1
|
Sağsöz H, Liman N, Akbalık ME, Alan E, Saruhan BG, Ketani MA, Erdoğan S. Expression of cadherins and some connective tissue components in cow uterus and placenta during pregnancy. Res Vet Sci 2022; 151:64-79. [PMID: 35870371 DOI: 10.1016/j.rvsc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
The implantation and placental development processes are regulated with cell adhesion molecules and remodeling of the maternal endometrium's extracellular matrices (ECM) and fetal chorion. This study aimed to investigate the distribution and localization of some classical cadherins (E-, N-, and P-cadherins) and extracellular matrix components collagen type 5α1, fibronectin, and laminin in the cow placentomes during pregnancy using immunohistochemical and Western blotting analyses. The study results confirmed the expression of E- and P-cadherins, collagen type Vα1 (COLVα1), fibronectin, and laminin in the cow placentomes, but not N-cadherin. Throughout the pregnancy, E- and P- cadherins, COLVα1, and laminin were localized in the luminal and glandular epithelium of the inter-caruncular endometrium, caruncular epithelium, and the uninucleate (UNCs) and binucleate trophoblast giant cells (BNCs/TGCs). E- cadherin immunoreactivity in the first pregnancy period was strong in the UNCs while moderate in the BNCs/TGCs. However, it was weak in both trophoblast in the second and third pregnancy periods. In the fetal trophoblasts, P- cadherin and laminin immunostainings were more intense in the BNCs/TGCs than UNCs. The fetal and maternal stromal cells were also positive for P- cadherin, COLVα1, fibronectin, and laminin. The immunostaining intensity of COLVα1 and fibronectin in the stromal extracellular matrix of the placentomes decreased as the pregnancy progressed. The endothelia of fetal and maternal vessels were positive for all proteins. The presence and distinct localization of cadherins and ECM proteins in the cow placentome components support the role of these molecules in regulating placental cell growth, migration, and matrix production during pregnancy.
Collapse
Affiliation(s)
- Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039 Kayseri, Turkey.
| | - M Erdem Akbalık
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039 Kayseri, Turkey
| | - Berna Güney Saruhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - M Aydın Ketani
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, 59000, Tekirdağ, Turkey
| |
Collapse
|
2
|
Sheftel CM, Hernandez LL. Serotonin stimulated parathyroid hormone related protein induction in the mammary epithelia by transglutaminase-dependent serotonylation. PLoS One 2020; 15:e0241192. [PMID: 33095824 PMCID: PMC7584195 DOI: 10.1371/journal.pone.0241192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mammary-derived serotonin has been implicated in breast-to-bone communication during lactation by increasing parathyroid hormone related-protein (PTHrP) in the mammary gland. It is well established that PTHrP acts on the bone to liberate calcium for milk synthesis during lactation; however, the mechanism of serotonin’s regulation of PTHrP has not been fully elucidated. Recently, serotonylation has been shown to be involved in a variety of physiological processes mediated by serotonin. Therefore, we investigated whether serotonylation is involved in serotonin’s regulation of PTHrP in the mammary gland using lactogenically differentiated mouse mammary epithelial cells. We investigated the effect of increased intracellular serotonin using the antidepressant fluoxetine or 5-hydroxytryptophan (serotonin precursor), with or without transglutaminase inhibition and the corresponding action on PTHrP induction and activity. Treatment with fluoxetine or 5-hydroxytryptophan significantly increased intracellular serotonin concentrations and subsequently increased PTHrP gene expression, which was reduced with transglutaminase inhibition. Furthermore, we determined that transglutaminase activity is increased with lactogenic differentiation and 5-hydroxytryptophan or fluoxetine treatment. We investigated whether RhoA, Rac1, and Rab4 were potential serotonylation target proteins. We speculate that RhoA is potentially a serotonylation target protein. Our data suggest that serotonin regulates PTHrP induction in part through the process of serotonylation under lactogenic conditions in mouse mammary epithelial cells.
