1
|
Pio-Lopez L, Bischof J, LaPalme JV, Levin M. The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis. Interface Focus 2023; 13:20220072. [PMID: 37065270 PMCID: PMC10102734 DOI: 10.1098/rsfs.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system-regenerating planaria-and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Treffkorn S, Mayer G. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae). BMC DEVELOPMENTAL BIOLOGY 2019; 19:7. [PMID: 30987579 PMCID: PMC6466738 DOI: 10.1186/s12861-019-0185-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Background NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. Results The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. Conclusions Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians. Electronic supplementary material The online version of this article (10.1186/s12861-019-0185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
3
|
Attenborough RM, Hayward DC, Wiedemann U, Forêt S, Miller DJ, Ball EE. Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis. Dev Biol 2019; 446:56-67. [DOI: 10.1016/j.ydbio.2018.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
|
4
|
Simakov O, Kawashima T. Independent evolution of genomic characters during major metazoan transitions. Dev Biol 2016; 427:179-192. [PMID: 27890449 DOI: 10.1016/j.ydbio.2016.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies.
Collapse
Affiliation(s)
- Oleg Simakov
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| | | |
Collapse
|
5
|
Rentzsch F, Technau U. Genomics and development of Nematostella vectensis and other anthozoans. Curr Opin Genet Dev 2016; 39:63-70. [PMID: 27318695 DOI: 10.1016/j.gde.2016.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/14/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Due to their rather simple body plan with only few organs and a low number of cell types, cnidarians have long been recognized as an important animal group for evolutionary comparisons of animal body plans. Recent studies have shown, however, that the genomes of cnidarians and their epigenetic and posttranscriptional regulation are more complex than their morphology might suggest. How these complex genomes are deployed during embryonic development is an open question. With a focus on the sea anemone Nematostella vectensis we describe new findings about the development of the nervous system from neural progenitor cells and how Wnt and BMP signalling control axial patterning. These studies show that beyond evolutionary comparisons, cnidarian model organisms can provide new insights into generic questions in developmental biology.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway.
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Arendt D, Tosches MA, Marlow H. From nerve net to nerve ring, nerve cord and brain--evolution of the nervous system. Nat Rev Neurosci 2016; 17:61-72. [PMID: 26675821 DOI: 10.1038/nrn.2015.15] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The puzzle of how complex nervous systems emerged remains unsolved. Comparative studies of neurodevelopment in cnidarians and bilaterians suggest that this process began with distinct integration centres that evolved on opposite ends of an initial nerve net. The 'apical nervous system' controlled general body physiology, and the 'blastoporal nervous system' coordinated feeding movements and locomotion. We propose that expansion, integration and fusion of these centres gave rise to the bilaterian nerve cord and brain.
Collapse
Affiliation(s)
- Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 699117 Heidelberg, Germany
| | - Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Heather Marlow
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
7
|
Anderson DA, Walz ME, Weil E, Tonellato P, Smith MC. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 2016; 4:e1616. [PMID: 26925311 PMCID: PMC4768675 DOI: 10.7717/peerj.1616] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022] Open
Abstract
Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America; Department of Marine Sciences, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, United States of America
| | - Marcus E Walz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin , United States of America
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico at Mayagüez , Mayagüez, Puerto Rico , United States of America
| | - Peter Tonellato
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America; Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Matthew C Smith
- School of Freshwater Sciences, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin , United States of America
| |
Collapse
|
8
|
Merabet S, Galliot B. The TALE face of Hox proteins in animal evolution. Front Genet 2015; 6:267. [PMID: 26347770 PMCID: PMC4539518 DOI: 10.3389/fgene.2015.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.
Collapse
Affiliation(s)
- Samir Merabet
- Centre National de Recherche Scientifique, Institut de Génomique Fonctionnelle de Lyon Lyon, France ; Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon Lyon, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, Institute of Genetics and Genomics in Geneva, University of Geneva Geneva, Switzerland
| |
Collapse
|
9
|
Hayward DC, Grasso LC, Saint R, Miller DJ, Ball EE. The organizer in evolution-gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Dev Biol 2015; 399:337-47. [PMID: 25601451 DOI: 10.1016/j.ydbio.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/26/2014] [Accepted: 01/10/2015] [Indexed: 11/29/2022]
Abstract
Organizer activity, once thought to be restricted to vertebrates, has ancient origins. However, among non-bilaterians, it has only been subjected to detailed investigation during embryonic development of the sea anemone, Nematostella vectensis. As a step toward establishing the extent to which findings in Nematostella can be generalized across the large and diverse phylum Cnidaria, we examined the expression of some key organizer and gastrulation genes during the embryonic development of the coral Acropora millepora. Although anemones and corals both belong to the cnidarian class Anthozoa, the two lineages diverged during the Cambrian and the morphological development of Acropora differs in several important respects from that of Nematostella. While the expression patterns of the key genes brachyury, bmp2/4, chordin, goosecoid and forkhead are broadly similar, developmental differences between the two species enable novel observations, and new interpretations of their significance. Specifically, brachyury expression during the flattened prawnchip stage before gastrulation, a developmental peculiarity of Acropora, leads us to suggest that it is the key gene demarcating ectoderm from endoderm in Acropora, and by implication in other cnidarians, whereas previous studies in Nematostella proposed that forkhead plays this role. Other novel observations include the transient expression of Acropora forkhead in scattered ectodermal cells shortly after gastrulation, and in the developing mesenterial filaments, with no corresponding expression reported in Nematostella. In addition, the expression patterns of goosecoid and bmp2/4 confirm the fundamental bilaterality of the Anthozoa.
Collapse
Affiliation(s)
- David C Hayward
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lauretta C Grasso
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Robert Saint
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia; School of Molecular Biosciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; School of Pharmacy and Molecular Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Eldon E Ball
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
10
|
Hemond EM, Kaluziak ST, Vollmer SV. The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 2014; 15:1133. [PMID: 25519925 PMCID: PMC4320547 DOI: 10.1186/1471-2164-15-1133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Results Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct “staghorn” versus “elkhorn” morphologies of these two sister species. Conclusions The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1133) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata. PLoS One 2014; 9:e103830. [PMID: 25099698 PMCID: PMC4123887 DOI: 10.1371/journal.pone.0103830] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.
