Myostatin (growth differentiation factor-8; GDF-8) is a potent negative regulator of muscle development affecting both proliferation and differentiation. Myostatin has been reported to enhance the release of cytokines, including TNF-α (a pro-inflammatory cytokine involved in implantation). In the human placenta, myostatin production is negatively correlated with gestational age and has been implicated in the control of glucose uptake. Preliminary data indicate its expression is primarily localized to cytotrophoblast and syncytiotrophoblast. The role of myostatin in the placenta, however, remains to be fully elucidated. We speculate that myostatin is key regulator that contributes to placentation and the regulation of placental function throughout pregnancy.
Collapse
Affiliation(s)
- H N Peiris
- The University of Queensland Centre for Clinical Research, Queensland, Australia
| | | |
Collapse
|
31
|
Jespersen JG, Nedergaard A, Andersen LL, Schjerling P, Andersen JL. Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining. Scand J Med Sci Sports 2011; 21:215-23. [DOI: 10.1111/j.1600-0838.2009.01044.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Smith IJ, Aversa Z, Alamdari N, Petkova V, Hasselgren PO. Sepsis downregulates myostatin mRNA levels without altering myostatin protein levels in skeletal muscle. J Cell Biochem 2011; 111:1059-73. [PMID: 20677217 DOI: 10.1002/jcb.22796] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myostatin is a negative regulator of muscle mass and has been reported to be upregulated in several conditions characterized by muscle atrophy. The influence of sepsis on myostatin expression and activity is poorly understood. Here, we tested the hypothesis that sepsis upregulates the expression and downstream signaling of myostatin in skeletal muscle. Because sepsis-induced muscle wasting is at least in part regulated by glucocorticoids, we also determined the influence of glucocorticoids on myostatin expression. Sepsis was induced in rats by cecal ligation and puncture and control rats were sham-operated. In other experiments, rats were injected intraperitoneally with dexamethasone (10 mg/kg) or corresponding volume of vehicle. Surprisingly, myostatin mRNA levels were reduced and myostatin protein levels were unchanged in muscles from septic rats. Muscle levels of activin A, follistatin, and total and phosphorylated Smad2 (p-Smad2) were not influenced by sepsis, suggesting that myostatin downstream signaling was not altered during sepsis. Interestingly, total and p-Smad3 levels were increased in septic muscle, possibly reflecting altered signaling through pathways other than myostatin. Similar to sepsis, treatment of rats with dexamethasone reduced myostatin mRNA levels and did not alter myostatin protein levels. Fasting, an additional condition characterized by muscle wasting, reduced myostatin mRNA and activin A protein levels, increased myostatin protein, and did not influence follistatin and p-Smad2 levels. Of note, total and p-Smad3 levels were reduced in muscle during fasting. The results suggest that sepsis and glucocorticoids do not upregulate the expression and activity of myostatin in skeletal muscle. The role of myostatin may vary between different conditions characterized by muscle wasting. Downstream signaling through Smad2 and 3 is probably regulated not only by myostatin but by other mechanisms as well.
Collapse
Affiliation(s)
- Ira J Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
33
|
Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc 2011; 42:2023-9. [PMID: 20386333 DOI: 10.1249/mss.0b013e3181e0b9a8] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE There is mounting evidence that skeletal muscle produces and secretes biologically active proteins or "myokines" that facilitate metabolic cross talk between organ systems. The increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Despite these intriguing findings, there have been few studies linking myostatin and insulin resistance. METHODS To explore this relationship in more detail, we quantified myostatin protein in muscle and plasma from 10 insulin-resistant, middle-aged (53.1 ± 5.5 yr) men before and after 6 months of moderate aerobic exercise training (1200 kcal·wk−¹ at 40%-55% VO2peak). To establish a cause-effect relationship, we also injected C57/Bl6 male mice with high physiological levels of recombinant myostatin protein. RESULTS Myostatin protein levels were shown to decrease in muscle (37%, P = 0.042, n = 10) and matching plasma samples (from 28.7 ng·mL−¹ pretraining to 22.8 ng·mL−¹ posttraining, P = 0.003, n = 9) with aerobic exercise. Furthermore, the strong correlation between plasma myostatin levels and insulin sensitivity (R² = 0.82, P < 0.001, n = 9) suggested a cause-effect relationship that was subsequently confirmed by inducing insulin resistance in myostatin-injected mice. A modest increase (44%) in plasma myostatin levels was also associated with significant reductions in the insulin-stimulated phosphorylation of Akt (Thr308) in both muscle and liver of myostatin-treated animals. CONCLUSIONS These findings indicate that both muscle and plasma myostatin protein levels are regulated by aerobic exercise and, furthermore, that myostatin is in the causal pathway of acquired insulin resistance with physical inactivity.