Collapse
Affiliation(s)
- Celeste M. Sheftel
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laura L. Hernandez
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
3
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
PTHrP is essential for normal morphogenetic and functional development of the murine placenta. Dev Biol 2017; 430:325-336. [DOI: 10.1016/j.ydbio.2017.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022]
|
5
|
Lim W, Bae H, Bazer FW, Song G. Functional Roles of Eph A-Ephrin A1 System in Endometrial Luminal Epithelial Cells During Early Pregnancy. J Cell Physiol 2016; 232:1527-1538. [DOI: 10.1002/jcp.25659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/20/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Whasun Lim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science; Texas A&M University; College Station Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| |
Collapse
|
6
|
Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, Lefebvre L, Cook SJ, Dean W, Hemberger M, Reik W. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev Cell 2016; 36:152-63. [PMID: 26812015 PMCID: PMC4729543 DOI: 10.1016/j.devcel.2015.12.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. Oocyte-derived DNA methylation is an important regulator of trophoblast transcription DNA methylation controls trophoblast cell adhesion Silencing of Polycomb gene Scml2 is necessary for normal trophoblast development
Collapse
Affiliation(s)
- Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Vicente Perez-Garcia
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Caley
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Elena Fineberg
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Louis Lefebvre
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Simon J Cook
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
7
|
Martín MJ, Calvo N, de Boland AR, Gentili C. Molecular mechanisms associated with PTHrP-induced proliferation of colon cancer cells. J Cell Biochem 2015; 115:2133-45. [PMID: 25053227 DOI: 10.1002/jcb.24890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Abstract
Parathyroid Hormone-related Protein (PTHrP) is normally produced in many tissues and is recognized for its endocrine, paracrine, autocrine and intracrine modes of action. PTHrP is also implicated in different types of cancer and its expression correlates with the severity of colon carcinoma. Using the human colon cell line Caco-2 we recently obtained evidence that PTHrP, through a paracrine pathway, exerts a protective effect under apoptotic conditions. However, if exogenous PTHrP is able or not to induce the proliferation of these intestinal tumor cells is not known. We found that PTHrP treatment increases the number of live Caco-2 cells. The hormone induces the phosphorylation and nuclear translocation of ERK 1/2, α p38 MAPK, and Akt, without affecting JNK phosphorylation. In addition, PTHrP-dependent ERK phosphorylation is reverted when PI3K activity was inhibited. Following MAPKs nuclear translocation, the transcription factors ATF-1 and CREB were activated in a biphasic manner. In addition PTHrP induces the translocation into the nucleus of β-catenin, protein that plays key role in maintaining the growth and proliferation of colorectal cancer, and increases the amount of both positive cell cycle regulators c-Myc and Cyclin D. Studies with ERK1/2, α p38 MAPK, and PI3K specific inhibitors showed that PTHrP regulates Caco-2 cell proliferation via these signaling pathways. In conclusion, the results obtained in this work expand our knowledge on the role of exogenous PTHrP in intestinal tumor cells and identify the signaling pathways that are involved in the mitogenic effect of the hormone on Caco-2 cells.
Collapse
Affiliation(s)
- María Julia Martín
- Departamento Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
8
|
Rai A, Cross JC. Three-dimensional cultures of trophoblast stem cells autonomously develop vascular-like spaces lined by trophoblast giant cells. Dev Biol 2014; 398:110-9. [PMID: 25499676 DOI: 10.1016/j.ydbio.2014.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/12/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The maternal blood space in the mouse placenta is lined not by endothelial cells but rather by various subtypes of trophoblast giant cells (TGCs), defined by their location and different patterns of gene expression. While TGCs invade the spiral arteries to displace the maternal endothelium, the rest of the vascular space is created de novo but the mechanisms are not well understood. We cultured mouse trophoblast stem (TS) cells in suspension and found that they readily form spheroids (trophospheres). Compared to cells grown in monolayer, differentiating trophospheres showed accelerated expression of TGC-specific genes. Morphological and gene expression studies showed that cavities form within the trophospheres that are primarily lined by Prl3d1/Pl1α-positive cells analogous to parietal-TGCs (P-TGCs) which line the maternal venous blood within the placenta. Lumen formation in trophospheres and in vivo was associated with cell polarization including CD34 sialomucin deposition on the apical side and cytoskeletal rearrangement. While P-TGCs preferentially formed in trophospheres at atmospheric oxygen levels (19%), decreasing oxygen to 3% shifted differentiation towards Ctsq-positive sinusoidal and/or channel TGCs. These studies show that trophoblast cells have the intrinsic ability to form vascular channels in ways analogous to endothelial cells. The trophosphere system will be valuable for assessing mechanisms that regulate specification of different TGC subtypes and their morphogenesis into vascular spaces.