Collapse
|
12
|
Expression pattern of empty-spiracles, a conserved head-patterning gene, in honeybee (Apis mellifera) embryos. Gene Expr Patterns 2014; 15:142-8. [PMID: 24999162 DOI: 10.1016/j.gep.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/21/2022]
|
13
|
Hudry B, Thomas-Chollier M, Volovik Y, Duffraisse M, Dard A, Frank D, Technau U, Merabet S. Molecular insights into the origin of the Hox-TALE patterning system. eLife 2014; 3:e01939. [PMID: 24642410 PMCID: PMC3957477 DOI: 10.7554/elife.01939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI:http://dx.doi.org/10.7554/eLife.01939.001 Any animal with a body that is symmetric about an imaginary line that runs from its head to its tail is known as a bilaterian. Humans and most animals are bilateral, whereas jellyfish and starfish are not. Bilateral symmetry can take many forms—as demonstrated by the differences between flies, frogs and humans—but all bilaterians express many of the same genes during development. One of these groups of genes is known as the Hox family. The expression of specific Hox genes at specific times instructs cells in the developing embryo to adopt different fates according to their position along the anterior–posterior (head to tail) axis. The patterning function of Hox genes relies on the presence of two additional cofactors that belong to the so-called TALE family. Although both Hox and TALE proteins were present early on during animal evolution, it is unclear how and when the interactions between them first began to generate symmetrical body plans. Now, Hudry et al. have provided insights into the origin of the Hox-TALE network by analysing the expression and molecular properties of Hox and TALE proteins from various multicellular and unicellular organisms. These experiments revealed that Hox and TALE proteins of the sea anemone Nematostella, which belongs to a group of animals called cnidarians that have radial rather than bilateral symmetry, interact with one another in a similar manner to the interactions seen in bilaterians. Hudry et al. then showed that two Nematostella Hox genes were able to substitute for their bilaterian equivalents in fruit flies, and that a Nematostella TALE gene was able to take over neuronal functions of its equivalent in Xenopus frogs. This striking conservation of function between species suggests that Hox and TALE genes were already working together in the common ancestor of all bilaterian and cnidarian animals. By contrast, TALE members from a unicellular amoeba were unable to interact with Hox proteins, suggesting that Hox–TALE interactions first emerged in multicellular animals. In addition to increasing our knowledge of highly conserved Hox signalling, these data provide insight into the molecular mechanisms that gave rise to the symmetrical body plan that has been adopted, and adapted, by the majority of animals since. DOI:http://dx.doi.org/10.7554/eLife.01939.002
Collapse
Affiliation(s)
- Bruno Hudry
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shinzato C, Inoue M, Kusakabe M. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae. PLoS One 2014; 9:e85182. [PMID: 24454815 PMCID: PMC3893191 DOI: 10.1371/journal.pone.0085182] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/03/2013] [Indexed: 01/09/2023] Open
Abstract
Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses.
Collapse
Affiliation(s)
- Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- * E-mail:
| | - Mayuri Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Makoto Kusakabe
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
15
|
Tosches MA, Arendt D. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 2013; 23:1080-9. [PMID: 24080363 DOI: 10.1016/j.conb.2013.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
16
|
Mesías-Gansbiller C, Pazos A, Sánchez J, Pérez-Parallé M. First evidence of the presence of NK2and Tlxgenes in bivalve molluscs. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The NK homeobox gene cluster appears to play a primary role in the mesoderm specification and formation and nervous system development of Bilateria. NK2 class genes are transcribed in the developing gut, nervous system, and heart of insects and vertebrates. Tlx genes are involved in a variety of developmental functions such as neurone differentiation. To identify NK box genes in bivalve molluscs, we performed a polymerase chain reaction (PCR) survey with degenerate primers on genomic DNA. Three NK box sequences were identified from two bivalve species: one from the clam Venerupis pullastra (Montagu, 1803) called Vpu Tlx and two from the oyster Ostrea edulis L., 1758 called Oed Tlx and Oed Nk2. The alignment of these sequences in the UniProt database reveals a high level of conservation. Phylogenetic analyses by NJ, UPGMA, ME, MP, and ML analyses show the orthology relationships of the Tlx and Nk2 genes with other Tlx and Nk2 genes present in Metazoa genomes. This is the first report of the isolation of NK box genes in bivalve molluscs. Moreover these Tlx and Nk2 genes are the first to prove that Tlx and NK2 gene cognates exist in bivalve molluscs. The presence of these genes in Venerupis and Ostrea suggests that these genes could be conserved in bivalves in general.
