1
|
Thuveson M, Gaengel K, Collu GM, Chin ML, Singh J, Mlodzik M. Integrins are required for synchronous ommatidial rotation in the Drosophila eye linking planar cell polarity signalling to the extracellular matrix. Open Biol 2019; 9:190148. [PMID: 31409231 PMCID: PMC6731590 DOI: 10.1098/rsob.190148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrins mediate the anchorage between cells and their environment, the extracellular matrix (ECM), and form transmembrane links between the ECM and the cytoskeleton, a conserved feature throughout development and morphogenesis of epithelial organs. Here, we demonstrate that integrins and components of the ECM are required during the planar cell polarity (PCP) signalling-regulated cell movement of ommatidial rotation in the Drosophila eye. The loss-of-function mutations of integrins or ECM components cause defects in rotation, with mutant clusters rotating asynchronously compared to wild-type clusters. Initially, mutant clusters tend to rotate faster, and at later stages they fail to be synchronous with their neighbours, leading to aberrant rotation angles and resulting in a disorganized ommatidial arrangement in adult eyes. We further demonstrate that integrin localization changes dynamically during the rotation process. Our data suggest that core Frizzled/PCP factors, acting through RhoA and Rho kinase, regulate the function/activity of integrins and that integrins thus contribute to the complex interaction network of PCP signalling, cell adhesion and cytoskeletal elements required for a precise and synchronous 90° rotation movement.
Collapse
Affiliation(s)
- Maria Thuveson
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Konstantin Gaengel
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA.,Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Giovanna M Collu
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mei-Ling Chin
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jaskirat Singh
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
2
|
Richier B, Inoue Y, Dobramysl U, Friedlander J, Brown NH, Gallop JL. Integrin signaling downregulates filopodia during muscle-tendon attachment. J Cell Sci 2018; 131:jcs.217133. [PMID: 30054384 PMCID: PMC6127725 DOI: 10.1242/jcs.217133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Abstract
Cells need to sense their environment to ensure accurate targeting to specific destinations. This occurs in developing muscles, which need to attach to tendon cells before muscle contractions can begin. Elongating myotube tips form filopodia, which are presumed to have sensory roles, and are later suppressed upon building the attachment site. Here, we use live imaging and quantitative image analysis of lateral transverse (LT) myotubes in Drosophila to show that filopodia suppression occurs as a result of integrin signaling. Loss of the integrin subunits αPS2 and βPS (also known as If and Mys, respectively, in flies) increased filopodia number and length at stages when they are normally suppressed. Conversely, inducing integrin signaling, achieved by the expression of constitutively dimerised βPS cytoplasmic domain (diβ), prematurely suppressed filopodia. We discovered that the integrin signal is transmitted through the protein G protein-coupled receptor kinase interacting ArfGAP (Git) and its downstream kinase p21-activated kinase (Pak). Absence of these proteins causes profuse filopodia and prevents the filopodial inhibition mediated by diβ. Thus, integrin signaling terminates the exploratory behavior of myotubes seeking tendons, enabling the actin machinery to focus on forming a strong attachment and assembling the contractile apparatus. Summary: Integrins signal through Git and Pak to downregulate filopodia when muscles reach their target attachment site in Drosophila.
Collapse
Affiliation(s)
- Benjamin Richier
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Yoshiko Inoue
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ulrich Dobramysl
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jonathan Friedlander
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jennifer L Gallop
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK .,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
3
|
Matsubayashi Y, Louani A, Dragu A, Sánchez-Sánchez BJ, Serna-Morales E, Yolland L, Gyoergy A, Vizcay G, Fleck RA, Heddleston JM, Chew TL, Siekhaus DE, Stramer BM. A Moving Source of Matrix Components Is Essential for De Novo Basement Membrane Formation. Curr Biol 2017; 27:3526-3534.e4. [PMID: 29129537 PMCID: PMC5714436 DOI: 10.1016/j.cub.2017.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3, 4, 5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6, 7, 8, 9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components. Macrophages are major producers of basement membrane in the Drosophila embryo Basement membrane components require hierarchical deposition during development Macrophage migration is essential to evenly deliver a subset of matrix components Uneven macrophage dispersal leads to uneven matrix incorporation and lethality
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | - Adam Louani
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Eduardo Serna-Morales
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Lawrence Yolland
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Attila Gyoergy
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gema Vizcay
- Centre for Ultrastructure Imaging, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructure Imaging, King's College London, London SE1 1UL, UK
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Daria E Siekhaus
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
4
|
IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover. Cell Rep 2016; 14:2668-82. [DOI: 10.1016/j.celrep.2016.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
|
5
|
Hákonardóttir GK, López-Ceballos P, Herrera-Reyes AD, Das R, Coombs D, Tanentzapf G. In vivo quantitative analysis of Talin turnover in response to force. Mol Biol Cell 2015; 26:4149-62. [PMID: 26446844 PMCID: PMC4710244 DOI: 10.1091/mbc.e15-05-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Cell–ECM adhesion is regulated by mechanical force. Quantitative imaging and mathematical modeling are used to elucidate how the intracellular adhesion complex of integrin-based adhesions responds to force, revealing the molecular mechanisms that allow the adhesion complex to respond to force to stabilize cell–ECM adhesion over development. Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell–ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell–ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development.
