1
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
2
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology 2022; 189:246-254. [DOI: 10.1016/j.theriogenology.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
4
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
5
|
Sampaio RV, Sangalli JR, De Bem THC, Ambrizi DR, Del Collado M, Bridi A, de Ávila ACFCM, Macabelli CH, de Jesus Oliveira L, da Silveira JC, Chiaratti MR, Perecin F, Bressan FF, Smith LC, Ross PJ, Meirelles FV. Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Sci Rep 2020; 10:11493. [PMID: 32661262 PMCID: PMC7359371 DOI: 10.1038/s41598-020-67733-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
Orchestrated events, including extensive changes in epigenetic marks, allow a somatic nucleus to become totipotent after transfer into an oocyte, a process termed nuclear reprogramming. Recently, several strategies have been applied in order to improve reprogramming efficiency, mainly focused on removing repressive epigenetic marks such as histone methylation from the somatic nucleus. Herein we used the specific and non-toxic chemical probe UNC0638 to inhibit the catalytic activity of the histone methyltransferases EHMT1 and EHMT2. Either the donor cell (before reconstruction) or the early embryo was exposed to the probe to assess its effect on developmental rates and epigenetic marks. First, we showed that the treatment of bovine fibroblasts with UNC0638 did mitigate the levels of H3K9me2. Moreover, H3K9me2 levels were decreased in cloned embryos regardless of treating either donor cells or early embryos with UNC0638. Additional epigenetic marks such as H3K9me3, 5mC, and 5hmC were also affected by the UNC0638 treatment. Therefore, the use of UNC0638 did diminish the levels of H3K9me2 and H3K9me3 in SCNT-derived blastocysts, but this was unable to improve their preimplantation development. These results indicate that the specific reduction of H3K9me2 by inhibiting EHMT1/2 during nuclear reprogramming impacts the levels of H3K9me3, 5mC, and 5hmC in preimplantation bovine embryos.
Collapse
Affiliation(s)
- Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil.
- Centre de Recherche en Reproduction et Fértilité, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
- Department of Animal Science, University of California Davis, Davis, USA.
| | - Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
- Department of Animal Science, University of California Davis, Davis, USA
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Dewison Ricardo Ambrizi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Alessandra Bridi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | | | - Lilian de Jesus Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fértilité, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, USA
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
6
|
Wang Y, Li Y, Luan D, Kang J, He R, Zhang Y, Quan F. Dynamic replacement of H3.3 affects nuclear reprogramming in early bovine SCNT embryos. Theriogenology 2020; 154:43-52. [PMID: 32480063 DOI: 10.1016/j.theriogenology.2020.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023]
Abstract
The histone variant H3.3 is an important maternal factor in fertilization of oocytes and reprogramming of somatic cell nuclear transfer (SCNT) embryos. As a crucial replacement histone, maternal H3.3 is involved in chromatin remodeling and zygote genome activation. Litte is, however, known about the replacement of H3.3 in the bovine SCNT embryos. In this study, the maternal H3.3 in mature ooplasm was labeled with HA tag and the donor cells H3.3 was labeled with Flag tag, in order to observe the replacement of H3.3 in the bovine SCNT embryos. Meanwhile, maternal H3.3 knockdown was performed by microinjecting two different interfering fragments before nucleus transfer. It was showed that the dynamic replacement between maternal- and donor nucleus-derived H3.3 was detected after SCNT. And it could be observed that the blastocyst development rate of the cloned embryos decreased from 22.3% to 8.2-10.3% (P < 0.05), the expression of Pou5f1 and Sox2 was down-regulated and the level of H3K9me3 was increased in the interfered embryos. In summary, H3.3 replacement impacted on the process of reprogramming, including embryonic development potential, activation of pluripotency genes and epigenetic modification in bovine SCNT embryos.
Collapse
Affiliation(s)
- Yile Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanhe Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Deji Luan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rongjun He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Zhang L, Yu M, Xu H, Wei X, Liu Y, Huang C, Chen H, Guo Z. RNA sequencing revealed the abnormal transcriptional profile in cloned bovine embryos. Int J Biol Macromol 2020; 150:492-500. [PMID: 32035150 DOI: 10.1016/j.ijbiomac.2020.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has potential applications in agriculture and biomedicine, but the efficiency of cloning is still low. In this study, the transcriptional profiles in cloned and fertilized embryos were measured and compared by RNA sequencing. The 2-cell embryos were detected to identify the earliest transcriptional differences between embryos derived through IVF and SCNT. As a result, 364 genes showed decreased expression in cloned 2-cell embryos and were enriched in "intracellular protein transport" and "ubiquitin mediated proteolysis". In blastocysts, 593 genes showed decreased expression in cloned blastocysts and were enriched in "RNA binding", "nucleotide binding", "embryo development", and "adherens junction". We identified 14 development related genes that were not activated in the cloned embryos. Then, 68 and 245 long non-coding RNAs were recognized abnormally expressed in cloned 2-cell embryos and cloned blastocysts, respectively. Furthermore, we found that incomplete RNA-editing occurred in cloned embryos and might be caused by decreased ADAR expression. In conclusion, our study revealed the abnormal transcripts and deficient RNA-editing sites in cloned embryos and provided new data for further mechanistic studies of somatic nuclear reprogramming.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Yingxiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Huanhuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
8
|
Li H, Song M, Yang W, Cao P, Zheng L, Zuo Y. A Comparative Analysis of Single-Cell Transcriptome Identifies Reprogramming Driver Factors for Efficiency Improvement. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1053-1064. [PMID: 32045876 PMCID: PMC7015826 DOI: 10.1016/j.omtn.2019.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
Terminally differentiated somatic cells can be reprogrammed into a totipotent state through somatic cell nuclear transfer (SCNT). The incomplete reprogramming is the major reason for developmental arrest of SCNT embryos at early stages. In our studies, we found that pathways for autophagy, endocytosis, and apoptosis were incompletely activated in nuclear transfer (NT) 2-cell arrest embryos, whereas extensively inhibited pathways for stem cell pluripotency maintenance, DNA repair, cell cycle, and autophagy may result in NT 4-cell embryos arrest. As for NT normal embryos, a significant shift in expression of developmental transcription factors (TFs) Id1, Pou6f1, Cited1, and Zscan4c was observed. Compared with pluripotent gene Ascl2 being activated only in NT 2-cell, Nanog, Dppa2, and Sall4 had major expression waves in normal development of both NT 2-cell and 4-cell embryos. Additionally, Kdm4b/4d and Kdm5b had been confirmed as key markers in NT 2-cell and 4-cell embryos, respectively. Histone acetylases Kat8, Elp6, and Eid1 were co-activated in NT 2-cell and 4-cell embryos to facilitate normal development. Gadd45a as a key driver functions with Tet1 and Tet2 to improve the efficiency of NT reprogramming. Taken together, our findings provided an important theoretical basis for elucidating the potential molecular mechanisms and identified reprogramming driver factor to improve the efficiency of SCNT reprogramming.