Collapse
Affiliation(s)
- C. Mesías-Gansbiller
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A.J. Pazos
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J.L. Sánchez
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M.L. Pérez-Parallé
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
17
|
Crocker J, Erives A. A Schnurri/Mad/Medea complex attenuates the dorsal-twist gradient readout at vnd. Dev Biol 2013; 378:64-72. [PMID: 23499655 DOI: 10.1016/j.ydbio.2013.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/13/2013] [Accepted: 03/04/2013] [Indexed: 12/28/2022]
Abstract
Morphogen gradients are used in developing embryos, where they subdivide a field of cells into territories characterized by distinct cell fate potentials. Such systems require both a spatially-graded distribution of the morphogen, and an ability to encode different responses at different target genes. However, the potential for different temporal responses is also present because morphogen gradients typically provide temporal cues, which may be a potential source of conflict. Thus, a low threshold response adapted for an early temporal onset may be inappropriate when the desired spatial response is a spatially-limited, high-threshold expression pattern. Here, we identify such a case with the Drosophila vnd locus, which is a target of the dorsal (dl) nuclear concentration gradient that patterns the dorsal/ventral (D/V) axis of the embryo. The vnd gene plays a critical role in the "ventral dominance" hierarchy of vnd, ind, and msh, which individually specify distinct D/V neural columnar fates in increasingly dorsal ectodermal compartments. The role of vnd in this regulatory hierarchy requires early temporal expression, which is characteristic of low-threshold responses, but its specification of ventral neurogenic ectoderm demands a relatively high-threshold response to dl. We show that the Neurogenic Ectoderm Enhancer (NEE) at vnd takes additional input from the complementary Dpp gradient via a conserved Schnurri/Mad/Medea silencer element (SSE) unlike NEEs at brk, sog, rho, and vn. These results show how requirements for conflicting temporal and spatial responses to the same gradient can be solved by additional inputs from complementary gradients.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | |
Collapse
|
18
|
The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013; 11:e1001488. [PMID: 23483856 PMCID: PMC3586664 DOI: 10.1371/journal.pbio.1001488] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022] Open
Abstract
The origin of the bilaterian head is a fundamental question for the evolution of animal body plans. The head of bilaterians develops at the anterior end of their primary body axis and is the site where the brain is located. Cnidarians, the sister group to bilaterians, lack brain-like structures and it is not clear whether the oral, the aboral, or none of the ends of the cnidarian primary body axis corresponds to the anterior domain of bilaterians. In order to understand the evolutionary origin of head development, we analysed the function of conserved genetic regulators of bilaterian anterior development in the sea anemone Nematostella vectensis. We show that orthologs of the bilaterian anterior developmental genes six3/6, foxQ2, and irx have dynamic expression patterns in the aboral region of Nematostella. Functional analyses reveal that NvSix3/6 acts upstream of NvFoxQ2a as a key regulator of the development of a broad aboral territory in Nematostella. NvSix3/6 initiates an autoregulatory feedback loop involving positive and negative regulators of FGF signalling, which subsequently results in the downregulation of NvSix3/6 and NvFoxQ2a in a small domain at the aboral pole, from which the apical organ develops. We show that signalling by NvFGFa1 is specifically required for the development of the apical organ, whereas NvSix3/6 has an earlier and broader function in the specification of the aboral territory. Our functional and gene expression data suggest that the head-forming region of bilaterians is derived from the aboral domain of the cnidarian-bilaterian ancestor.
Collapse
|
19
|
Reyes-Bermudez A, Miller DJ, Sprungala S. The Neuronal Calcium Sensor protein Acrocalcin: a potential target of calmodulin regulation during development in the coral Acropora millepora. PLoS One 2012; 7:e51689. [PMID: 23284743 PMCID: PMC3524228 DOI: 10.1371/journal.pone.0051689] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022] Open
Abstract
To understand the calcium-mediated signalling pathways underlying settlement and metamorphosis in the Scleractinian coral Acropora millepora, a predicted protein set derived from larval cDNAs was scanned for the presence of EF-hand domains (Pfam Id: PF00036). This approach led to the identification of a canonical calmodulin (AmCaM) protein and an uncharacterised member of the Neuronal Calcium Sensor (NCS) family of proteins known here as Acrocalcin (AmAC). While AmCaM transcripts were present throughout development, AmAC transcripts were not detected prior to gastrulation, after which relatively constant mRNA levels were detected until metamorphosis and settlement. The AmAC protein contains an internal CaM-binding site and was shown to interact in vitro with AmCaM. These results are consistent with the idea that AmAC is a target of AmCaM in vivo, suggesting that this interaction may regulate calcium-dependent processes during the development of Acropora millepora.
Collapse
Affiliation(s)
- Alejandro Reyes-Bermudez
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Susanne Sprungala
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
20
|
Gruhl A, Okamura B. Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body plan evolution. EvoDevo 2012; 3:10. [PMID: 22594622 PMCID: PMC3419630 DOI: 10.1186/2041-9139-3-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background The enigmatic wormlike parasite Buddenbrockia plumatellae has recently been shown to belong to the Myxozoa, which are now supported as a clade within Cnidaria. Most myxozoans are morphologically extremely simplified, lacking major metazoan features such as epithelial tissue layers, gut, nervous system, body axes and gonads. This hinders comparisons to free-living cnidarians and thus an understanding of myxozoan evolution and identification of their cnidarian sister group. However, B. plumatellae is less simplified than other myxozoans and therefore is of specific significance for such evolutionary considerations. Methods We analyse and describe the development of major body plan features in Buddenbrockia worms using a combination of histology, electron microscopy and confocal microscopy. Results Early developmental stages develop a primary body axis that shows a polarity, which is manifested as a gradient of tissue development, enabling distinction between the two worm tips. This polarity is maintained in adult worms, which, in addition, often develop a pore at the distal tip. The musculature comprises tetraradially arranged longitudinal muscle blocks consisting of independent myocytes embedded in the extracellular matrix between inner and outer epithelial tissue layers. The muscle fibres are obliquely oriented and in fully grown worms consistently form an angle of 12° with respect to the longitudinal axis of the worm in each muscle block and hence confer chirality. Connecting cells form a link between each muscle block and constitute four rows of cells that run in single file along the length of the worm. These connecting cells are remnants of the inner epithelial tissue layer and are anchored to the extracellular matrix. They are likely to have a biomechanical function. Conclusions The polarised primary body axis represents an ancient feature present in the last common ancestor of Cnidaria and Bilateria. The tetraradial arrangement of musculature is consistent with a medusozoan affinity for Myxozoa. However, the chiral pattern of muscle fibre orientation is apparently novel within Cnidaria and could thus be a specific adaptation. The presence of independent myocytes instead of Cnidaria-like epitheliomuscular cells can be interpreted as further support for the presence of mesoderm in cnidarians, or it may represent convergent evolution to a bilaterian condition.