Collapse
Affiliation(s)
- Dustin S Hittel
- Human Performance Laboratory, Faculty of Kinesiology, Roger Jackson Center for Health and Wellness, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Paoli A, Pacelli QF, Toniolo L, Miotti D, Reggiani C. Latissimus dorsi fine needle muscle biopsy: a novel and efficient approach to study proximal muscles of upper limbs. J Surg Res 2010; 164:e257-63. [PMID: 20869075 DOI: 10.1016/j.jss.2010.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND The muscle biopsy based on the Bergström needle has been widely used for more than 40 y for diagnosis and experimental studies on muscle. More recently, thinner needles and tru-cut needles have also been introduced. Such techniques have been largely tested on various muscles, including the quadriceps, with few studies on upper limb muscles like deltoid, and no studies on latissimus dorsi muscle (LDM). In this study, we implemented and validated a protocol to collect samples of LDM for experimental purposes, causing minimal discomfort to volunteers. Two main problems were considered: the anatomical localization of the biopsy site and the selection of an appropriate needle. MATERIAL AND METHODS A strict protocol of palpatory anatomy was adopted and validated with ultrasonography to localize the biopsy site in LDM in subjects with various degrees of muscle development. A 14 gauge tru-cut needle was selected as the smallest and still effective device for sampling. Biopsy sampling was performed in 18 subjects without any complications, or complains of pain or functional limitations. RESULTS Approximately 4 mg of tissue were recovered from each introduction of the inner notched cannula of the needle. With three consecutive samplings, an amount of tissue sufficient to prepare proteins for gel electrophoresis and Western blot and to dissect single fiber segment for functional experiments, was obtained. CONCLUSIONS Taken together, the results suggest that this biopsy technique opens to experimental studies muscles until now never considered accessible.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Anatomy and Physiology, University of Padova, Padova, Italy.
| | | | | | | | | |
Collapse
|
35
|
Lee SJ. Extracellular Regulation of Myostatin: A Molecular Rheostat for Muscle Mass. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2010; 10:183-194. [PMID: 21423813 PMCID: PMC3060380 DOI: 10.2174/187152210793663748] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myostatin (MSTN) is a transforming growth factor-ß family member that plays a critical role in regulating skeletal muscle mass. Genetic studies in multiple species have demonstrated that mutations in the Mstn gene lead to dramatic and widespread increases in muscle mass as a result of a combination of increased fiber numbers and increased fiber sizes. MSTN inhibitors have also been shown to cause significant increases in muscle growth when administered to adult mice. As a result, there has been an extensive effort to understand the mechanisms underlying MSTN regulation and activity with the goal of developing the most effective strategies for targeting this signaling pathway for clinical applications. Here, I review the current state of knowledge regarding the regulation of MSTN extracellularly by binding proteins and discuss the implications of these findings both with respect to the fundamental physiological role that MSTN plays in regulating tissue homeostasis and with respect to the development of therapeutic agents to combat muscle loss.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, PCTB 803, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
36
|
Growth hormone differentially regulates growth and growth-related gene expression in closely related fish species. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:465-73. [PMID: 19654052 DOI: 10.1016/j.cbpa.2009.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/21/2022]
Abstract
Zebrafish (Danio rerio) have become an important model organism for developmental biology and human health studies. We recently demonstrated differential growth patterns between the zebrafish and a close relative the giant danio (Danio aequipinnatus), where the giant danio appears to exhibit indeterminate growth similar to most fish species important for commercial production, while zebrafish exhibit determinate growth more similar to mammalian growth. This study focused on evaluating muscle growth regulation differences in adult zebrafish and giant danio utilizing growth hormone treatment as a mode of growth manipulation. Growth hormone treatment resulted in increased overall growth in giant danio, but failed to increase growth in the zebrafish. Growth hormone treatment increased muscle IGF-I and GHrI gene expression in both species, but to a larger degree in the giant danio. In contrast, zebrafish exhibited a larger increase in IrA and IGF-IrB gene expression in muscle in response to GH treatment. In addition muscle myostatin levels were differentially regulated between the two species, with a down-regulation observed in rapidly growing, GH-treated giant danio and an up-regulation in zebrafish not actively growing in response to GH. This is the first report of differential expression of growth-regulating genes in closely related fish species exhibiting opposing growth paradigms. These results further support the role that the zebrafish and giant danio can play important model organisms for determinate and indeterminate growth.