Collapse
Affiliation(s)
- Anshita Rai
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
9
|
Bhatia V, Rastellini C, Han S, Aronson JF, Greeley GH, Falzon M. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G533-49. [PMID: 25035110 PMCID: PMC4154118 DOI: 10.1152/ajpgi.00428.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- 1Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas;
| | | | - Song Han
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Judith F. Aronson
- 3Department of Pathology, University of Texas Medical Branch, Galveston, Texas; and
| | - George H. Greeley
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
10
|
Erbach GT, Biggers JD, Manning PC, Nowak RA. Localization of parathyroid hormone-related protein in the preimplantation mouse embryo is associated with events of blastocyst hatching. J Assist Reprod Genet 2014; 30:1009-15. [PMID: 24052330 DOI: 10.1007/s10815-013-0094-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To determine the pattern of expression of parathyroid hormone-related protein (PTHrP) and its receptor, parathyroid hormone receptor 1 (PTHR1), in mouse embryos in different stages of preimplantation development. METHODS Embryos were cultured from the pronuclear zygote stage and harvested as 2-cell, 4-cell and 8-cell embryos, morulae and blastocysts. RT-PCR was carried out on mRNAs of these and of trophoblast outgrowths for detection of PTHrP and PTHR1. Whole mounted embryos intact or stripped of zonae pellucidae were immunofluorescently stained for PTHrP and PTH receptor and observed with confocal microscopy. RESULTS PTHrP mRNA was present in the pronuclear zygote, not present in 2-cell, 4-cell and uncompacted 8-cell embryos, present in the 8-cell compacting embryo, and not detected in 16-cell morulae or blastocysts. The mRNA was present in trophoblasts growing on fibronectin beds. mRNA for PTHR1 was detected in the pronuclear zygote, then undetected until the compacted 8-cell stage and thereafter. PTH receptor protein was observed in 2-cell embryos, morulae and in the inner cell mass and trophectoderm of blastocysts. PTHrP was observed dispersed in the cytoplasm of 2-cell, 4-cell and uncompacted 8-cell embryos, and in distinct foci near the nuclei of morulae. In blastocysts, PTHrP appeared on the apical surface of only trophoblast cells which had extruded from the zona pellucida. Fully hatched blastocysts expressed the protein on the apical side of all trophoblasts. When morulae were prematurely stripped of their zonae, PTHrP was observed on the embryos' outer surface. CONCLUSIONS PTHrP protein is expressed throughout early embryo development, and its receptor PTHR1 is expressed from the morula stage. Embryo hatching is associated with translocation of PTHrP to the apical plasma membrane of trophoblasts. PTHrP may thus have autocrine effects on the developing blastocyst.