Collapse
Affiliation(s)
- Alexander Gruhl
- Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | | |
Collapse
|
21
|
Abstract
Cnidarians belong to the first phylum differentiating a nervous system, thus providing suitable model systems to trace the origins of neurogenesis. Indeed corals, sea anemones, jellyfish and hydra contract, swim and catch their food thanks to sophisticated nervous systems that share with bilaterians common neurophysiological mechanisms. However, cnidarian neuroanatomies are quite diverse, and reconstructing the urcnidarian nervous system is ambiguous. At least a series of characters recognized in all classes appear plesiomorphic: (1) the three cell types that build cnidarian nervous systems (sensory-motor cells, ganglionic neurons and mechanosensory cells called nematocytes or cnidocytes); (2) an organization of nerve nets and nerve rings [those working as annular central nervous system (CNS)]; (3) a neuronal conduction via neurotransmitters; (4) a larval anterior sensory organ required for metamorphosis; (5) a persisting neurogenesis in adulthood. By contrast, the origin of the larval and adult neural stem cells differs between hydrozoans and other cnidarians; the sensory organs (ocelli, lens-eyes, statocysts) are present in medusae but absent in anthozoans; the electrical neuroid conduction is restricted to hydrozoans. Evo-devo approaches might help reconstruct the neurogenic status of the last common cnidarian ancestor. In fact, recent genomic analyses show that if most components of the postsynaptic density predate metazoan origin, the bilaterian neurogenic gene families originated later, in basal metazoans or as eumetazoan novelties. Striking examples are the ParaHox Gsx, Pax, Six, COUP-TF and Twist-type regulators, which seemingly exert neurogenic functions in cnidarians, including eye differentiation, and support the view of a two-step process in the emergence of neurogenesis.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Sciences III, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
22
|
Nakanishi N, Renfer E, Technau U, Rentzsch F. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 2011; 139:347-57. [PMID: 22159579 DOI: 10.1242/dev.071902] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a sister group to Bilateria, Cnidaria is important for understanding early nervous system evolution. Here we examine neural development in the anthozoan cnidarian Nematostella vectensis in order to better understand whether similar developmental mechanisms are utilized to establish the strikingly different overall organization of bilaterian and cnidarian nervous systems. We generated a neuron-specific transgenic NvElav1 reporter line of N. vectensis and used it in combination with immunohistochemistry against neuropeptides, in situ hybridization and confocal microscopy to analyze nervous system formation in this cnidarian model organism in detail. We show that the development of neurons commences in the ectoderm during gastrulation and involves interkinetic nuclear migration. Transplantation experiments reveal that sensory and ganglion cells are autonomously generated by the ectoderm. In contrast to bilaterians, neurons are also generated throughout the endoderm during planula stages. Morpholino-mediated gene knockdown shows that the development of a subset of ectodermal neurons requires NvElav1, the ortholog to bilaterian neural elav1 genes. The orientation of ectodermal neurites changes during planula development from longitudinal (in early-born neurons) to transverse (in late-born neurons), whereas endodermal neurites can grow in both orientations at any stage. Our findings imply that elav1-dependent ectodermal neurogenesis evolved prior to the divergence of Cnidaria and Bilateria. Moreover, they suggest that, in contrast to bilaterians, almost the entire ectoderm and endoderm of the body column of Nematostella planulae have neurogenic potential and that the establishment of connectivity in its seemingly simple nervous system involves multiple neurite guidance systems.
Collapse
Affiliation(s)
- Nagayasu Nakanishi
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormoehlensgt 55, 5008 Bergen, Norway
| | | | | | | |
Collapse
|
23
|
Hayward DC, Hetherington S, Behm CA, Grasso LC, Forêt S, Miller DJ, Ball EE. Differential gene expression at coral settlement and metamorphosis--a subtractive hybridization study. PLoS One 2011; 6:e26411. [PMID: 22065994 PMCID: PMC3204972 DOI: 10.1371/journal.pone.0026411] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/26/2011] [Indexed: 12/02/2022] Open
Abstract
Background A successful metamorphosis from a planktonic larva to a settled polyp, which under favorable conditions will establish a future colony, is critical for the survival of corals. However, in contrast to the situation in other animals, e.g., frogs and insects, little is known about the molecular basis of coral metamorphosis. We have begun to redress this situation with previous microarray studies, but there is still a great deal to learn. In the present paper we have utilized a different technology, subtractive hybridization, to characterize genes differentially expressed across this developmental transition and to compare the success of this method to microarray. Methodology/Principal Findings Suppressive subtractive hybridization (SSH) was used to identify two pools of transcripts from the coral, Acropora millepora. One is enriched for transcripts expressed at higher levels at the pre-settlement stage, and the other for transcripts expressed at higher levels at the post-settlement stage. Virtual northern blots were used to demonstrate the efficacy of the subtractive hybridization technique. Both pools contain transcripts coding for proteins in various functional classes but transcriptional regulatory proteins were represented more frequently in the post-settlement pool. Approximately 18% of the transcripts showed no significant similarity to any other sequence on the public databases. Transcripts of particular interest were further characterized by in situ hybridization, which showed that many are regulated spatially as well as temporally. Notably, many transcripts exhibit axially restricted expression patterns that correlate with the pool from which they were isolated. Several transcripts are expressed in patterns consistent with a role in calcification. Conclusions We have characterized over 200 transcripts that are differentially expressed between the planula larva and post-settlement polyp of the coral, Acropora millepora. Sequence, putative function, and in some cases temporal and spatial expression are reported.
Collapse
Affiliation(s)
- David C. Hayward
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Suzannah Hetherington
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carolyn A. Behm
- Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lauretta C. Grasso
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Eldon E. Ball
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
24
|
The biology of coral metamorphosis: Molecular responses of larvae to inducers of settlement and metamorphosis. Dev Biol 2011; 353:411-9. [DOI: 10.1016/j.ydbio.2011.02.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/22/2010] [Accepted: 02/12/2011] [Indexed: 11/17/2022]
|
25
|
Nakanishi N, Yuan D, Hartenstein V, Jacobs DK. Evolutionary origin of rhopalia: insights from cellular-level analyses of Otx and POU expression patterns in the developing rhopalial nervous system. Evol Dev 2010; 12:404-15. [DOI: 10.1111/j.1525-142x.2010.00427.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Portune KJ, Voolstra CR, Medina M, Szmant AM. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata. Mar Genomics 2010; 3:51-62. [PMID: 21798197 DOI: 10.1016/j.margen.2010.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/25/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12h post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131h post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies.