Collapse
Affiliation(s)
- Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Mingmin Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wuritu Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
9
|
Abstract
In this issue of Cell, Liu et al. (2018) report the birth of two healthy cloned macaque monkeys using fetal fibroblasts. By artificially enhancing the arsenal of epigenetic modifiers in the oocyte, the authors overcome the earliest roadblocks that take place during somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Jose B Cibelli
- Departments of Animal Science and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
10
|
Liu Y, Wu F, Zhang L, Wu X, Li D, Xin J, Xie J, Kong F, Wang W, Wu Q, Zhang D, Wang R, Gao S, Li W. Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing. BMC Genomics 2018; 19:734. [PMID: 30305014 PMCID: PMC6180508 DOI: 10.1186/s12864-018-5091-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/19/2018] [Indexed: 11/25/2022] Open
Abstract
Background Nuclear reprogramming reinstates totipotency or pluripotency in somatic cells by changing their gene transcription profile. This technology is widely used in medicine, animal husbandry and other industries. However, certain deficiencies severely restrict the applications of this technology. Results Using single-embryo RNA-seq, our study provides complete transcriptome blueprints of embryos generated by cumulus cell (CC) donor nuclear transfer (NT), embryos generated by mouse embryonic fibroblast (MEF) donor NT and in vivo embryos at each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst). According to the results from further analyses, NT embryos exhibit RNA processing and translation initiation defects during the zygotic genome activation (ZGA) period, and protein kinase activity and protein phosphorylation are defective during blastocyst formation. Two thousand three constant genes are not able to be reprogrammed in CCs and MEFs. Among these constant genes, 136 genes are continuously mis-transcribed throughout all developmental stages. These 136 differential genes may be reprogramming barrier genes (RBGs) and more studies are needed to identify. Conclusions These embryonic transcriptome blueprints provide new data for further mechanistic studies of somatic nuclear reprogramming. These findings may improve the efficiency of somatic cell nuclear transfer. Electronic supplementary material The online version of this article (10.1186/s12864-018-5091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Fengrui Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Ling Zhang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Xiaoqing Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Dengkun Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Jing Xin
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Juan Xie
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Feng Kong
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Wenying Wang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Qiaoqin Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Di Zhang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Rong Wang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wenyong Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China.
| |
Collapse
|
11
|
Abstract
SummarySomatic cell nuclear transfer (SCNT) is an important technique for life science research. However, most SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we show that abnormal Xi occurs in somatic cell NT blastocysts, whereas in female blastocysts derived from cumulus cell nuclear transfer, both X chromosomes were inactive. H3K27me3 removal by Kdm6a mRNA overexpression could significantly improve preimplantation development of NT embryos, and even reached a 70.2% blastocyst rate of cleaved embryos compared with the 38.5% rate of the control. H3K27me3 levels were significantly reduced in blastomeres from cloned blastocysts after overexpression of Kdm6a. qPCR indicated that rDNA transcription increased in both NT embryos and 293T cells after overexpression of Kdm6a. Our findings demonstrate that overexpression of Kdm6a improved the development of cloned mouse embryos by reducing H3K27me3 and increasing rDNA transcription.
Collapse
|
12
|
Bai GY, Song SH, Sun RZ, Zhang ZH, Li J, Wang ZD, Liu ZH, Lei L. RNAi-mediated knockdown of Parp1 does not improve the development of female cloned mouse embryos. Oncotarget 2017; 8:69863-69873. [PMID: 29050247 PMCID: PMC5642522 DOI: 10.18632/oncotarget.19418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/20/2017] [Indexed: 12/04/2022] Open
Abstract
Somatic cell nuclear transfer is an important technique for life science research, but its efficiency is still extremely low, and most genes that are important during early development, such as X chromosome-linked genes, are not appropriately expressed during this process. Poly (ADP-ribose) polymerase (PARP) is an enzyme that transfers ADP ribose clusters to target proteins. PARP family members such as PARP1 participate in cellular signalling pathways through poly (ADP-ribosylation) (PARylation), which ultimately promotes changes in chromatin structure, gene expression, and the localization and activity of proteins that mediate signalling responses. PARP1 is associated with X chromosome inactivation (Xi). Here, we showed that abnormal Xi occurs in somatic cell nuclear transfer (NT) blastocysts, whereas in female blastocysts derived from cumulus cell nuclear transfer, both X chromosomes were inactive. Parp1 expression was higher in female NT blastocysts than that in intracytoplasmic sperm injection (ICSI) embryos but not in male NT blastocysts. After knocking down Parp1 expression, both the pre-rRNA 47S and X-inactivation-specific transcript (Xist) levels increased. Moreover, the expression of genes on the inactivated X chromosome, such as Magea6 and Msn, were also increased in the NT embryos. However, the development of Parp1si NT embryos was impaired, although total RNA sequencing showed that overall gene expression between the Parp1si NT blastocysts and the control was similar. Our findings demonstrate that increases in the expression of several genes on the X chromosome and of rRNA primary products in NT blastocysts with disrupted Parp1 expression are insufficient to rescue the impaired development of female cloned mouse embryos and could even exacerbate the associated developmental deficiencies.
Collapse
Affiliation(s)
- Guang-Yu Bai
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Si-Hang Song
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Rui-Zhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zi-Hui Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Jingyu Li
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhen-Dong Wang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zhong-Hua Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
13
|
Wei J, Antony J, Meng F, MacLean P, Rhind R, Laible G, Oback B. KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Sci Rep 2017; 7:7514. [PMID: 28790329 PMCID: PMC5548918 DOI: 10.1038/s41598-017-06569-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 06/14/2017] [Indexed: 02/03/2023] Open
Abstract
Correct reprogramming of epigenetic marks is essential for somatic cells to regain pluripotency. Repressive histone (H) lysine (K) methylation marks are known to be stable and difficult to reprogram. In this study, we generated transgenic mice and mouse embryonic fibroblasts (MEFs) for the inducible expression of KDM4B, a demethylase that removes H3 K9 and H3K36 trimethylation (me3) marks (H3K9/36me3). Upon inducing Kdm4b, H3K9/36me3 levels significantly decreased compared to non-induced controls. Concurrently, H3K9me1 levels significantly increased, while H3K9me2 and H3K27me3 remained unchanged. The global transcriptional impact of Kdm4b-mediated reduction in H3K9/36me3 levels was examined by comparative microarray analysis and mRNA-sequencing of three independent transgenic MEF lines. We identified several commonly up-regulated targets, including the heterochromatin-associated zinc finger protein 37 and full-length endogenous retrovirus repeat elements. Following optimized zona-free somatic nuclear transfer, reduced H3K9/36me3 levels were restored within hours. Nevertheless, hypo-methylated Kdm4b MEF donors reprogrammed six-fold better into cloned blastocysts than non-induced donors. They also reprogrammed nine-fold better into induced pluripotent stem cells that gave rise to teratomas and chimeras. In summary, we firmly established H3K9/36me3 as a major roadblock to somatic cell reprogramming and identified transcriptional targets of derestricted chromatin that could contribute towards improving this process in mouse.