Collapse
Affiliation(s)
- Guðlaug Katrín Hákonardóttir
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alejandra Donají Herrera-Reyes
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
7
|
Two protein N-acetylgalactosaminyl transferases regulate synaptic plasticity by activity-dependent regulation of integrin signaling. J Neurosci 2014; 34:13047-65. [PMID: 25253852 DOI: 10.1523/jneurosci.1484-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using a Drosophila whole-genome transgenic RNAi screen for glycogenes regulating synapse function, we have identified two protein α-N-acetylgalactosaminyltransferases (pgant3 and pgant35A) that regulate synaptic O-linked glycosylation (GalNAcα1-O-S/T). Loss of either pgant alone elevates presynaptic/postsynaptic molecular assembly and evoked neurotransmission strength, but synapses appear restored to normal in double mutants. Likewise, activity-dependent facilitation, augmentation, and posttetanic potentiation are all suppressively impaired in pgant mutants. In non-neuronal contexts, pgant function regulates integrin signaling, and we show here that the synaptic Position Specific 2 (αPS2) integrin receptor and transmembrane tenascin ligand are both suppressively downregulated in pgant mutants. Channelrhodopsin-driven activity rapidly (<1 min) drives integrin signaling in wild-type synapses but is suppressively abolished in pgant mutants. Optogenetic stimulation in pgant mutants alters presynaptic vesicle trafficking and postsynaptic pocket size during the perturbed integrin signaling underlying synaptic plasticity defects. Critically, acute blockade of integrin signaling acts synergistically with pgant mutants to eliminate all activity-dependent synaptic plasticity.
Collapse
|
8
|
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering. PLoS Genet 2014; 10:e1004756. [PMID: 25393120 PMCID: PMC4230843 DOI: 10.1371/journal.pgen.1004756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. Cells are the building blocks of our bodies. How do cells rearrange to form three-dimensional body plans and maintain specific tissue structures? Specialized adhesion molecules on the cell surface mediate attachment between cells and their surrounding environment to hold tissues together. Our work uses the developing fruit fly embryo to demonstrate how such connections are regulated during tissue growth. Since the genes and molecules involved in this process are highly similar between flies and humans, we can also apply our findings to our understanding of how human tissues form and are maintained. We observe that, in late developing muscles, clusters of cell adhesion molecules concentrate together to create stronger attachments between muscle cells and tendon cells. This strengthening mechanism allows the fruit fly to accommodate increasing amounts of force imposed by larger, more active muscles. We identify specific genetic mutations that disrupt these strengthening mechanisms and lead to severe developmental defects during fly development. Our results illustrate how subtle fine-tuning of the connections between cells and their surrounding environment is important to form and maintain normal tissue structure across the animal kingdom.