Collapse
Affiliation(s)
- Kevin J Portune
- Center for Marine Science, University North Carolina Wilmington, USA.
| | | | | | | |
Collapse
|
27
|
Hartmann B, Müller M, Hislop NR, Roth B, Tomljenovic L, Miller DJ, Reichert H. Coral emx-Am can substitute for Drosophila empty spiracles function in head, but not brain development. Dev Biol 2010; 340:125-33. [DOI: 10.1016/j.ydbio.2009.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 11/25/2022]
|
28
|
Martindale MQ, Hejnol A. A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 2009; 17:162-74. [PMID: 19686678 DOI: 10.1016/j.devcel.2009.07.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progress in resolving the phylogenetic relationships among animals and the expansion of molecular developmental studies to a broader variety of organisms has provided important insights into the evolution of developmental programs. These new studies make it possible to reevaluate old hypotheses about the evolution of animal body plans and to elaborate new ones. Here, we review recent studies that shed light on the transition from a radially organized ancestor to the last common ancestor of the Bilateria ("Urbilaterian") and present an integrative hypothesis about plausible developmental scenarios for the evolution of complex multicellular animals.
Collapse
Affiliation(s)
- Mark Q Martindale
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI, 96813, USA.
| | | |
Collapse
|
29
|
Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata. Mar Genomics 2009; 2:149-59. [DOI: 10.1016/j.margen.2009.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/10/2009] [Accepted: 07/23/2009] [Indexed: 11/18/2022]
|
30
|
Watanabe H, Fujisawa T, Holstein TW. Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ 2009; 51:167-83. [PMID: 19379274 DOI: 10.1111/j.1440-169x.2009.01103.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cnidarians are widely regarded as one of the first organisms in animal evolution possessing a nervous system. Conventional histological and electrophysiological studies have revealed a considerable degree of complexity of the cnidarian nervous system. Thanks to expressed sequence tags and genome projects and the availability of functional assay systems in cnidarians, this simple nervous system is now genetically accessible and becomes particularly valuable for understanding the origin and evolution of the genetic control mechanisms underlying its development. In the present review, the anatomical and physiological features of the cnidarian nervous system and the interesting parallels in neurodevelopmental mechanisms between Cnidaria and Bilateria are discussed.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- University of Heidelberg, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
31
|
Origins of neurogenesis, a cnidarian view. Dev Biol 2009; 332:2-24. [PMID: 19465018 DOI: 10.1016/j.ydbio.2009.05.563] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 11/22/2022]
Abstract
New perspectives on the origin of neurogenesis emerged with the identification of genes encoding post-synaptic proteins as well as many "neurogenic" regulators as the NK, Six, Pax, bHLH proteins in the Demosponge genome, a species that might differentiate sensory cells but no neurons. However, poriferans seem to miss some key regulators of the neurogenic circuitry as the Hox/paraHox and Otx-like gene families. Moreover as a general feature, many gene families encoding evolutionarily-conserved signaling proteins and transcription factors were submitted to a wave of gene duplication in the last common eumetazoan ancestor, after Porifera divergence. In contrast gene duplications in the last common bilaterian ancestor, Urbilateria, are limited, except for the bHLH Atonal-class. Hence Cnidaria share with Bilateria a large number of genetic tools. The expression and functional analyses currently available suggest a neurogenic function for numerous orthologs in developing or adult cnidarians where neurogenesis takes place continuously. As an example, in the Hydra polyp, the Clytia medusa and the Acropora coral, the Gsx/cnox2/Anthox-2 ParaHox gene likely supports neurogenesis. Also neurons and nematocytes (mechanosensory cells) share in hydrozoans a common stem cell and several regulatory genes indicating that they can be considered as sister cells. Performed in anthozoan and medusozoan species, these studies should tell us more about the way(s) evolution hazards achieved the transition from epithelial to neuronal cell fate, and about the robustness of the genetic circuitry that allowed neuromuscular transmission to arise and be maintained across evolution.
Collapse
|
32
|
Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol 2009; 332:184-209. [DOI: 10.1016/j.crvi.2008.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
33
|
Chiori R, Jager M, Denker E, Wincker P, Da Silva C, Le Guyader H, Manuel M, Quéinnec E. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 2009; 4:e4231. [PMID: 19156208 PMCID: PMC2626245 DOI: 10.1371/journal.pone.0004231] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.
Collapse
Affiliation(s)
- Roxane Chiori
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Muriel Jager
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | - Hervé Le Guyader
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Michaël Manuel
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Eric Quéinnec
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| |
Collapse
|
34
|
Finnerty JR, Mazza ME, Jezewski PA. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers. BMC Evol Biol 2009; 9:18. [PMID: 19154605 PMCID: PMC2655272 DOI: 10.1186/1471-2148-9-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 01/20/2009] [Indexed: 01/22/2023] Open
Abstract
Background Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Results Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Conclusion Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.
Collapse
Affiliation(s)
- John R Finnerty
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | |
Collapse
|
35
|
Goldstone JV. Environmental sensing and response genes in cnidaria: the chemical defensome in the sea anemone Nematostella vectensis. Cell Biol Toxicol 2008; 24:483-502. [PMID: 18956243 PMCID: PMC2811067 DOI: 10.1007/s10565-008-9107-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here, I describe the genetic components of a "chemical defensome" in the genome of N. vectensis and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a chemical defensome and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27,200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria and allow us to further illuminate the evolution of chemical defense gene networks.
Collapse
Affiliation(s)
- J V Goldstone
- Biology Department MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
36
|
Shinzato C, Iguchi A, Hayward DC, Technau U, Ball EE, Miller DJ. Sox genes in the coral Acropora millepora: divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa. BMC Evol Biol 2008; 8:311. [PMID: 19014479 PMCID: PMC2613919 DOI: 10.1186/1471-2148-8-311] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 11/12/2008] [Indexed: 12/22/2022] Open
Abstract
Background Sox genes encode transcription factors that function in a wide range of developmental processes across the animal kingdom. To better understand both the evolution of the Sox family and the roles of these genes in cnidarians, we are studying the Sox gene complement of the coral, Acropora millepora (Class Anthozoa). Results Based on overall domain structures and HMG box sequences, the Acropora Sox genes considered here clearly fall into four of the five major Sox classes. AmSoxC is expressed in the ectoderm during development, in cells whose morphology is consistent with their assignment as sensory neurons. The expression pattern of the Nematostella ortholog of this gene is broadly similar to that of AmSoxC, but there are subtle differences – for example, expression begins significantly earlier in Acropora than in Nematostella. During gastrulation, AmSoxBb and AmSoxB1 transcripts are detected only in the presumptive ectoderm while AmSoxE1 transcription is restricted to the presumptive endoderm, suggesting that these Sox genes might play roles in germ layer specification. A third type B Sox gene, AmSoxBa, and a Sox F gene AmSoxF also have complex and specific expression patterns during early development. Each of these genes has a clear Nematostella ortholog, but in several cases the expression pattern observed in Acropora differs significantly from that reported in Nematostella. Conclusion These differences in expression patterns between Acropora and Nematostella largely reflect fundamental differences in developmental processes, underscoring the diversity of mechanisms within the anthozoan Sub-Class Hexacorallia (Zoantharia).