Collapse
Affiliation(s)
- Jingwei Wei
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Animal Science Institute, Guangxi University, Nanning, P.R. China
| | - Jisha Antony
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,University of Otago, Department of Pathology, Dunedin, 9016, New Zealand
| | - Fanli Meng
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Paul MacLean
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Rebekah Rhind
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Götz Laible
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Björn Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.
| |
Collapse
|
14
|
RNA-Seq Profiling of Intact and Enucleated Oocyte SCNT Embryos Reveals the Role of Pig Oocyte Nucleus in Somatic Reprogramming. PLoS One 2016; 11:e0153093. [PMID: 27070804 PMCID: PMC4829232 DOI: 10.1371/journal.pone.0153093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/20/2016] [Indexed: 12/28/2022] Open
Abstract
The specific molecular mechanisms involved in somatic reprogramming remain unidentified. Removal of the oocyte genome is one of the primary causes of developmental failure in cloned embryos, whereas intact oocyte shows stronger reprogramming capability than enucleated oocyte. To identify the reason for the low efficiency of cloning and elucidate the mechanisms involved in somatic reprogramming by the oocyte nucleus, we injected pig cumulus cells into 539 intact MII oocytes and 461 enucleated MII oocytes. Following activation, 260 polyploidy embryos developed to the blastocyst stage whereas only 93 traditionally cloned embryos (48.2% vs. 20.2%, P < 0.01) reached blastocyst stage. Blastocysts generated from intact oocytes also had more cells than those generated from enucleated oocytes (60.70 vs. 46.65, P < 0.01). To identify the genes that contribute to this phenomenon, two early embryos in 2-cell and 4-cell stages were collected for single-cell RNA sequencing. The two kinds of embryos were found to have dramatically different transcriptome profiles. Intact oocyte nuclear transfer embryos showed 1,738 transcripts that were up-regulated relative to enucleated cloned embryos at the 2-cell stage and 728 transcripts that were down-regulated (|log2Ratio| ≥ 5). They showed 2,941 transcripts that were up-regulated during the 4-cell stage and 1,682 that were down-regulated (|log2Ratio| ≥ 5). The most significantly enriched gene ontology categories were those involved in the regulation of binding, catalytic activity, and molecular transducer activity. Other genes that were notably up-regulated and expressed in intact oocyte nuclear transfer embryos were metabolic process. This study provides a comprehensive profile of the differences in gene expression between intact oocyte nuclear transfer embryos and traditional nuclear transfer embryos. This work thus paves the way for further research on the mechanisms underlying somatic reprogramming by oocytes.
Collapse
|
15
|
Teperek M, Simeone A, Gaggioli V, Miyamoto K, Allen GE, Erkek S, Kwon T, Marcotte EM, Zegerman P, Bradshaw CR, Peters AHFM, Gurdon JB, Jullien J. Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res 2016; 26:1034-46. [PMID: 27034506 PMCID: PMC4971762 DOI: 10.1101/gr.201541.115] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/29/2016] [Indexed: 12/02/2022]
Abstract
For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health.
Collapse
Affiliation(s)
- Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - George E Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom
| | - Serap Erkek
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4001 Basel, Switzerland
| | - Taejoon Kwon
- Department of Molecular Bioscience, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Department of Molecular Bioscience, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Philip Zegerman
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4001 Basel, Switzerland
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| |
Collapse
|
16
|
Hosseini SM, Dufort I, Nieminen J, Moulavi F, Ghanaei HR, Hajian M, Jafarpour F, Forouzanfar M, Gourbai H, Shahverdi AH, Nasr-Esfahani MH, Sirard MA. Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics 2016; 17:16. [PMID: 26725231 PMCID: PMC4698792 DOI: 10.1186/s12864-015-2264-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Background The limited duration and compromised efficiency of oocyte-mediated reprogramming, which occurs during the early hours following somatic cell nuclear transfer (SCNT), may significantly interfere with epigenetic reprogramming, contributing to the high incidence of ill/fatal transcriptional phenotypes and physiological anomalies occurring later during pre- and post-implantation events. A potent histone deacetylase inhibitor, trichostatin A (TSA), was used to understand the effects of assisted epigenetic modifications on transcriptional profiles of SCNT blastocysts and to identify specific or categories of genes affected. Results TSA improved the yield and quality of in vitro embryo development compared to control (CTR-NT). Significance analysis of microarray results revealed that of 37,238 targeted gene transcripts represented on the microarray slide, a relatively small number of genes were differentially expressed in CTR-NT (1592 = 4.3 %) and TSA-NT (1907 = 5.1 %) compared to IVF embryos. For both SCNT groups, the majority of downregulated and more than half of upregulated genes were common and as much as 15 % of all deregulated transcripts were located on chromosome X. Correspondence analysis clustered CTR-NT and IVF transcriptomes close together regardless of the embryo production method, whereas TSA changed SCNT transcriptome to a very clearly separated cluster. Ontological classification of deregulated genes using IPA uncovered a variety of functional categories similarly affected in both SCNT groups with a preponderance of genes required for biological processes. Examination of genes involved in different canonical pathways revealed that the WNT and FGF pathways were similarly affected in both SCNT groups. Although TSA markedly changed epigenetic reprogramming of donor cells (DNA-methylation, H3K9 acetylation), reconstituted oocytes (5mC, 5hmC), and blastocysts (DNA-methylation, H3K9 acetylation), these changes did not recapitulate parallel marked changes in chromatin remodeling, and nascent mRNA and OCT4-EGFP expression of TSA-NT vs. CRT-NT embryos. Conclusions The results obtained suggest that despite the extensive reprogramming of donor cells that occurred by the blastocyst stage, SCNT-specific errors are of a non-random nature in bovine and are not responsive to epigenetic modifications by TSA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2264-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sayyed Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Isabelle Dufort
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Julie Nieminen
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Fariba Moulavi
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Reza Ghanaei
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mahdi Hajian
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohsen Forouzanfar
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Gourbai
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdol Hossein Shahverdi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
17
|
Inoue K, Oikawa M, Kamimura S, Ogonuki N, Nakamura T, Nakano T, Abe K, Ogura A. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer. Sci Rep 2015; 5:10127. [PMID: 25974394 PMCID: PMC4431350 DOI: 10.1038/srep10127] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage.
Collapse
Affiliation(s)
- Kimiko Inoue
- 1] Bioresource Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan [2] Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Mami Oikawa
- Bioresource Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | - Satoshi Kamimura
- 1] Bioresource Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan [2] Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Narumi Ogonuki
- Bioresource Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | - Toshinobu Nakamura
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Toru Nakano
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Kuniya Abe
- 1] Bioresource Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan [2] Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Atsuo Ogura
- 1] Bioresource Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan [2] Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, 305-8572 Japan
| |
Collapse
|
18
|
Zuo Y, Gao Y, Su G, Bai C, Wei Z, Liu K, Li Q, Bou S, Li G. Irregular transcriptome reprogramming probably causes thec developmental failure of embryos produced by interspecies somatic cell nuclear transfer between the Przewalski's gazelle and the bovine. BMC Genomics 2014; 15:1113. [PMID: 25511933 PMCID: PMC4378013 DOI: 10.1186/1471-2164-15-1113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022] Open
Abstract
Background Interspecies somatic cell nuclear transfer (iSCNT) has been regarded as a potential alternative for rescuing highly endangered species and can be used as a model for studying nuclear–cytoplasmic interactions. However, iSCNT embryos often fail to produce viable offspring. The alterations in normal molecular mechanisms contributing to extremely poor development are for the most part unknown. Results Przewalski’s gazelle–bovine iSCNT embryos (PBNT) were produced by transferring Przewalski’s gazelle fibroblast nuclei into enucleated bovine oocytes. The percentages of PBNT embryos that developed to morula/blastocyst stages were extremely low even with the use of various treatments that included different SCNT protocols and treatment of embryos with small molecules. Transcriptional microarray analyses of the cloned embryos showed that the upregulation of reprogramming-associated genes in bovine–bovine SCNT (BBNT) embryos was significantly higher than those observed in PBNT embryos (1527:643). In all, 139 transcripts related to various transcription regulation factors (TFs) were unsuccessfully activated in the iSCNT embryos. Maternal degradation profiles showed that 1515 genes were uniquely downregulated in the BBNT embryos, while 343 genes were downregulated in the PBNT embryos. Incompatibilities between mitochondrial DNA (mtDNA) and nuclear DNA revealed that the TOMM (translocase of outer mitochondrial membrane)/TIMM (translocase of inner mitochondrial membrane) complex-associated genes in BBNT embryos had the highest expression levels, while the PBNT embryos exhibited much lower expression rates. Conclusions Improper degradation of maternal transcripts, incomplete activation of TFs and abnormal expression of genes associated with mitochondrial function in PBNT embryos likely contributed to incomplete reprogramming of the donor cell nuclei and therefore led to the developmental failure of these cloned embryos. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1113) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shorgan Bou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Key Laboratory of Herbivore Reproductive Biotechnology and Breeding Ministry of Agriculture, Inner Mongolia University, Hohhot 010070, China.
| | | |
Collapse
|
19
|
Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 2014; 159:884-95. [PMID: 25417163 DOI: 10.1016/j.cell.2014.09.055] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/01/2014] [Accepted: 09/19/2014] [Indexed: 01/20/2023]
Abstract
Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by in vitro fertilization (IVF) but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells and its removal by ectopically expressed H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.