Collapse
Affiliation(s)
- Stephanie J. Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mohamed Bouaouina
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
- Carnegie Mellon University Qatar, Education City, Doha, Qatar
| | - Michael J. Fairchild
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David A. Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
9
|
Montgomery SL, Vorojeikina D, Huang W, Mackay TFC, Anholt RRH, Rand MD. Genome-wide association analysis of tolerance to methylmercury toxicity in Drosophila implicates myogenic and neuromuscular developmental pathways. PLoS One 2014; 9:e110375. [PMID: 25360876 PMCID: PMC4215868 DOI: 10.1371/journal.pone.0110375] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/11/2014] [Indexed: 11/30/2022] Open
Abstract
Methylmercury (MeHg) is a persistent environmental toxin present in seafood that can compromise the developing nervous system in humans. The effects of MeHg toxicity varies among individuals, despite similar levels of exposure, indicating that genetic differences contribute to MeHg susceptibility. To examine how genetic variation impacts MeHg tolerance, we assessed developmental tolerance to MeHg using the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the effects of MeHg on development, measured by eclosion rate, giving a broad sense heritability of 0.86. To investigate the influence of dietary factors, we measured MeHg toxicity with caffeine supplementation in the DGRP lines. We found that caffeine counteracts the deleterious effects of MeHg in the majority of lines, and there is significant genetic variance in the magnitude of this effect, with a broad sense heritability of 0.80. We performed genome-wide association (GWA) analysis for both traits, and identified candidate genes that fall into several gene ontology categories, with enrichment for genes involved in muscle and neuromuscular development. Overexpression of glutamate-cysteine ligase, a MeHg protective enzyme, in a muscle-specific manner leads to a robust rescue of eclosion of flies reared on MeHg food. Conversely, mutations in kirre, a pivotal myogenic gene identified in our GWA analyses, modulate tolerance to MeHg during development in accordance with kirre expression levels. Finally, we observe disruptions of indirect flight muscle morphogenesis in MeHg-exposed pupae. Since the pathways for muscle development are evolutionarily conserved, it is likely that the effects of MeHg observed in Drosophila can be generalized across phyla, implicating muscle as an additional hitherto unrecognized target for MeHg toxicity. Furthermore, our observations that caffeine can ameliorate the toxic effects of MeHg show that nutritional factors and dietary manipulations may offer protection against the deleterious effects of MeHg exposure.
Collapse
Affiliation(s)
- Sara L. Montgomery
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Wen Huang
- Department of Biological Sciences, Genetics Program, and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- Department of Biological Sciences, Genetics Program, and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert R. H. Anholt
- Department of Biological Sciences, Genetics Program, and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
10
|
Abstract
Integrin-linked kinase (ILK), PINCH and Parvin proteins form the IPP-complex that has been established as a core component of the integrin-actin link. Our recent genetic studies on Drosophila parvin, reveal that loss of function mutant defects phenocopy those observed upon loss of ILK or PINCH in the muscle and the wing, strengthening the notion that these proteins function together in the organism. Our work identified that ILK is necessary and sufficient for parvin subcellular localization, corroborating previous data indicating a direct association between these two proteins. Further genetic epistasis analysis of the IPP-complex assembly at integrin adhesion sites reveals that depending on the cell context each component is required differently. At the muscle attachment sites of the embryo, ILK is placed upstream in the hierarchy of genetic interactions required for the IPP-complex assembly. By contrast, in the wing epithelium the three proteins are mutually interdependent. Finally, we uncovered a novel property for the CH1-domain of parvin: its recruitment at the integrin-containing junctions in an ILK-dependent manner. Apparently, this ability of the CH1-domain is controlled by the inter-CH linker region. Thus, an intramolecular interaction within parvin could serve as a putative regulatory mechanism controlling the ILK-Parvin interaction.
Collapse
Affiliation(s)
- Katerina Vakaloglou
- Biomedical Research Foundation; Academy of Athens (BRFAA); Division of Genetics; Athens, Greece
| | | |
Collapse
|
11
|
Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development. Curr Opin Cell Biol 2012; 24:702-12. [PMID: 22938782 DOI: 10.1016/j.ceb.2012.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
Abstract
We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
Collapse
|
12
|
Vakaloglou KM, Chountala M, Zervas CG. Functional analysis of parvin and different modes of IPP-complex assembly at integrin sites during Drosophila development. J Cell Sci 2012; 125:3221-32. [DOI: 10.1242/jcs.102384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Integrin-linked kinase (ILK), PINCH and Parvin constitute the tripartite IPP-complex that maintains the integrin-actin link at embryonic muscle attachment sites (MASs) in Drosophila. Here we showed that parvin null mutations in Drosophila exhibit defects in muscle adhesion, similar to ILK and PINCH mutants. Furthermore, the identical muscle phenotype of the triple mutant, which for the first time in any organism removed the entire IPP-complex function, genetically demonstrated that parvin, ILK and PINCH function synergistically. This is consistent with the tight localization of the tripartite complex at sites of integrin adhesion, namely MASs in the developing embryo and focal contact-like structures in the wing epithelium. Parvin contains tandem unconventional Calponin-Homology (CH) domains separated by a linker sequence, and a less well conserved N-terminal region. In vivo structure-function analysis revealed that all the domains are essential for parvin function, whereas recruitment at integrin adhesion sites is mediated by two localization signals: one located within the CH2-domain as previously reported, and a second novel signal within the CH1 domain. Interestingly, this site is masked by the linker region between the two CH-domains, suggesting a regulatory mechanism to control parvin localization. Finally, whereas in muscles only ILK controls the stability and localization of both PINCH and parvin, in the wing epithelium the three proteins mutually depend on each other. Thus molecular differences exist in the assembly properties of IPP-complex in specific tissues during development, where differential modulation of the integrin connection to cytoskeleton is required.