Collapse
Affiliation(s)
- Chuya Shinzato
- ARC Centre of Excellence for Coral Reef Studies and Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Schierwater B, de Jong D, Desalle R. Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 2008; 41:370-9. [PMID: 18935972 DOI: 10.1016/j.biocel.2008.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 11/28/2022]
Abstract
The multicellular Metazoa evolved from single-celled organisms (Protozoa) and usually - but not necessarily - consist of more cells than Protozoa. In all cases, and thus by definition, Metazoa possess more than one somatic cell type, i.e. they show-in sharp contrast to protists-intrasomatic differentiation. Placozoa have the lowest degree of intrasomatic variation; the number of somatic cell types according to text books is four (but see also Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, and Schierwater B. The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 2004;214:170-5). For this and several other reasons Placozoa have been regarded by many as the most basal metazoan phylum. Thus, the morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles a unique model system for cell differentiation studies and also an intriguing model for a prominent "urmetazoon" hypotheses-the placula hypothesis. A basal position of Placozoa would provide answers to several key issues of metazoan-specific inventions (including for example different lines of somatic cell differentiation leading to organ development and axis formation) and would determine a root for unraveling their evolution. However, the phylogenetic relationships at the base of Metazoa are controversial and a basal position of Placozoa is not generally accepted (e.g. Schierwater B, DeSalle R. Can we ever identify the Urmetazoan? Integr Comp Biol 2007;47:670-76; DeSalle R, Schierwater B. An even "newer" animal phylogeny. Bioessays 2008;30:1043-47). Here we review and discuss (i) long-standing morphological evidence for the simple placozoan bauplan resembling an ancestral metazoan stage, (ii) some rapidly changing alternative hypotheses derived from molecular analyses, (iii) the surprising idea that triploblasts (Bilateria) and diploblasts may be sister groups, and (iv) the presence of genes involved in cell differentiation and signaling pathways in the placozoan genome.
Collapse
Affiliation(s)
- Bernd Schierwater
- Ecology and Evolution, Tierärztliche Hochschule Hannover, D-30559 Hannover, Germany.
| | | | | |
Collapse
|
38
|
Nakanishi N, Yuan D, Jacobs DK, Hartenstein V. Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev Genes Evol 2008; 218:511-24. [PMID: 18850237 DOI: 10.1007/s00427-008-0239-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
We examined the development of the nervous system in Aurelia (Cnidaria, Scyphozoa) from the early planula to the polyp stage using confocal and transmission electron microscopy. Fluorescently labeled anti-FMRFamide, antitaurine, and antityrosinated tubulin antibodies were used to visualize the nervous system. The first detectable FMRFamide-like immunoreactivity occurs in a narrow circumferential belt toward the anterior/aboral end of the ectoderm in the early planula. As the planula matures, the FMRFamide-immunoreactive cells send horizontal processes (i.e., neurites) basally along the longitudinal axis. Neurites extend both anteriorly/aborally and posteriorly/orally, but the preference is for anterior neurite extension, and neurites converge to form a plexus at the aboral/anterior end at the base of the ectoderm. In the mature planula, a subset of cells in the apical organ at the anterior/aboral pole begins to show FMRFamide-like and taurine-like immunoreactivity, suggesting a sensory function of the apical organ. During metamorphosis, FMRFamide-like immunoreactivity diminishes in the ectoderm but begins to occur in the degenerating primary endoderm, indicating that degenerating FMRFamide-immunoreactive neurons are taken up by the primary endoderm. FMRFamide-like expression reappears in the ectoderm of the oral disc and the tentacle anlagen of the growing polyp, indicating metamorphosis-associated restructuring of the nervous system. These observations are discussed in the context of metazoan nervous system evolution.
Collapse
Affiliation(s)
- Nagayasu Nakanishi
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
39
|
Yuan D, Nakanishi N, Jacobs DK, Hartenstein V. Embryonic development and metamorphosis of the scyphozoan Aurelia. Dev Genes Evol 2008; 218:525-39. [PMID: 18850238 DOI: 10.1007/s00427-008-0254-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of "secondary" gastrulation during early metamorphosis.
Collapse
Affiliation(s)
- David Yuan
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
40
|
Gazave E, Lapébie P, Renard E, Bézac C, Boury-Esnault N, Vacelet J, Pérez T, Manuel M, Borchiellini C. NK homeobox genes with choanocyte-specific expression in homoscleromorph sponges. Dev Genes Evol 2008; 218:479-89. [PMID: 18704494 DOI: 10.1007/s00427-008-0242-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/22/2008] [Indexed: 01/16/2024]
Abstract
Data on nonbilaterian animals (sponges, cnidarians, and ctenophores) have suggested that Antennapedia (ANTP) class homeobox genes played a crucial role in the early diversification of animal body plans. Estimates of ancestral gene diversity within this important class of developmental regulators have been mostly based on recent analyses of the complete genome of a demosponge species, leading to the proposal that all ANTP families found in nonsponges animals (eumetazoans) derived from an ancestral "proto-NK" six-gene cluster. However, a single sponge species cannot reveal ancestral metazoan traits, in particular because lineage-specific gene duplications or losses are likely to have occurred during the long history of the Porifera. We thus looked for ANTP genes by degenerate polymerase chain reaction search in five species belonging to the Homoscleromorpha, a sponge lineage recently phylogenetically classified outside demosponges and characterized by unique histological features. We identified new genes of the ANTP class called HomoNK. Our phylogenetic analyses placed HomoNK (without significant support) close to the NK6 and NK7 families of cnidarian and bilaterian ANTP genes and did not recover the monophyly of the proposed "proto-NK" cluster. Our expression analyses of the HomoNK gene OlobNK in adult Oscarella lobularis showed that this gene is a strict marker of choanocytes, the most typical sponge cell type characterized by an apical flagellum surrounded by a collar of microvilli. These results are discussed in the light of the predominant neurosensory expression of NK6 and NK7 genes in bilaterians and of the recent proposal that choanocytes could be the sponge homologs of sensory cells.