Collapse
|
20
|
Latham KE. Role of aberrant protein modification, assembly, and localization in cloned embryo phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:141-58. [PMID: 25030763 DOI: 10.1007/978-1-4939-0817-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aberrant post-translational modifications of proteins contribute markedly to the abnormal characteristics of cloned embryos. This review summarizes aberrant aspects of protein modifications and protein interactions, taking an inside-outside view to the cell. These aberrant aspects affect a range of processes including the control of chromatin structure, expression of pluripotency genes, propagation of epigenetic inheritance, protein trafficking, localization and signaling, cytoskeletal structure, mitosis, and correct localization of membrane proteins. By observing these aberrant features of cloned embryos, how they arise, and their impacts on development, it is possible to gain insight into normal development and identify novel strategies for enhancing cloning outcomes.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, College of Agriculture and Natural Resources, and The Reproductive and Developmental Sciences Program, Michigan State University, 474 S. Shaw Lane, Room 1230E, East Lansing, MI, 48824, USA,
| |
Collapse
|
21
|
|
22
|
LONG CHARLESR, WESTHUSIN MARKE, GOLDING MICHAELC. Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 2014; 81:183-93. [PMID: 24167064 PMCID: PMC3953569 DOI: 10.1002/mrd.22271] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/20/2013] [Indexed: 12/11/2022]
Abstract
Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection.
Collapse
Affiliation(s)
- CHARLES R. LONG
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MARK E. WESTHUSIN
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MICHAEL C. GOLDING
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
23
|
Hao L, Midic U, Garriga J, Latham KE. Contribution of CBX4 to cumulus oophorus cell phenotype in mice and attendant effects in cumulus cell cloned embryos. Physiol Genomics 2013; 46:66-80. [PMID: 24280258 DOI: 10.1152/physiolgenomics.00071.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cumulus oophorus cells play an essential role in oocyte development. They are also widely employed as donor cells for cloning by somatic cell nuclear transfer. Our previous studies revealed that Cbx4 mRNA was overexpressed in cloned two-cell embryos. These data indicated that CBX4 may regulate normal cumulus cell differentiation and that its overexpression in clones could contribute to aberrant gene regulation. We used siRNA-mediated knockdown of Cbx4 to assess its role in determining cumulus cell phenotype and compared the effects of this knockdown to published data for aberrant gene regulation in cloned embryos. We observed widespread effects on the expression of genes related to diverse processes in cultured cumulus cells, including cell assembly/proliferation and DNA replication/repair, endocrine function, carbohydrate and lipid metabolism, inflammation, and cell morphology, with apparent effects of CBX4 in promoting cumulus cell proliferation and survival and inhibiting differentiation. Overall, the data implicate CBX4 as a key component in the pathway integrating endocrine signals, intraovarian paracrine factors, and oocyte-derived factors in the control of cumulus cell functions. We also observed altered expression of 25 cumulus cell markers of oocyte quality, indicating an important role of CBX4 in production of high quality oocytes. Finally, we found that about one-quarter of the genes showing aberrant transcription in cloned embryos are sensitive to Cbx4 knockdown in cumulus cells, consistent with a role for aberrant Cbx4 regulation in elaborating abnormal cloned embryo characteristics.
Collapse
Affiliation(s)
- Lanping Hao
- The Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | | | | | | |
Collapse
|
24
|
Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 2013; 15:374-84. [PMID: 24033141 DOI: 10.1089/cell.2013.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the "Dolly experiment," the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus-cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Irina Lagutina
- 1 Avantea, Laboratorio di Tecnologie della Riproduzione , Cremona, 26100, Italy
| | | | | | | |
Collapse
|
25
|
Cao F, Fukuda A, Watanabe H, Kono T. The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming. Reproduction 2013; 145:277-88. [PMID: 23580949 PMCID: PMC3607486 DOI: 10.1530/rep-12-0435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic cell nuclear transfer, a technique used to generate clone embryos by transferring the nucleus of a somatic cell into an enucleated oocyte, is an excellent approach to study the reprogramming of the nuclei of differentiated cells. Here, we conducted a transcriptomic study by performing microarray analysis on single Sertoli cell nuclear transfer (SeCNT) embryos throughout preimplantation development. The extensive data collected from the oocyte to the blastocyst stage helped to identify specific genes that were incorrectly reprogrammed at each stage, thereby providing a novel perspective for understanding reprogramming progression in SeCNT embryos.This attempt provided an opportunity to discuss the possibility that ectopic gene expression could be involved in the developmental failure of SeCNT embryos. Network analysis at each stage suggested that in total, 127 networks were involved in developmental and functional disorders in SeCNT embryos. Furthermore, chromosome mapping using our time-lapse expression data highlighted temporal–spatial changes of the abnormal expression, showing the characteristic distribution of the genes on each chromosome.Thus, the present study revealed that the preimplantation development of SeCNT embryos appears normal; however, the progression of incorrect reprogramming is concealed throughout development.
Collapse
Affiliation(s)
- Feng Cao
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | |
Collapse
|
26
|
Teperek M, Miyamoto K. Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes. Reprod Med Biol 2013; 12:133-149. [PMID: 24273450 PMCID: PMC3824936 DOI: 10.1007/s12522-013-0155-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022] Open
Abstract
Eggs and oocytes have a prominent ability to reprogram sperm nuclei for ensuring embryonic development. The reprogramming activity that eggs/oocytes intrinsically have towards sperm is utilised to reprogram somatic nuclei injected into eggs/oocytes in nuclear transfer (NT) embryos. NT embryos of various species can give rise to cloned animals, demonstrating that eggs/oocytes can confer totipotency even to somatic nuclei. However, many studies indicate that reprogramming of somatic nuclei is not as efficient as that of sperm nuclei. In this review, we explain how and why sperm and somatic nuclei are differentially reprogrammed in eggs/oocytes. Recent studies have shown that sperm chromatin is epigenetically modified to be adequate for early embryonic development, while somatic nuclei do not have such modifications. Moreover, epigenetic memories encoded in sperm chromatin are transgenerationally inherited, implying unique roles of sperm. We also discuss whether somatic nuclei can be artificially modified to acquire sperm-like chromatin states in order to increase the efficiency of nuclear reprogramming.