Collapse
|
37
|
Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 2009; 58:30-8. [PMID: 18835929 PMCID: PMC2606890 DOI: 10.2337/db08-0943] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Obesity is associated with endocrine abnormalities that predict the progression of insulin resistance to type 2 diabetes. Because skeletal muscle has been shown to secrete proteins that could be used as biomarkers, we characterized the secreted protein profile of muscle cells derived from extremely obese (BMI 48.8 +/- 14.8 kg/m(2); homeostasis model assessment [HOMA] 3.6 +/- 1.0) relative to lean healthy subjects (BMI 25.7 +/- 3.2 kg/m(2); HOMA 0.8 +/- 0.2). RESEARCH DESIGN AND METHODS We hypothesized that skeletal muscle would secrete proteins that predict the severity of obesity. To test this hypothesis, we used a "bottom-up" experimental design using stable isotope labeling by amino acids in culture (SILAC) and liquid chromatography/mass spectometry/mass spectometry (LC-MS/MS) to both identify and quantify proteins secreted from cultured myotubes derived from extremely obese compared with healthy nonobese women. RESULTS Using SILAC, we discovered a 2.9-fold increase in the secretion of myostatin from extremely obese human myotubes. The increased secretion and biological activity of myostatin were validated by immunoblot (3.16 +/- 0.18, P < 0.01) and a myoblast proliferation assay using conditioned growth medium. Myostatin was subsequently shown to increase in skeletal muscle (23%, P < 0.05) and plasma (35%, P < 0.05) and to correlate (r(2) = 0.6, P < 0.05) with the severity of insulin resistance. CONCLUSIONS Myostatin is a potent antianabolic regulator of muscle mass that may also play a role in energy metabolism. These findings show that increased expression of myostatin in skeletal muscle with obesity and insulin resistance results in elevated circulating myostatin. This may contribute to systemic metabolic deterioration of skeletal muscle with the progression of insulin resistance to type 2 diabetes.