Collapse
Affiliation(s)
- Gregory T Erbach
- Department of Animal Sciences, University of Illinois, 310 Animal Science Laboratory, 1207 W. Gregory Drive, Urbana, IL, 61801, USA
| | | | | | | |
Collapse
|
11
|
Cross JC. More of a good thing or less of a bad thing: gene copy number variation in polyploid cells of the placenta. PLoS Genet 2014; 10:e1004330. [PMID: 24784435 PMCID: PMC4006710 DOI: 10.1371/journal.pgen.1004330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- James C. Cross
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
12
|
Hannibal RL, Chuong EB, Rivera-Mulia JC, Gilbert DM, Valouev A, Baker JC. Copy number variation is a fundamental aspect of the placental genome. PLoS Genet 2014; 10:e1004290. [PMID: 24785991 PMCID: PMC4006706 DOI: 10.1371/journal.pgen.1004290] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication. Generally, every mammalian cell has the same complement of each part of its genome. However, copy number variation (CNV) can occur, where, compared to the rest of its genome, a cell has either more or less of a specific genomic region. It is unknown whether CNVs cause disease, or whether they are a normal aspect of cell biology. We investigated CNVs in polyploid trophoblast giant cells (TGCs) of the mouse placenta, which have up to 1,000 copies of the genome in each cell. We found that there are 47 regions with decreased copy number in TGCs, which we call underrepresented (UR) domains. These domains are marked in the TGC progenitor cells and we suggest that they gradually form during gestation due to slow replication versus fast replication of the rest of the genome. While UR domains contain cell adhesion and neuronal genes, they also contain significantly fewer genes than other genomic regions. Our results demonstrate that CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during pregnancy.
Collapse
Affiliation(s)
- Roberta L. Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edward B. Chuong
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - Anton Valouev
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Julie C. Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chatzizacharias NA, Giaginis CT, Agapitos E, Theocharis SE. The role of ephrins' receptors and ephrins' ligands in normal placental development and disease. Expert Opin Ther Targets 2014; 18:269-275. [PMID: 24329716 DOI: 10.1517/14728222.2014.864638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Ephrin (Eph) receptors and their membrane-anchored ligands, the ephrins, participate in a wide spectrum of pathophysiological processes, regulating cellular adhesion, migration or chemo-repulsion and tissue/cell boundary formation. Recent evidence has further extended the role of Eph receptors and their ligands as critical regulators of vascular remodelling during embryogenesis. The role of Ephs/ephrins signalling in the angiogenic development of murine placentas and in the invasion of the maternal tissues and the development of the placental vasculature in humans has currently attracted considerable interest. AREAS COVERED A literature review summarising the most recent data in terms of the role of Ephs/ephrins in normal placental development and disease, highlighting on their expression status in the different cellular populations of the placental vascularity. EXPERT OPINION Despite the fact that the role of Eph/ephrins signalling in normal placental development is still unclear, some studies tried to investigate their potential implication in placental pathologies, such as preeclampsia and placenta accreta. Even though no evidence for their direct implication occurred, their role is an interesting field for future research.
Collapse
Affiliation(s)
- Nikolaos A Chatzizacharias
- National and Kapodistrian University of Athens, Medical School, First Department of Pathology , Athens , Greece
| | | | | | | |
Collapse
|
14
|
Romero GG. The Role of the Cell Background in Biased Signaling. BIASED SIGNALING IN PHYSIOLOGY, PHARMACOLOGY AND THERAPEUTICS 2014:41-79. [DOI: 10.1016/b978-0-12-411460-9.00002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