Collapse
Affiliation(s)
- Marta Teperek
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, United Kingdom ; Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Systems genetics implicates cytoskeletal genes in oocyte control of cloned embryo quality. Genetics 2013; 193:877-96. [PMID: 23307892 DOI: 10.1534/genetics.112.148866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cloning by somatic cell nuclear transfer is an important technology, but remains limited due to poor rates of success. Identifying genes supporting clone development would enhance our understanding of basic embryology, improve applications of the technology, support greater understanding of establishing pluripotent stem cells, and provide new insight into clinically important determinants of oocyte quality. For the first time, a systems genetics approach was taken to discover genes contributing to the ability of an oocyte to support early cloned embryo development. This identified a primary locus on mouse chromosome 17 and potential loci on chromosomes 1 and 4. A combination of oocyte transcriptome profiling data, expression correlation analysis, and functional and network analyses yielded a short list of likely candidate genes in two categories. The major category-including two genes with the strongest genetic associations with the traits (Epb4.1l3 and Dlgap1)-encodes proteins associated with the subcortical cytoskeleton and other cytoskeletal elements such as the spindle. The second category encodes chromatin and transcription regulators (Runx1t1, Smchd1, and Chd7). Smchd1 promotes X chromosome inactivation, whereas Chd7 regulates expression of pluripotency genes. Runx1t1 has not been associated with these processes, but acts as a transcriptional repressor. The finding that cytoskeleton-associated proteins may be key determinants of early clone development highlights potential roles for cytoplasmic components of the oocyte in supporting nuclear reprogramming. The transcriptional regulators identified may contribute to the overall process as downstream effectors.
Collapse
|
28
|
Ma J, Flemr M, Strnad H, Svoboda P, Schultz RM. Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol Reprod 2013; 88:11. [PMID: 23136299 DOI: 10.1095/biolreprod.112.105312] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The oocyte-to-zygote transition entails transforming a highly differentiated oocyte into totipotent blastomeres and represents one of the earliest obstacles that must be successfully hurdled for continued development. Degradation of maternal mRNAs, which likely lies at the heart of this transition, is characterized by a transition from mRNA stability to instability during oocyte maturation. Although phosphorylation of the oocyte-specific RNA-binding protein MSY2 during maturation is implicated in making maternal mRNAs more susceptible to degradation, mechanisms underlying mRNA degradation during oocyte maturation remain poorly understood. We report that DCP1A and DCP2, proteins responsible for decapping mRNA, are encoded by maternal mRNAs recruited for translation during maturation via cytoplasmic polyadenylation elements located in their 3' untranslated regions. Both DCP1A and DCP2 are phosphorylated during maturation, with CDC2A being the kinase likely responsible for both, although MAPK may be involved in DCP1A phosphorylation. Inhibiting accumulation of DCP1A and DCP2 by RNA interference or morpholinos decreases not only degradation of mRNAs during meiotic maturation but also transcription of the zygotic genome. The results indicate that maternally recruited DCP1A and DCP2 are critical players in the transition from mRNA stability to instability during meiotic maturation and that proper maternal mRNA degradation must be successful to execute the oocyte-to-zygote transition.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Milazzotto MP, Feitosa WB, Paula-Lopes FF, Buratini J, Visintin JA, Assumpção MEOA. The mechanism of oocyte activation influences the cell cycle-related genes expression during bovine preimplantation development. Cell Reprogram 2012; 14:418-24. [PMID: 22928971 DOI: 10.1089/cell.2012.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first cleavage divisions and preimplantation embryonic development are supported by mRNA and proteins synthesized and stored during oogenesis. Thus, mRNA molecules of maternal origin decrease and embryonic development becomes gradually dependent on expression of genetic information derived from the embryonic genome. However, it is still unclear what the role of the sperm cell is during this phase and whether the absence of the sperm cell during the artificial oocyte activation affects subsequent embryonic development. The objective of this study was to determine, in bovine embryos, changes in cell cycle-associated transcript levels (cyclin A, cyclin B, cyclin E, CDC2, CDK2, and CDK4) after oocyte activation in the presence or absence of the sperm cell. To evaluate that, in vitro-produced (IVP) and parthenogenetically activated (PA) embryos (2-4 cells (2-4C), 8-16 cells (8-16C) and blastocysts) were evaluated by real-time PCR. There was no difference in cleavage and blastocyst rates between IVP and PA groups. Transcript level was higher in oocytes than in IVP and PA embryos. Cleaved PA embryos showed higher expression of cyclin A, cyclin B, cyclin E, and CDK2 and lower expression of CDC2 when compared with that from the IVP group. At the time of activation, all transcripts were expressed less in PA than in IVP embryos, whereas at the blastocyst stage, almost all genes were expressed at a higher level in the PA group. These results suggest that in both groups there is an initial consumption of these transcripts in the early stages of embryonic development. Furthermore, 8-16C embryos seem to synthesize more cell cycle-related genes than 2-4C embryos. However, in PA embryos, activation of the cell cycle genes seems to occur after the 8- to 16-cell stage, suggesting a failure in the activation process.
Collapse
|
30
|
Esteves TC, Psathaki OE, Pfeiffer MJ, Balbach ST, Zeuschner D, Shitara H, Yonekawa H, Siatkowski M, Fuellen G, Boiani M. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming. PLoS One 2012; 7:e36850. [PMID: 22693623 PMCID: PMC3367913 DOI: 10.1371/journal.pone.0036850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/14/2012] [Indexed: 12/20/2022] Open
Abstract
While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.
Collapse
Affiliation(s)
- Telma C. Esteves
- Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | | - Dagmar Zeuschner
- Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiromichi Yonekawa
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Marcin Siatkowski
- German Center for Neurodegenerative Disorders, Rostock, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany
| | - Michele Boiani
- Max-Planck Institute for Molecular Biomedicine, Münster, Germany
- * E-mail:
| |
Collapse
|
31
|
Alonso-González L, Couldrey C, Meinhardt MW, Cole SA, Wells DN, Laible G. Primary transgenic bovine cells and their rejuvenated cloned equivalents show transgene-specific epigenetic differences. PLoS One 2012; 7:e35619. [PMID: 22532863 PMCID: PMC3332029 DOI: 10.1371/journal.pone.0035619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/21/2012] [Indexed: 02/03/2023] Open
Abstract
Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences.
Collapse
Affiliation(s)
| | | | | | - Sally A. Cole
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - David N. Wells
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Götz Laible
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
- * E-mail:
| |
Collapse
|
32
|
|
33
|
Gao F, Luo Y, Li S, Li J, Lin L, Nielsen AL, Sørensen CB, Vajta G, Wang J, Zhang X, Du Y, Yang H, Bolund L. Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls. PLoS One 2011; 6:e25901. [PMID: 22022462 PMCID: PMC3191147 DOI: 10.1371/journal.pone.0025901] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022] Open
Abstract
Animal breeding via Somatic Cell Nuclear Transfer (SCNT) has enormous potential in agriculture and biomedicine. However, concerns about whether SCNT animals are as healthy or epigenetically normal as conventionally bred ones are raised as the efficiency of cloning by SCNT is much lower than natural breeding or In-vitro fertilization (IVF). Thus, we have conducted a genome-wide gene expression and DNA methylation profiling between phenotypically normal cloned pigs and control pigs in two tissues (muscle and liver), using Affymetrix Porcine expression array as well as modified methylation-specific digital karyotyping (MMSDK) and Solexa sequencing technology. Typical tissue-specific differences with respect to both gene expression and DNA methylation were observed in muscle and liver from cloned as well as control pigs. Gene expression profiles were highly similar between cloned pigs and controls, though a small set of genes showed altered expression. Cloned pigs presented a more different pattern of DNA methylation in unique sequences in both tissues. Especially a small set of genomic sites had different DNA methylation status with a trend towards slightly increased methylation levels in cloned pigs. Molecular network analysis of the genes that contained such differential methylation loci revealed a significant network related to tissue development. In conclusion, our study showed that phenotypically normal cloned pigs were highly similar with normal breeding pigs in their gene expression, but moderate alteration in DNA methylation aspects still exists, especially in certain unique genomic regions.