Collapse
Affiliation(s)
- Eve Gazave
- Centre d'Océanologie de Marseille, Aix-Marseille Université, CNRS-UMR 6540, Station marine d'Endoume, rue de la batterie des Lions, 13007, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schierwater B, Kamm K, Srivastava M, Rokhsar D, Rosengarten RD, Dellaporta SL. The early ANTP gene repertoire: insights from the placozoan genome. PLoS One 2008; 3:e2457. [PMID: 18716659 PMCID: PMC2515636 DOI: 10.1371/journal.pone.0002457] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/29/2008] [Indexed: 11/18/2022] Open
Abstract
The evolution of ANTP genes in the Metazoa has been the subject of conflicting hypotheses derived from full or partial gene sequences and genomic organization in higher animals. Whole genome sequences have recently filled in some crucial gaps for the basal metazoan phyla Cnidaria and Porifera. Here we analyze the complete genome of Trichoplax adhaerens, representing the basal metazoan phylum Placozoa, for its set of ANTP class genes. The Trichoplax genome encodes representatives of Hox/ParaHox-like, NKL, and extended Hox genes. This repertoire possibly mirrors the condition of a hypothetical cnidarian-bilaterian ancestor. The evolution of the cnidarian and bilaterian ANTP gene repertoires can be deduced by a limited number of cis-duplications of NKL and “extended Hox” genes and the presence of a single ancestral “ProtoHox” gene.
Collapse
Affiliation(s)
- Bernd Schierwater
- Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Kai Kamm
- Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany
- * E-mail:
| | - Mansi Srivastava
- Center for Integrative Genomics and Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Daniel Rokhsar
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
- Center for Integrative Genomics and Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Rafael D. Rosengarten
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Stephen L. Dellaporta
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
42
|
Knack BA, Iguchi A, Shinzato C, Hayward DC, Ball EE, Miller DJ. Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evol Biol 2008; 8:136. [PMID: 18466626 PMCID: PMC2397394 DOI: 10.1186/1471-2148-8-136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation. It has been suggested that Caenorhabditis elegans, which has a single beta and two alpha integrins, might reflect the ancestral integrin complement. Investigation of the integrin repertoire of anthozoan cnidarians such as the coral Acropora millepora is required to test this hypothesis and may provide insights into the original roles of these molecules. RESULTS Two novel integrins were identified in Acropora. AmItgalpha1 shows features characteristic of alpha integrins lacking an I-domain, but phylogenetic analysis gives no clear indication of its likely binding specificity. AmItgbeta2 lacks consensus cysteine residues at positions 8 and 9, but is otherwise a typical beta integrin. In situ hybridization revealed that AmItgalpha1, AmItgbeta1, and AmItgbeta2 are expressed in the presumptive endoderm during gastrulation. A second anthozoan, the sea anemone Nematostella vectensis, has at least four beta integrins, two resembling AmItgbeta1 and two like AmItgbeta2, and at least three alpha integrins, based on its genomic sequence. CONCLUSION In two respects, the cnidarian data do not fit expectations. First, the cnidarian integrin repertoire is more complex than predicted: at least two betas in Acropora, and at least three alphas and four betas in Nematostella. Second, whereas the bilaterian alphas resolve into well-supported groups corresponding to those specific for RGD-containing or laminin-type ligands, the known cnidarian alphas are distinct from these. During early development in Acropora, the expression patterns of the three known integrins parallel those of amphibian and echinoderm integrins.
Collapse
Affiliation(s)
- Brent A Knack
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
A review of the old and new literature on animal morphology/embryology and molecular studies has led me to the following scenario for the early evolution of the metazoans. The metazoan ancestor, "choanoblastaea," was a pelagic sphere consisting of choanocytes. The evolution of multicellularity enabled division of labor between cells, and an "advanced choanoblastaea" consisted of choanocytes and nonfeeding cells. Polarity became established, and an adult, sessile stage developed. Choanocytes of the upper side became arranged in a groove with the cilia pumping water along the groove. Cells overarched the groove so that a choanocyte chamber was formed, establishing the body plan of an adult sponge; the pelagic larval stage was retained but became lecithotrophic. The sponges radiated into monophyletic Silicea, Calcarea, and Homoscleromorpha. Homoscleromorph larvae show cell layers resembling true, sealed epithelia. A homoscleromorph-like larva developed an archenteron, and the sealed epithelium made extracellular digestion possible in this isolated space. This larva became sexually mature, and the adult sponge-stage was abandoned in an extreme progenesis. This eumetazoan ancestor, "gastraea," corresponds to Haeckel's gastraea. Trichoplax represents this stage, but with the blastopore spread out so that the endoderm has become the underside of the creeping animal. Another lineage developed a nervous system; this "neurogastraea" is the ancestor of the Neuralia. Cnidarians have retained this organization, whereas the Triploblastica (Ctenophora+Bilateria), have developed the mesoderm. The bilaterians developed bilaterality in a primitive form in the Acoelomorpha and in an advanced form with tubular gut and long Hox cluster in the Eubilateria (Protostomia+Deuterostomia). It is indicated that the major evolutionary steps are the result of suites of existing genes becoming co-opted into new networks that specify new structures. The evolution of the eumetazoan ancestor from a progenetic homoscleromorph larva implies that we, as well as all the other eumetazoans, are derived sponge larvae.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum (The Natural History Museum of Denmark, University of Copenhagen), Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
44
|
Meinhardt H. Models of Biological Pattern Formation: From Elementary Steps to the Organization of Embryonic Axes. Curr Top Dev Biol 2008; 81:1-63. [DOI: 10.1016/s0070-2153(07)81001-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
45
|
Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TCG. The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss. Genome Biol 2007; 8:R59. [PMID: 17437634 PMCID: PMC1896004 DOI: 10.1186/gb-2007-8-4-r59] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/22/2006] [Accepted: 04/16/2007] [Indexed: 12/04/2022] Open
Abstract
Analysis of genomic resources available for cnidarians revealed that several key components of the vertebrate innate immune repertoire are present in representatives of the basal cnidarian class Anthozoa, but are missing in Hydra, a member of the class Hydrozoa, indicating ancient origins for many components of the innate immune system. Background Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest - it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. Results To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-κB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Conclusion Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system.