Collapse
Affiliation(s)
- Dustin S Hittel
- Human Performance Laboratory, Faculty of Kinesiology, Roger Jackson Center for Health and Wellness, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
38
|
Oldham JM, Osepchook CC, Jeanplong F, Falconer SJ, Matthews KG, Conaglen JV, Gerrard DF, Smith HK, Wilkins RJ, Bass JJ, McMahon CD. The decrease in mature myostatin protein in male skeletal muscle is developmentally regulated by growth hormone. J Physiol 2008; 587:669-77. [PMID: 19047209 DOI: 10.1113/jphysiol.2008.161521] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myostatin inhibits myogenesis and there is reduced abundance of the mature protein in skeletal muscles of adult male compared with female mice. This reduction probably occurs after translation, which suggests that it is a regulated mechanism to reduce the availability of myostatin in males. Reduced myostatin may, thereby, contribute to the development of sexually dimorphic growth of skeletal muscle. Our first objective was to determine if the decrease in mature myostatin protein occurs before the linear growth phase to aid growth, or afterwards to maintain the mass of adult muscle. Mice were killed from 2 to 32 weeks and the gastrocnemius muscle was excised. Myostatin mRNA increased from 2 to 32 weeks and was higher in males than females (P < 0.001). In contrast, mature protein decreased in males after 6 weeks (P < 0.001). Our second objective was to determine if growth hormone (GH) induces the decrease in mature myostatin protein. GH increased myostatin mRNA and decreased the abundance of mature protein in hypophysectomised mice (P < 0.05). Our final objective was to determine if the decrease in mature protein occurs in skeletal muscles of male Stat5b(-/-) mice (Stat5b mediates the actions of GH). As expected, mature myostatin protein was not reduced in Stat5b(-/-) males compared with females. However, myostatin mRNA remained higher in males than females irrespective of genotype. These data suggest that: (1) the decrease in mature myostatin protein is developmentally regulated, (2) GH acting via Stat5b regulates the abundance of mature myostatin and (3) GH acts via a non-Stat5b pathway to regulate myostatin mRNA.
Collapse
Affiliation(s)
- Jenny M Oldham
- Growth Physiology Group, AgResearch Ltd., Hamilton, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gene expression profiling in skeletal muscle of Holstein-Friesian bulls with single-nucleotide polymorphism in the myostatin gene 5’-flanking region. J Appl Genet 2008; 49:237-50. [DOI: 10.1007/bf03195620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Real-time polymerase chain reaction, in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development of Dicentrarchus labrax (Pisces: Osteichthyes). Cell Tissue Res 2007; 331:643-58. [PMID: 18071755 DOI: 10.1007/s00441-007-0517-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/12/2007] [Indexed: 01/22/2023]
Abstract
The distribution of insulin-like growth factor-I (IGF-I) and myostatin (MSTN) was investigated in sea bass (Dicentrarchus labrax) by real-time polymerase chain reaction (PCR), in situ hybridization (ISH) and immunohistochemistry. Real-time PCR indicated that IGF-I mRNA increased from the second day post-hatching and that this trend became significant from day 4. ISH confirmed a strong IGF-I mRNA expression from the first week post-hatching, with the most abundant expression being detected in the liver of larvae and adults. Real-time PCR also showed that the level of MSTN mRNA increased significantly from day 25. The expression of MSTN mRNA was higher in muscle and almost absent in other anatomical regions in both larvae and adults. Interestingly, the lateral muscle showed a quantitative differential expression of IGF-I and MSTN mRNAs in red and white muscle, depending on the developmental stage examined. IGF-I immunoreactivity was detected in developing intestine at hatching and in skeletal muscle, skin and yolk sac. MSTN immunostaining was evident in several tissues and organs in both larvae and adults. Both IGF-I and MSTN proteins were detected in the liver from day 4 post-hatching and, subsequently, in the kidney and heart muscle from day 10. Our results suggest, on the basis of a combined methodological approach, that IGF-I and MSTN are involved in the regulation of somatic growth in the sea bass.