Collapse
Affiliation(s)
- Fei Gao
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang K, Otu HH, Chen Y, Lee Y, Latham K, Cibelli JB. Reprogrammed transcriptome in rhesus-bovine interspecies somatic cell nuclear transfer embryos. PLoS One 2011; 6:e22197. [PMID: 21799794 PMCID: PMC3143123 DOI: 10.1371/journal.pone.0022197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/20/2011] [Indexed: 01/08/2023] Open
Abstract
Background Global activation of the embryonic genome (EGA), one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT) embryos fail to thrive. Methodology/Principal Findings In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF) rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos. Conclusions/Significance Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation.
Collapse
Affiliation(s)
- Kai Wang
- Michigan State University, East Lansing, Michigan, United States of America
| | - Hasan H. Otu
- BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
| | - Ying Chen
- Michigan State University, East Lansing, Michigan, United States of America
| | - Young Lee
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Keith Latham
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jose B. Cibelli
- Michigan State University, East Lansing, Michigan, United States of America
- Programa Andaluz de Terapia Celular, Andalucia, Spain
- * E-mail:
| |
Collapse
|
35
|
Abstract
We review experiments in which somatic cell nuclei are transplanted singly to enucleated eggs (metaphase II) in amphibia and mammals and as multiple nuclei to the germinal vesicle of amphibian oocytes (prophase I). These experiments have shown the totipotency of some somatic cell nuclei, as well as switches in cell type and changes in gene expression. Abnormalities of nuclear transplant embryo development increase greatly as nuclei are taken from progressively more differentiated donor cells. The molecular changes that accompany the reprogramming of transplanted nuclei help to indicate the mechanisms used by eggs and oocytes to reprogram gene expression. We discuss the importance of chromosomal protein exchange, of transcription factor supply, and of chromatin access in reprogramming.
Collapse
Affiliation(s)
- J B Gurdon
- Wellcome Trust Cancer Research UK Gurdon Institute, Cambridge, United Kingdom.
| | | |
Collapse
|
36
|
Luo DJ, Hu W, Chen SP, Zhu ZY. Critical developmental stages for the efficiency of somatic cell nuclear transfer in zebrafish. Int J Biol Sci 2011; 7:476-86. [PMID: 21547065 PMCID: PMC3088290 DOI: 10.7150/ijbs.7.476] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/01/2011] [Indexed: 11/24/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been performed extensively in fish since the 1960s with a generally low efficiency of approximately 1%. Little is known about somatic nuclear reprogramming in fish. Here, we utilized the zebrafish as a model to study reprogramming events of nuclei from tail, liver and kidney cells by SCNT. We produced a total of 4,796 reconstituted embryos and obtained a high survival rate of 58.9-67.4% initially at the 8-cell stage. The survival rate exhibited two steps of dramatic decrease, leading to 8.7-13.9% at the dome stage and to 1.5-2.96% by the shield stage. Concurrently, we observed that SCNT embryos displayed apparently delayed development also at the two stages, namely the dome stage (1:30 ± 0:40) and the shield stage (2:50 ± 0:50), indicating that the dome and shield stage are critical for the SCNT efficiency. Interestingly, we also revealed that an apparent alteration in klf4 and mycb expression occurred at the dome stage in SCNT embryos from all the three donor cell sources. Taken together, these results suggest that the dome stage is critical for the SCNT efficiency, and that alternated gene expression appears to be common to SCNT embryos independently of the donor cell types, suggesting that balanced mycb and klf4 expression at this stage is important for proper reprogramming of somatic nuclei in zebrafish SCNT embryos. Although the significant alteration in klf4 and mycb expression was not identified at the shield stage between ZD and SCNT embryos, the importance of reprogramming processes at the shield stage should not be underestimated in zebrafish SCNT embryos.
Collapse
Affiliation(s)
- Da-Ji Luo
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- 2. School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Wei Hu
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shang-Ping Chen
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuo-Yan Zhu
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
37
|
Xie Y, Awonuga AO, Zhou S, Puscheck EE, Rappolee DA. Interpreting the stress response of early mammalian embryos and their stem cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:43-95. [PMID: 21414586 DOI: 10.1016/b978-0-12-386043-9.00002-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review analyzes and interprets the normal, pathogenic, and pathophysiological roles of stress and stress enzymes in mammalian development. Emerging data suggest that stem cells from early embryos are induced by stress to perform stress-enzyme-mediated responses that use the strategies of compensatory, prioritized, and reversible differentiation. These strategies have been optimized during evolution and in turn have aspects of energy conservation during stress that optimize and maximize the efficacy of the stress response. It is likely that different types of stem cells have varying degrees of flexibility in mediating compensatory and prioritized differentiation. The significance of this analysis and interpretation is that it will serve as a foundation for yielding tools for diagnosing, understanding normal and pathophysiological mechanisms, and providing methods for managing stress enzymes to improve short- and long-term reproductive outcomes.
Collapse
Affiliation(s)
- Y Xie
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
38
|
Arnold GJ, Frohlich T. Dynamic proteome signatures in gametes, embryos and their maternal environment. Reprod Fertil Dev 2011; 23:81-93. [DOI: 10.1071/rd10223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Comprehensive molecular analysis at the level of proteins represents a technically demanding, but indispensable, task since several post-transcriptional regulation mechanisms disable a valid prediction of quantitative protein expression profiles from transcriptome analysis. In crucial steps of gamete and early embryo development, de novo transcription is silenced, meaning that almost all macromolecular events take place at the level of proteins. In this review, we describe selected examples of dynamic proteome signatures addressing capacitation of spermatozoa, in vitro maturation of oocytes, effect of oestrous cycle on oviduct epithelial cells and embryo-induced alterations to the maternal environment. We also present details of the experimental strategies applied and the experiments performed to verify quantitative proteomic data. Far from being comprehensive, examples were selected to cover several mammalian species as well as the most powerful proteomic techniques currently applied. To enable non-experts in the field of proteomics to appraise published proteomic data, our examples are preceded by a customised description of quantitative proteomic methods, covering 2D difference gel electrophoresis (2D-DIGE), nano-liquid chromatography combined with tandem mass spectrometry, and label-free as well as stable-isotope labelling strategies for mass spectrometry-based quantifications.