El-Hashash AHK, Turcatel G, Varma S, Berika M, Al Alam D, Warburton D. Eya1 protein phosphatase regulates tight junction formation in lung distal epithelium. J Cell Sci 2012; 125:4036-48. [PMID: 22685326 DOI: 10.1242/jcs.102848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Little is known about the regulatory mechanisms underlying lung epithelial tight junction (TJ) assembly, which is inextricably linked to the preservation of epithelial polarity, and is highly coordinated by proteins that regulate epithelial cell polarity, such as aPKCζ. We recently reported that Eya1 phosphatase functions through aPKCζ-Notch1 signaling to control cell polarity in the lung epithelium. Here, we have extended these observations to TJ formation to demonstrate that Eya1 is crucial for the maintenance of TJ protein assembly in the lung epithelium, probably by controlling aPKCζ phosphorylation levels, aPKCζ-mediated TJ protein phosphorylation and Notch1-Cdc42 activity. Thus, TJs are disassembled after interfering with Eya1 function in vivo or during calcium-induced TJ assembly in vitro. These effects are reversed by reintroduction of wild-type Eya1 or partially inhibiting aPKCζ in Eya1siRNA cells. Moreover, genetic activation of Notch1 rescues Eya1(-/-) lung epithelial TJ defects. These findings uncover novel functions for the Eya1-aPKCζ-Notch1-Cdc42 pathway as a crucial regulatory mechanism of TJ assembly and polarity of the lung epithelium, providing a conceptual framework for future mechanistic and translational studies in this area.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, 4661 Sunset Boulevard, Los Angeles, CA 90027, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kadmiel M, Fritz-Six K, Pacharne S, Richards GO, Li M, Skerry TM, Caron KM. Research resource: Haploinsufficiency of receptor activity-modifying protein-2 (RAMP2) causes reduced fertility, hyperprolactinemia, skeletal abnormalities, and endocrine dysfunction in mice. Mol Endocrinol 2011; 25:1244-53. [PMID: 21566080 DOI: 10.1210/me.2010-0400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Receptor activity-modifying protein-2 (RAMP2) is a single-pass transmembrane protein that can regulate the trafficking, ligand binding, and signaling of several G protein-coupled receptors (GPCR). The most well-characterized role of RAMP2 is in the regulation of adrenomedullin (AM) binding to calcitonin receptor-like receptor (CLR), and our previous studies using knockout mouse models support this canonical signaling paradigm. For example, Ramp2(-/-) mice die at midgestation with a precise phenocopy of the AM(-/-) and Calcrl(-/-) mice. In contrast, Ramp2(+/-) mice are viable and exhibit an expanded variety of phenotypes that are distinct from those of Calcrl(+/-) mice. Using Ramp2(+/-) female mice, we demonstrate that a modest decrease in Ramp2 expression causes severe reproductive defects characterized by fetal growth restriction, fetal demise, and postnatal lethality that is independent of the genotype and gender of the offspring. Ramp2(+/-) female mice also exhibit hyperprolactinemia during pregnancy and in basal conditions. Consistent with hyperprolactinemia, Ramp2(+/-) female mice have enlarged pituitary glands, accelerated mammary gland development, and skeletal abnormalities including delayed bone development and decreased bone mineral density. Because RAMP2 has been shown to associate with numerous GPCR, it is likely that signaling of one or more of these GPCR is compromised in Ramp2(+/-) mice, yet the precise identification of these receptors remains to be elucidated. Taken together, this work reveals an essential role for RAMP2 in endocrine physiology and provides the first in vivo evidence for a physiological role of RAMP2 beyond that of AM/CLR signaling.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
El-Hashash AHK, Warburton D, Kimber SJ. Genes and signals regulating murine trophoblast cell development. Mech Dev 2009; 127:1-20. [PMID: 19755154 DOI: 10.1016/j.mod.2009.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
Abstract
A fundamental step in embryonic development is cell differentiation whereby highly specialised cell types are developed from a single undifferentiated, fertilised egg. One of the earliest lineages to form in the mammalian conceptus is the trophoblast, which contributes exclusively to the extraembryonic structures that form the placenta. Trophoblast giant cells (TGCs) in the rodent placenta form the outermost layer of the extraembryonic compartment, establish direct contact with maternal cells, and produce a number of pregnancy-specific cytokine hormones. Giant cells differentiate from proliferative trophoblasts as they exit the cell cycle and enter a genome-amplifying endocycle. Normal differentiation of secondary TGCs is a critical step toward the formation of the placenta and normal embryonic development. Trophoblast development is also of particular interest to the developmental biologist and immunobiologist, as these cells constitute the immediate cellular boundary between the embryonic and maternal tissues. Abnormalities in the development of secondary TGCs results in severe malfunction of the placenta. Herein we review new information that has been accumulated recently regarding the molecular and cellular regulation of trophoblast and placenta development. In particular, we discuss the molecular aspects of murine TGC differentiation. We also focus on the role of growth and transcription factors in TGC development.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