Collapse
|
13
|
Brown NH. Extracellular matrix in development: insights from mechanisms conserved between invertebrates and vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005082. [PMID: 21917993 DOI: 10.1101/cshperspect.a005082] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) and its receptors make diverse contributions to development. The ECM comes in a variety of forms, including the more "standard" ECM that is internal to the animal and on the basal side of epithelial sheets, as well as the apical ECM, which is especially elaborated in the invertebrates to form the exoskeleton. ECM proteins accumulate adjacent to particular target tissues in the developing animal by a variety of mechanisms: local synthesis in the target tissue; local synthesis by migrating cells; and secretion from a distant source and capture by the target tissue. The diverse developmental functions of the ECM are discussed, including the generation of a road for cell migration, creation of morphogenetic checkpoints for differentiation, modulation of morphogen gradients, insulation of organs, gluing together cell layers, and providing structure for the organism.
Collapse
Affiliation(s)
- Nicholas H Brown
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience, University of Cambridge, United Kingdom.
| |
Collapse
|
14
|
Zervas CG, Psarra E, Williams V, Solomon E, Vakaloglou KM, Brown NH. A central multifunctional role of integrin-linked kinase at muscle attachment sites. J Cell Sci 2011; 124:1316-27. [PMID: 21444757 DOI: 10.1242/jcs.081422] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Integrin-linked kinase (ILK) is an essential component of a multiprotein complex that links actin to the plasma membrane. Here, we have used a genetic approach to examine the molecular interactions that are essential for the assembly of this ILK-containing complex at Drosophila muscle attachment sites (MASs). We show that, downstream of integrins, talin plays a decisive role in the recruitment of three proteins: ILK, PINCH and paxillin. The accumulation of ILK at MASs appears to follow an amplification mechanism, suggesting that numerous binding sites are generated by minimal levels of the upstream integrin and talin effectors. This property suggests that ILK functions as an essential hub in the assembly of its partner proteins at sites of integrin adhesion. We found that PINCH stability, and its subcellular localization at MASs, depends upon ILK function, but that ILK stability and localization is not dependent upon PINCH. An in vivo structure-function analysis of ILK demonstrated that each ILK domain has sufficient information for its independent recruitment at embryonic MASs, whereas at later developmental stages only the kinase domain was effectively recruited. Our data strengthen the view that the ILK complex is assembled sequentially at sites of integrin adhesion by employing multiple molecular interactions, which collectively stabilize the integrin-actin link.
Collapse
Affiliation(s)
- Christos G Zervas
- Biomedical Research Foundation, Academy of Athens, Division of Genetics, Soranou Efessiou 4, 11527 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
15
|
Pines M, Fairchild MJ, Tanentzapf G. Distinct regulatory mechanisms control integrin adhesive processes during tissue morphogenesis. Dev Dyn 2011; 240:36-51. [PMID: 21089076 DOI: 10.1002/dvdy.22488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell adhesion must be precisely regulated to enable both dynamic morphogenetic processes and the subsequent transition to stable tissue maintenance. Integrins link the intracellular cytoskeleton and extracellular matrix, relaying bidirectional signals across the plasma membrane. In vitro studies have demonstrated that multiple mechanisms control integrin-mediated adhesion; however, their roles during development are poorly understood. We used mutations that activate or deactivate specific functions of vertebrate β-integrins in vitro to investigate how perturbing Drosophila βPS-integrin regulation in developing embryos regulation affects tissue morphogenesis and maintenance. We found that morphogenetic processes use various β-integrin regulatory mechanisms to differing degrees and that conformational changes associated with outside-in activation are essential for developmental integrin functions. Long-term adhesion is also sensitive to integrin dysregulation, suggesting integrins must be continuously regulated to support stable tissue maintenance. Altogether, in vivo phenotypic analyses allowed us to identify the importance of various β-integrin regulatory mechanisms during different morphogenetic processes.