Collapse
|
39
|
Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, Succu S, Berlinguer F, Ledda S. Different temporal gene expression patterns for ovine pre-implantation embryos produced by parthenogenesis or in vitro fertilization. Theriogenology 2010; 74:712-23. [DOI: 10.1016/j.theriogenology.2010.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
40
|
Sugimura S, Yokoo M, Yamanaka KI, Kawahara M, Moriyasu S, Wakai T, Nagai T, Abe H, Sato E. Anomalous Oxygen Consumption in Porcine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2010; 12:463-74. [DOI: 10.1089/cell.2009.0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Satoshi Sugimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaki Yokoo
- Laboratory of Animal Reproduction, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Ken-ichi Yamanaka
- National Agricultural Research Center for Kyushu Okinawa Region, Kumamoto, Japan
| | - Manabu Kawahara
- Laboratory of Animal Resource Development Faculty of Agriculture, Saga University, Saga, Japan
| | | | - Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Takashi Nagai
- National Institute of Livestock and Grassland Science, Tsukuba 305-0901, Japan
| | - Hiroyuki Abe
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Eimei Sato
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
41
|
Lagutina I, Fulka H, Brevini TAL, Antonini S, Brunetti D, Colleoni S, Gandolfi F, Lazzari G, Fulka J, Galli C. Development, embryonic genome activity and mitochondrial characteristics of bovine-pig inter-family nuclear transfer embryos. Reproduction 2010; 140:273-85. [PMID: 20530093 DOI: 10.1530/rep-09-0578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The best results of inter-species somatic cell nuclear transfer (iSCNT) in mammals were obtained using closely related species that can hybridise naturally. However, in the last years, many reports describing blastocyst development following iSCNT between species with distant taxonomical relations (inter-classes, inter-order and inter-family) have been published. This indicates that embryonic genome activation (EGA) in xeno-cytoplasm is possible, albeit very rarely. Using a bovine-pig (inter-family) iSCNT model, we studied the basic characteristics of EGA: expression and activity of RNA polymerase II (RNA Pol II), formation of nucleoli (as an indicator of RNA polymerase I (RNA Pol I) activity), expression of the key pluripotency gene NANOG and alteration of mitochondrial mass. In control embryos (obtained by IVF or iSCNT), EGA was characterised by RNA Pol II accumulation and massive production of poly-adenylated transcripts (detected with oligo dT probes) in blastomere nuclei, and formation of nucleoli as a result of RNA Pol I activity. Conversely, iSCNT embryos were characterised by the absence of accumulation and low activity of RNA Pol II and inability to form active mature nucleoli. Moreover, in iSCNT embryos, NANOG was not expressed, and mitochondria mass was significantly lower than in intra-species embryos. Finally, the complete developmental block at the 16-25-cell stage for pig-bovine iSCNT embryos and at the four-cell stage for bovine-pig iSCNT embryos strongly suggests that EGA is not taking place in iSCNT embryos. Thus, our experiments clearly demonstrate poor nucleus-cytoplasm compatibility between these animal species.
Collapse
Affiliation(s)
- Irina Lagutina
- Laboratorio di Tecnologie della Riproduzione, Avantea srl, Via Porcellasco 7/f, Cremona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aston KI, Li GP, Hicks BA, Sessions BR, Davis AP, Rickords LF, Stevens JR, White KL. Abnormal levels of transcript abundance of developmentally important genes in various stages of preimplantation bovine somatic cell nuclear transfer embryos. Cell Reprogram 2010; 12:23-32. [PMID: 20132010 DOI: 10.1089/cell.2009.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Based on microarray data comparing gene expression of fibroblast donor cells and bovine somatic cell nuclear transfer (SCNT) and in vivo produced (AI) blastocysts, a group of genes including several transcription factors was selected for evaluation of transcript abundance. Using SYBR green-based real-time polymerase chain reaction (Q-PCR) the levels of POU domain class 5 transcription factor (Oct4), snail homolog 2 (Snai2), annexin A1 (Anxa1), thrombospondin (Thbs), tumor-associated calcium signal transducer 1 (Tacstd1), and transcription factor AP2 gamma (Tfap2c) were evaluated in bovine fibroblasts, oocytes, embryos 30 min postfusion (SCNT), 12 h postfertilization/activation, as well as two-cell, four-cell, eight-cell, morula, and blastocyst-stage in vitro fertilized (IVF) and SCNT embryos. For every gene except Oct4, levels of transcript were indistinguishable between IVF and SCNT embryos at the blastocyst stage; however, in many cases levels of these genes during stages prior to blastocyst differed significantly. Altered levels of gene transcripts early in development likely have developmental consequences downstream. These results indicate that experiments evaluating gene expression differences between control and SCNT blastocysts may underestimate the degree of difference between clones and controls, and further offer insights into the dynamics of transcript regulation following SCNT.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Animal, Dairy, and Veterinary Sciences and Center for Integrated Biosystems, Utah State University, Logan, Utah 84322-4815, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Han Z, Mtango NR, Zhong Z, Vassena R, Latham KE. Early transcription from the maternal genome controlling blastomere integrity in mouse two-cell-stage embryos. Am J Physiol Cell Physiol 2010; 298:C1235-44. [PMID: 20107036 DOI: 10.1152/ajpcell.00393.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blastomere cytofragmentation in mammalian embryos poses a significant problem in applied and clinical embryology. Mouse two-cell-stage embryos display strain-dependent differences in the rate of cytofragmentation, with a high rate observed in C3H/HeJ embryos and a lower rate observed in C57BL/6 embryos. The maternally inherited genome exerts the strongest effect on the process, with lesser effects mediated by the paternally inherited genome and the ooplasm. The effect of the maternal genome is transcription dependent and independent of the mitochondrial strain of origin. To identify molecular mechanisms that underlie cytofragmentation, we evaluated transcriptional activities of embryos possessing maternal pronuclei (mPN) of different origins. The mPN from C57BL/6 and C3H/HeJ strains directed specific transcription at the two-cell stage of mRNAs corresponding to 935 and 864 Affymetrix probe set IDs, respectively. Comparing transcriptomes of two-cell-stage embryos with different mPN revealed 64 transcribed genes with differential expression (1.4-fold or greater). Some of these genes occupy molecular pathways that may regulate cytofragmentation via a combination of effects related to apoptosis and effects on the cytoskeleton. These results implicate specific molecular mechanisms that may regulate cytofragmentation in early mammalian embryos. The most striking effect of mPN strain of origin on gene expression was on adenylate cyclase 2 (Adcy2). Treatment with dibutyryl cAMP (dbcAMP) elicits a high rate and severe form of cytofragmentation, and the effective dbcAMP concentration varies with maternal genotype. An activator of exchange proteins directly activated by cAMP (EPACs, or RAPGEF 3 and 4) 8-pCPT-2'-O-methyl-cAMP, elicits a high level of fragmentation while the PKA-specific activator N6-benzoyl-cAMP does not. Inhibition of A kinase anchor protein activities with st-Ht31 induces fragmentation. Inhibition of phosphatidylinositol 3-kinase signaling also induces fragmentation. These results reveal novel mechanisms by which maternal genotype affects cytofragmentation, including a system of opposing signaling pathways that most likely operate by controlling cytoskeletal function.