Collapse
|
41
|
Patruno M, Caliaro F, Maccatrozzo L, Sacchetto R, Martinello T, Toniolo L, Reggiani C, Mascarello F. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth. Differentiation 2007; 76:168-81. [PMID: 17573916 DOI: 10.1111/j.1432-0436.2007.00189.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myogenesis is driven by an extraordinary array of cellular signals that follow a common expression pattern among different animal phyla. Myostatin (mstn) is a secreted growth factor that plays a pivotal role in skeletal muscle mass regulation. The aim of the present study was to investigate mstn expression in a large mammal (the pig) in order to ascertain whether distinct expression changes of this factor might be linked to the fiber-type composition of the muscle examined and/or to specific developmental stages. To assess the expression pattern of mstn in relation to myogenic proliferative (Pax7 and MyoD) and differentiative (myogenin) markers, we evaluated muscles with different myosin heavy-chain compositions sampled during pre- and post-natal development and on myogenic cells isolated from the same muscles. Skeletal muscles showed higher levels of mRNA for mstn and all other genes examined during fetal development than after birth. The wide distribution of mstn was also confirmed by immunohistochemistry experiments supporting evidence for cytoplasmic staining in early fetal periods as well as the localization in type 1 fibers at the end of the gestation period. Extraocular muscles, in contrast, did not exhibit decreasing mRNA levels for mstn or other genes even in adult samples and expressed higher levels of both mstn mRNA and protein compared with skeletal muscles. Experiments carried out on myogenic cells showed that mstn mRNA levels decreased when myoblasts entered the differentiation program and that cells isolated at early post-natal stages maintained a high level of Pax7 expression. Our results showed that mstn had a specific expression pattern whose variations depended on the muscle type examined, thus supporting the hypothesis that at birth, porcine myogenic cells continue to be influenced by hyperplastic/proliferative mechanisms.
Collapse
Affiliation(s)
- Marco Patruno
- Department of Experimental Veterinary Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wojcik S, Nogalska A, McFerrin J, Engel WK, Oledzka G, Askanas V. Myostatin precursor protein is increased and associates with amyloid-beta precursor protein in inclusion-body myositis culture model. Neuropathol Appl Neurobiol 2007; 33:238-42. [PMID: 17359364 DOI: 10.1111/j.1365-2990.2006.00821.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Xi G, Hathaway MR, Dayton WR, White ME. Growth factor messenger ribonucleic acid expression during differentiation of porcine embryonic myogenic cells. J Anim Sci 2007; 85:143-50. [PMID: 17179550 DOI: 10.2527/jas.2006-351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growth factors, IGF-I and II, their binding proteins, IGFBP, and members of the transforming growth factor (TGF) superfamily (myostatin and TGFbeta1) are known to regulate proliferation and differentiation of myogenic cells. We hypothesized that changes in the relative expression of members of the IGF and TGFbeta systems play a significant role in regulating myogenesis in porcine embryonic myogenic cell (PEMC) cultures. Therefore, determining the expression patterns of these factors during PEMC myogenesis is important. Consequently, we used real-time PCR to explore the pattern of IGF-I; IGF-II; IGFBP-2, -3, and -5; IGF-type-I receptor; myogenin; myostatin; and TGFbeta1 mRNA expression during PEMC myogenesis. The progression of differentiation was assessed using creatine kinase activity and myogenin mRNA expression. As anticipated, creatine kinase activity was low in PEMC cultures at 48 h and increased 20-fold (P < 0.0001) between 48 h and its peak at 144 h. Similarly, myogenin mRNA was low at 48 h and increased approximately 5-fold (P < 0.0001) as differentiation progressed, peaking at 120 h and decreasing at 144 h. The patterns of IGF-I and IGFBP-2 mRNA expression were similar and were relatively lower in 48-h PEMC cultures, increasing approximately 5-fold (P < 0.0001) to their greatest levels at 120 h. In contrast, IGF-II and IGFBP-5 mRNA levels were relatively high at 48 h, peaking at 72 h, and steadily decreasing by 60 and 80%, respectively (P < 0.001), at 144 h. The level of IGF-type-I receptor mRNA was relatively high until 96 h of culture, after which it decreased 40% (P < 0.01), reaching a low at 144 h. Levels of IGFBP-3 mRNA were relatively high at 48 h, dropped approximately 40% to their lowest level at 72 h (P < 0.001), and then increased approximately 60% (P < 0.001) to their greatest levels at 144 h. Levels of TGFbeta1 mRNA decreased approximately 30% (P < 0.0001) between 48 and 96 h, then quickly rebounded to a peak at 120 h, and by 144 h had dropped to the levels seen at 72 h. Myostatin mRNA was at its greatest level at 48 h and declined rapidly between 72 and 96 h, finally decreasing by approximately 80% at 144 h (P < 0.0001). Our data demonstrate that these factors are differentially regulated during PEMC myogenesis and provide new information about their pattern of mRNA expression in cultured porcine muscle cells.