Collapse
Affiliation(s)
- Mary Pines
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
16
|
Hu J, Zhao H, Yu X, Liu J, Wang P, Chen J, Xu Q, Zhang W. Integrin β1 subunit from Ostrinia furnacalis hemocytes: molecular characterization, expression, and effects on the spreading of plasmatocytes. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1846-1856. [PMID: 20708011 DOI: 10.1016/j.jinsphys.2010.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 05/29/2023]
Abstract
When lepidopteran larvae are infected by a large quantity of pathogens or parasitized by nonadaptive parasitoids, hemocytes in the hemocoel will encapsulate these foreign invaders. Cellular encapsulation requires hemocytes, particularly plasmatocytes, to change their states from nonadhesive, spherical cells into adhesive, spreading cells. However, it is unclear how the changes of plasmatocytes are regulated. Here we report that the integrin β1 subunit from hemocytes of Ostrinia furnacalis (Ofint β1) plays an important role in regulating the spreading of plasmatocytes. The full length cDNA sequence (4477 bp) of Ofint β1 was cloned from hemocytes. Phylogenetic analysis showed that Ofint β1 belonged to the integrin βPS family of Drosophila melanogaster with highest sequence identity (78.7%) to the β-integrin of Pseudoplusia includens. Structural analysis of the deduced amino acid sequence indicated that Ofint β1 had similar functional domains to known β-integrins in other lepidopteran insects. RT-PCR, Northern blotting, Western blotting and immunohistochemical analyses showed that OfINT β1 was expressed mainly in hemocytes, especially in plasmatocytes, and weakly in fat body, Malpighian tubes and epidermis. After hemocytes had spread onto slides, fewer antibodies to OfINT β1 bound to the surface of plasmatocytes. Furthermore, anti-OfINT β1 serum clearly inhibited the spreading of plasmatocytes. Together these results indicate that OfINT β1 may play an important role in regulating the spreading of plasmatocytes.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Tran DT, Ten Hagen KG. An O-glycosyltransferase promotes cell adhesion during development by influencing secretion of an extracellular matrix integrin ligand. J Biol Chem 2010; 285:19491-501. [PMID: 20371600 DOI: 10.1074/jbc.m109.098145] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein secretion and localization are crucial during eukaryotic development, establishing local cell environments as well as mediating cell interactions, signaling, and adhesion. In this study, we demonstrate that the glycosyltransferase, pgant3, specifically modulates integrin-mediated cell adhesion by influencing the secretion and localization of the integrin ligand, Tiggrin. We demonstrate that Tiggrin is normally O-glycosylated and localized to the basal matrix where the dorsal and ventral cell layers adhere in wild type Drosophila wings. In pgant3 mutants, Tiggrin is no longer O-glycosylated and fails to be properly secreted to this basal cell layer interface, resulting in disruption of integrin-mediated cell adhesion in the wing. pgant3-mediated effects are dependent on enzymatic activity, as mutations that form a stable protein yet abrogate O-glycosyltransferase activity result in Tiggrin accumulation within the dorsal and ventral cells comprising the wing. Our results provide the first in vivo evidence for the role of O-glycosylation in the secretion of specific extracellular matrix proteins, thus altering the composition of the cellular "microenvironment" and thereby modulating developmentally regulated cell adhesion events. As alterations in cell adhesion are a hallmark of cancer progression, this work provides insight into the long-standing association between aberrant O-glycosylation and tumorigenesis.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | | | |
Collapse
|
18
|
Urbano JM, Torgler CN, Molnar C, Tepass U, López-Varea A, Brown NH, de Celis JF, Martín-Bermudo MD. Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development 2009; 136:4165-76. [PMID: 19906841 DOI: 10.1242/dev.044263] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Laminins are heterotrimeric molecules found in all basement membranes. In mammals, they have been involved in diverse developmental processes, from gastrulation to tissue maintenance. The Drosophila genome encodes two laminin alpha chains, one beta and one Gamma, which form two distinct laminin trimers. So far, only mutations affecting one or other trimer have been analysed. In order to study embryonic development in the complete absence of laminins, we mutated the gene encoding the sole laminin beta chain in Drosophila, LanB1, so that no trimers can be made. We show that LanB1 mutant embryos develop until the end of embryogenesis. Electron microscopy analysis of mutant embryos reveals that the basement membranes are absent and the remaining extracellular material appears disorganised and diffuse. Accordingly, abnormal accumulation of major basement membrane components, such as Collagen IV and Perlecan, is observed in mutant tissues. In addition, we show that elimination of LanB1 prevents the normal morphogenesis of most organs and tissues, including the gut, trachea, muscles and nervous system. In spite of the above structural roles for laminins, our results unravel novel functions in cell adhesion, migration and rearrangement. We propose that while an early function of laminins in gastrulation is not conserved in Drosophila and mammals, their function in basement membrane assembly and organogenesis seems to be maintained throughout evolution.