Collapse
Affiliation(s)
- Zhiming Han
- The Fels Institute for Cancer Research and Molecular Biology, Temple Univ. School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
44
|
Aston KI, Li GP, Hicks BA, Winger QA, White KL. Genetic reprogramming of transcription factor ap-2gamma in bovine somatic cell nuclear transfer preimplantation embryos and placentomes. CLONING AND STEM CELLS 2009; 11:177-86. [PMID: 19226219 DOI: 10.1089/clo.2008.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bovine somatic cell nuclear transfer (SCNT) efficiency remains very low despite a tremendous amount of research devoted to its improvement over the past decade. Frequent early and mid-gestational losses are commonly accompanied by placental abnormalities. A transcription factor, activating protein AP-2gamma, has been shown to be necessary for proper placental development in the mouse. We first evaluated the expression of the gene coding for AP-2gamma (Tfap2c) in several bovine fibroblast donor cell lines and found it was not expressed. Subsequently we determined the expression profile of Tfap2c in oocytes and various stages of preimplantation in vitro fertilized (IVF) embryos. Tfap2c was undetectable in oocytes and early embryos, and was detectable at relatively high levels in morula and blastocyst IVF embryos. The lack of expression in oocytes and donor cells means Tfap2c must be induced in the zygote at the morula stage in properly reprogrammed embryos. SCNT embryos expressed Tfap2c at the eight-cell stage, 2 days earlier than control embryos. Control embryos first expressed Tfap2c at the morula stage, and at this stage Tfap2c was significantly lower in the SCNT embryos. No differences in expression were detected at the blastocyst stage. To determine whether Tfap2c was properly reprogrammed in the placenta of SCNT pregnancies, we evaluated its expression in cotyledons and caruncles of SCNT and control pregnancies between days 55 and 90 gestation. Expression of Tfap2c in caruncles significantly increased between days 55 and 90, while expression in cotyledons was relatively consistent over that same period. Expression levels in SCNT tissues were not different from controls. This data indicates Tfap2c expression is altered in early preimplantation SCNT embryos, which may have developmental consequences resulting from genes influenced by Tfap2c, but expression was not different at the blastocyst stage and in placentomes.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Animal, Dairy, and Veterinary Sciences and Center for Integrated Biosystems, Utah State University, Logan, 84322-4815, USA
| | | | | | | | | |
Collapse
|
45
|
Gupta MK, Jang JM, Jung JW, Uhm SJ, Kim KP, Lee HT. Proteomic analysis of parthenogenetic and in vitro fertilized porcine embryos. Proteomics 2009; 9:2846-2860. [PMID: 19405025 DOI: 10.1002/pmic.200800700] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 02/05/2009] [Indexed: 12/13/2022]
Abstract
Proteomic data from embryos are essential for the completion of whole proteome catalog due to embryo-specific expression of certain proteins. In this study, using reverse phase LC-MS/MS combined with 1-D SDS-PAGE, we identified 1625 mammalian and 735 Sus scrofa proteins from porcine zygotes that included both cytosolic and membranous proteins. We also found that the global protein profiles of parthenogenetically activated (PA) and in vitro fertilized (IVF) zygotes were similar but differences in expression of individual proteins were also evident. These differences were not due to culture conditions, polyspermy or non-activation of oocytes, as the same culture method was used in both groups, the frequency of polyspermy was 24.3+/-3.0% and the rates of oocyte activation did not differ (p>0.05) between PA and IVF embryos. Consistent with proteomic data, fluorescent Hoechst 33 342 staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay also revealed that PA embryos were of poor quality as they contained less cells per blastocyst and were more predisposed to apoptosis (p<0.05), although their in vitro development rates were similar. To our knowledge, this is the first report on global peptide sequencing and quantification of protein in PA and IVF embryos by LC-MS/MS that may be useful as a reference map for future studies.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Luo D, Hu W, Chen S, Xiao Y, Sun Y, Zhu Z. Identification of Differentially Expressed Genes Between Cloned and Zygote-Developing Zebrafish (Danio rerio) Embryos at the Dome Stage Using Suppression Subtractive Hybridization1. Biol Reprod 2009; 80:674-84. [DOI: 10.1095/biolreprod.108.074203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
47
|
Miyamoto K, Tsukiyama T, Yang Y, Li N, Minami N, Yamada M, Imai H. Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biol Reprod 2009; 80:935-43. [PMID: 19164171 DOI: 10.1095/biolreprod.108.073676] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nuclear transfer has been regarded as the only reliable tool for studying nuclear reprogramming of mammalian somatic cells by oocytes. However, nuclear transfer is not well suited for biochemical analyses of the molecular mechanisms of reprogramming. A cell-free system from oocytes is an attractive alternative way to mimic reprogramming in vitro, since a large number of cells can be treated and analyzed. Nevertheless, a cell-free system using oocytes has not been developed in mammals. Here, cell extracts from porcine oocytes were prepared and their ability to induce nuclear reprogramming was evaluated. Extracts from metaphase II (MII) oocytes erased the machinery for regulating gene expression in reversibly permeabilized somatic cells. For example, the extracts caused histone deacetylation and the disappearance of TATA box-binding protein from the nuclei. However, MII-extract-treated cells did not show any obvious changes after cell culture. In contrast, extracts from germinal vesicle (GV) oocytes activated pluripotent marker genes, especially NANOG, and induced partial dedifferentiation after cell culture. The activation of pluripotent marker genes by GV extracts was associated with histone acetylation that was induced during extract treatment. These results indicate that GV- and MII-oocyte extracts have different roles on nuclear reprogramming. Furthermore, both oocyte extracts induced site-specific demethylation in the upstream region of NANOG. These results indicate that cell-free extracts derived from GV- and MII-oocytes could be useful for studying the mechanisms involved in nuclear reprogramming.
Collapse
Affiliation(s)
- Kei Miyamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Nonchev S, Cassoly E. The Pronuclei - 20 Years Later. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10817606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
49
|
Oback B. Cloning from stem cells: different lineages, different species, same story. Reprod Fertil Dev 2009; 21:83-94. [DOI: 10.1071/rd08212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following nuclear transfer (NT), the most stringent measure of extensive donor cell reprogramming is development into viable offspring. This is referred to as cloning efficiency and quantified as the proportion of cloned embryos transferred into surrogate mothers that survive into adulthood. Cloning efficiency depends on the ability of the enucleated recipient cell to carry out the reprogramming reactions (‘reprogramming ability’) and the ability of the nuclear donor cell to be reprogrammed (‘reprogrammability’). It has been postulated that reprogrammability of the somatic donor cell epigenome is inversely proportional to its differentiation status. In order to test this hypothesis, reprogrammability was compared between undifferentiated stem cells and their differentiated isogenic progeny. In the mouse, cells of divergent differentiation status from the neuronal, haematopoietic and skin epithelial lineage were tested. In cattle and deer, skeletal muscle and antler cells, respectively, were used as donors. No conclusive correlation between differentiation status and cloning efficiency was found, indicating that somatic donor cell type may not be the limiting factor for cloning success. This may reflect technical limitations of the NT-induced reprogramming assay. Alternatively, differentiation status and reprogrammability may be unrelated, making all cells equally difficult to reprogramme once they have left the ground state of pluripotency.
Collapse
|
50
|
Oback B. Climbing Mount Efficiency--small steps, not giant leaps towards higher cloning success in farm animals. Reprod Domest Anim 2008; 43 Suppl 2:407-16. [PMID: 18638154 DOI: 10.1111/j.1439-0531.2008.01192.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite more than a decade of research efforts, farm animal cloning by somatic cell nuclear transfer (SCNT) is still frustratingly inefficient. Inefficiency manifests itself at different levels, which are currently not well integrated. At the molecular level, it leads to widespread genetic, epigenetic and transcriptional aberrations in cloned embryos. At the organismal level, these genome-wide abnormalities compromise development of cloned foetuses and offspring. Specific molecular defects need to be causally linked to specific cloned phenotypes, in order to design specific treatments to correct them. Cloning efficiency depends on the ability of the nuclear donor cell to be fully reprogrammed into an embryonic state and the ability of the enucleated recipient cell to carry out the reprogramming reactions. It has been postulated that reprogrammability of the somatic donor cell epigenome is influenced by its differentiation status. However, direct comparisons between cells of divergent differentiation status within several somatic lineages have found no conclusive evidence for this. Choosing somatic stem cells as donors has not improved cloning efficiency, indicating that donor cell type may be less critical for cloning success. Different recipient cells, on the other hand, vary in their reprogramming ability. In bovine, using zygotes instead of oocytes has increased cloning success. Other improvements in livestock cloning efficiency include better coordinating donor cell type with cell cycle stage and aggregating cloned embryos. In the future, it will be important to demonstrate if these small increases at every step are cumulative, adding up to an integrated cloning protocol with greatly improved efficiency.
Collapse
Affiliation(s)
- Björn Oback
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.
| |
Collapse
|