Collapse
Affiliation(s)
- G Xi
- Animal Growth and Development Laboratory, Department of Animal Science, University of Minnesota, 350 ABLMS, 1354 Eckles Avenue, St. Paul 55108, USA
| | | | | | | |
Collapse
|
44
|
Nogalska A, Wojcik S, Engel WK, McFerrin J, Askanas V. Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis. Exp Neurol 2006; 204:610-8. [PMID: 17261282 PMCID: PMC1909753 DOI: 10.1016/j.expneurol.2006.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 11/21/2022]
Abstract
Sporadic-inclusion body myositis (s-IBM) is the most common progressive muscle disease of older persons. It leads to pronounced muscle fiber atrophy and weakness, and there is no successful treatment. We have previously shown that myostatin precursor protein (MstnPP) and myostatin (Mstn) dimer are increased in biopsied s-IBM muscle fibers, and proposed that MstnPP/Mstn increase may contribute to muscle fiber atrophy and weakness in s-IBM patients. Mstn is known to be a negative regulator of muscle fiber mass. It is synthesized as MstnPP, which undergoes posttranslational processing in the muscle fiber to produce mature, active Mstn. To explore possible mechanisms involved in Mstn abnormalities in s-IBM, in the present study we utilized primary cultures of normal human muscle fibers and experimentally modified the intracellular micro-environment to induce endoplasmic-reticulum (ER)-stress, thereby mimicking an important aspect of the s-IBM muscle fiber milieu. ER stress was induced by treating well-differentiated cultured muscle fibers with either tunicamycin or thapsigargin, both well-established ER stress inducers. Our results indicate for the first time that the ER stress significantly increased MstnPP mRNA and protein. The results also suggest that in our system ER stress activates NF-kappaB, and we suggest that MstnPP increase occurred through the ER-stress-activated NF-kappaB. We therefore propose a novel mechanism leading to the Mstn increase in s-IBM. Accordingly, interfering with pathways inducing ER stress, NF-kappaB activation or its action on the MstnPP gene promoter might prevent Mstn increase and provide a new therapeutic approach for s-IBM and, possibly, for muscle atrophy in other neuromuscular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Valerie Askanas
- *Corresponding author: Valerie Askanas, MD, PhD, USC Neuromuscular Center, Good Samaritan Hospital, 637 S. Lucas Ave, Los Angeles, CA 90017. Tel. 213-975-9950. Fax.213-975-9955. e-mail:
| |
Collapse
|
45
|
Wenzel K, Zabojszcza J, Carl M, Taubert S, Lass A, Harris CL, Ho M, Schulz H, Hummel O, Hubner N, Osterziel KJ, Spuler S. Increased Susceptibility to Complement Attack due to Down-Regulation of Decay-Accelerating Factor/CD55 in Dysferlin-Deficient Muscular Dystrophy. THE JOURNAL OF IMMUNOLOGY 2005; 175:6219-25. [PMID: 16237120 DOI: 10.4049/jimmunol.175.9.6219] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dysferlin is expressed in skeletal and cardiac muscles. However, dysferlin deficiency results in skeletal muscle weakness, but spares the heart. We compared intraindividual mRNA expression profiles of cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and found down-regulation of the complement inhibitor, decay-accelerating factor/CD55, in skeletal muscle only. This finding was confirmed on mRNA and protein levels in two additional dysferlin-deficient mouse strains, A/J mice and Dysf-/- mice, as well as in patients with dysferlin-deficient muscular dystrophy. In vitro, the absence of CD55 led to an increased susceptibility of human myotubes to complement attack. Evidence is provided that decay-accelerating factor/CD55 is regulated via the myostatin-SMAD pathway. In conclusion, a novel mechanism of muscle fiber injury in dysferlin-deficient muscular dystrophy is demonstrated, possibly opening therapeutic avenues in this to date untreatable disorder.
Collapse
Affiliation(s)
- Katrin Wenzel
- Myology Research Group, Department of Neurology, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|