18
|
Ross JW, Ashworth MD, Stein DR, Couture OP, Tuggle CK, Geisert RD. Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium. Physiol Genomics 2008; 36:140-8. [PMID: 19033546 DOI: 10.1152/physiolgenomics.00022.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Early embryonic development in the pig is characterized by a rapid elongation of the conceptus trophectoderm on days 11-12 of gestation. Initially, the conceptus trophoblast is morphologically rearranged from a 10-mm sphere into a tubular shape, transitioning into a thin filamentous form >150 mm in length in 2-3 h, followed by continued expansion within the uterine lumen for several days. Conceptus elongation is critical for establishing adequate placental surface area needed for embryo and fetal survival throughout gestation. The objective of this study was to characterize conceptus gene expression during trophoblastic elongation and the early attachment to the uterine endometrium on days 11-14 of gestation with the GeneChip Porcine Genome Array. In all, 3,759 different probe sets were statistically different in at least one comparison [spherical vs. tubular, spherical vs. day 12 filamentous (D12F), spherical vs. day 14 filamentous (D14F), tubular vs. D12F, tubular vs. D14F, and D12F vs. D14F]. When restricted to the spherical vs. D12F and D12F vs. D14F comparisons, 482 and 232 genes, respectively, were statistically different with greater than twofold change in expression. Utilization of k-means clustering, in addition to the Database for Annotation, Visualization, and Integrated Discovery (DAVID), identified genes of interest. Quantitative RT-PCR expression profiles for interferon-gamma (IFNG), heat shock protein 27 kDa (HSPB1), angiomotin, B-cell linker (BLNK), chemokine ligand 14 (CXCL14), parathyroid hormone-like hormone (PTHLH), and maspin were supportive of the GeneChip Porcine Genome Array data.
Collapse
Affiliation(s)
- Jason W Ross
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wang J, Mayernik L, Armant DR. Trophoblast adhesion of the peri-implantation mouse blastocyst is regulated by integrin signaling that targets phospholipase C. Dev Biol 2007; 302:143-53. [PMID: 17027741 PMCID: PMC1894903 DOI: 10.1016/j.ydbio.2006.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/21/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Integrin signaling modulates trophoblast adhesion to extracellular matrices during blastocyst implantation. Fibronectin (FN)-binding activity on the apical surface of trophoblast cells is strengthened after elevation of intracellular Ca(2+) downstream of integrin ligation by FN. We report here that phosphoinositide-specific phospholipase C (PLC) mediates Ca(2+) signaling in response to FN. Pharmacological agents used to antagonize PLC (U73122) or the inositol phosphate receptor (Xestospongin C) inhibited FN-induced elevation of intracellular Ca(2+) and prevented the upregulation of FN-binding activity. In contrast, inhibitors of Ca(2+) influx through either voltage-gated or non-voltage-gated Ca(2+) channels were without effect. Inhibition of protein tyrosine kinase activity by genistein, but not G-protein inhibition by suramin, blocked FN-induced intracellular Ca(2+) signaling and upregulation of adhesion, consistent with involvement of PLC-gamma. Confocal immunofluorescence imaging of peri-implantation blastocysts demonstrated that PLC-gamma2, but not PLC-gamma1 nor PLC-beta1, accumulated near the outer surface of the embryo. Phosphotyrosine site-directed antibodies revealed phosphorylation of PLC-gamma2, but not PLC-gamma1, upon integrin ligation by FN. These data suggest that integrin-mediated activation of PLC-gamma to initiate phosphoinositide signaling and intracellular Ca(2+) mobilization is required for blastocyst adhesion to FN. Signaling cascades regulating PLC-gamma could, therefore, control a critical feature of trophoblast differentiation during peri-implantation development.
Collapse
Affiliation(s)
- Jun Wang
- C. S. Mott Center for Human Growth and Development, Departments of Anatomy and Cell Biology, and Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Linda Mayernik
- C. S. Mott Center for Human Growth and Development, Departments of Anatomy and Cell Biology, and Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - D. Randall Armant
- C. S. Mott Center for Human Growth and Development, Departments of Anatomy and Cell Biology, and Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|