Collapse
Affiliation(s)
- David J Miller
- ARC Centre of Excellence in Coral Reef Studies and Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia
| | - Georg Hemmrich
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| | - Eldon E Ball
- ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - David C Hayward
- ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Konstantin Khalturin
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| | - Noriko Funayama
- Department of Biophysics, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Thomas CG Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| |
Collapse
|
46
|
Mazza ME, Pang K, Martindale MQ, Finnerty JR. Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:494-506. [PMID: 17377951 DOI: 10.1002/jez.b.21158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Otx homeodomain transcription factors have been studied in a variety of eumetazoan animals where they have roles in anterior neural development, endomesoderm formation, and the formation of larval ciliated fields. Here, we describe the gene structure and developmental expression of three Otx loci in the starlet sea anemone, Nematostella vectensis (phylum Cnidaria; class Anthozoa). Nematostella's three Otx genes (OtxA, OtxB, and OtxC) are located in a compact genomic cluster spanning 63.6 kb. The homeodomains of all three Otx genes are highly similar to their bilaterian counterparts, but only OtxB exhibits the conserved WSP motif that is located downstream of the homeodomain in many Otx proteins. The genomic organization, in concert with phylogenetic analyses, indicates that two tandem duplications occurred in the lineage leading to Nematostella some time after the Cnidaria diverged from the Bilateria. In situ hybridization reveals that otx is initially expressed by invaginating mesendodermal cells in the gastrula. Later, each of the three otx paralogs is expressed in three discrete larval body regions: in the endoderm of the foot or physa, in an endodermal ring surrounding the pharynx, and in the ectoderm of the tentacles. These data suggest that a single otx locus had already acquired diverse developmental functions in the cnidarian-bilaterian ancestor. Furthermore, following two gene duplications in the line leading to Nematostella, there have been only minor alterations in the spatiotemporal expression of the three Otx paralogs. However, the absence of a conserved protein domain in OtxA and OtxC suggests functional evolution of the protein itself.
Collapse
Affiliation(s)
- Maureen E Mazza
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
47
|
Arenas-Mena C, Wong KSY. HeOtx expression in an indirectly developing polychaete correlates with gastrulation by invagination. Dev Genes Evol 2007; 217:373-84. [PMID: 17431669 DOI: 10.1007/s00427-007-0150-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 03/14/2007] [Indexed: 11/26/2022]
Abstract
The expression of an Otx homolog in the indirectly developing polychaete Hydroides elegans was characterized during embryo, trochophore, and feeding-larva stages. In the animal hemisphere, HeOtx is first expressed in 1q(12) blastomeres and their immediate descendants. Such discrete embryonic animal hemisphere Otx expression perhaps relates to cell-type specification functions of the larva. During feeding stages, transcripts are detected in adult cerebral ganglia precursors and putative adult eye precursors, where it may have adult brain regionalization functions. HeOtx is not expressed in primary trochoblast precursors, but it is expressed in cells adjacent to the ciliary band. HeOtx is also expressed in a group of cells in the dorsal midline of the early trochophore larva in putative posterior sensory organ precursors. The vegetal hemisphere expression starts in oral and lateral sides of the blastopore and later expands to central blastomeres that lead the gastrulation movements. During late gastrulation stages, the expression declines in foregut precursors, but it is maintained in midgut precursors, suggesting its involvement in tripartite gut subdivision functions. HeOtx broader and earlier endoderm expression correlates with gastrulation by invagination associated with the formation of the feeding trochophore, in contrast with a later and orally restricted Otx expression found in a polychaete that gastrulates by epiboly and forms a non-feeding trochophore. The endoderm expression and functional roles in other bilaterians suggest an ancestral role of Otx related to gastrulation by invagination.
Collapse
Affiliation(s)
- Cesar Arenas-Mena
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA.
| | | |
Collapse
|
48
|
Matus DQ, Pang K, Daly M, Martindale MQ. Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol Dev 2007; 9:25-38. [PMID: 17227364 DOI: 10.1111/j.1525-142x.2006.00135.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pax genes are a family of homeodomain transcription factors that have been isolated from protostomes (e.g., eight in Drosophilia) and deuterostomes (e.g., nine in vertebrates) as well as outside the Bilateria, from sponges, a placozoan, and several classes of cnidarians. The genome of an anthozoan cnidarian, the starlet sea anemone, Nematostella vectensis, has been surveyed by both degenerate polymerase chain reaction and in silico for the presence of Pax genes. N. vectensis possesses seven Pax genes, which are orthologous to cnidarian Pax genes (A,B,C, and D) previously identified in another anthozoan, a coral, Acropora millepora. Phylogenetic analyses including data from nonchordate deuterostomes indicates that there were five Pax gene classes in the protostome-deuterostome ancestor, but only three in the cnidarian-bilaterian ancestor, with PaxD class genes lost in medusozoan cnidarians. Pax genes play diverse roles in bilaterians, including eye formation (e.g., Pax6), segmentation (e.g., Pax3/7 class genes), and neural patterning (e.g., Pox-neuro, Pax2/5/8). We show the first expression data for members of all four Pax classes in a single species of cnidarian. N. vectensis Pax genes are expressed in both a cell-type and region-specific manner during embryogenesis, and likely play a role in patterning specific components of the cnidarian ectodermal nerve net. The results of these patterns are discussed with respect to Pax gene evolution in the Bilateria.
Collapse
Affiliation(s)
- David Q Matus
- Kewalo Marine Lab, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|