Collapse
Affiliation(s)
- Jose M Urbano
- Centro Andaluz de Biología de Desarrollo (CABD), Univ. Pablo de Olavide-CSIC, 41013 Sevilla, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Critchley DR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 2009; 38:235-54. [PMID: 19416068 DOI: 10.1146/annurev.biophys.050708.133744] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interaction of cells with the extracellular matrix is fundamental to a wide variety of biological processes, such as cell proliferation, cell migration, embryogenesis, and organization of cells into tissues, and defects in cell-matrix interactions are an important element in many diseases. Cell-matrix interactions are frequently mediated by the integrin family of cell adhesion molecules, transmembrane alphabeta-heterodimers that are typically linked to the actin cytoskeleton by one of a number of adaptor proteins including talin, alpha-actinin, filamin, tensin, integrin-linked kinase, melusin, and skelemin. The focus of this review is talin, which appears unique among these proteins in that it also induces a conformational change in integrins that is propagated across the membrane, and increases the affinity of the extracellular domain for ligand. Particular emphasis is given to recent progress on the structure of talin, its interaction with binding partners, and its mode of regulation.
Collapse
Affiliation(s)
- David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
20
|
Guerin CM, Kramer SG. RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development 2009; 136:1411-21. [PMID: 19297411 DOI: 10.1242/dev.031823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The microtubule (MT) cytoskeleton is reorganized during myogenesis as individual myoblasts fuse into multinucleated myotubes. Although this reorganization has long been observed in cell culture, these findings have not been validated during development, and proteins that regulate this process are largely unknown. We have identified a novel postmitotic function for the cytokinesis proteins RacGAP50C (Tumbleweed) and Pavarotti as essential regulators of MT organization during Drosophila myogenesis. We show that the localization of the MT nucleator gamma-tubulin changes from diffuse cytoplasmic staining in mononucleated myoblasts to discrete cytoplasmic puncta at the nuclear periphery in multinucleated myoblasts, and that this change in localization depends on RacGAP50C. RacGAP50C and gamma-tubulin colocalize at perinuclear sites in myotubes, and in RacGAP50C mutants gamma-tubulin remains dispersed throughout the cytoplasm. Furthermore, we show that the mislocalization of RacGAP50C in pavarotti mutants is sufficient to redistribute gamma-tubulin to the muscle fiber ends. Finally, myotubes in RacGAP50C mutants have MTs with non-uniform polarity, resulting in multiple guidance errors. Taken together, these findings provide strong evidence that the reorganization of the MT network that has been observed in vitro plays an important role in myotube extension and muscle patterning in vivo, and also identify two molecules crucial for this process.
Collapse
Affiliation(s)
- Colleen M Guerin
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
21
|
|
22
|
Helsten TL, Bunch TA, Kato H, Yamanouchi J, Choi SH, Jannuzi AL, Féral CC, Ginsberg MH, Brower DL, Shattil SJ. Differences in regulation of Drosophila and vertebrate integrin affinity by talin. Mol Biol Cell 2008; 19:3589-98. [PMID: 18508915 PMCID: PMC2488300 DOI: 10.1091/mbc.e08-01-0085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrin-mediated cell adhesion is essential for development of multicellular organisms. In worms, flies, and vertebrates, talin forms a physical link between integrin cytoplasmic domains and the actin cytoskeleton. Loss of either integrins or talin leads to similar phenotypes. In vertebrates, talin is also a key regulator of integrin affinity. We used a ligand-mimetic Fab fragment, TWOW-1, to assess talin's role in regulating Drosophila alphaPS2 betaPS affinity. Depletion of cellular metabolic energy reduced TWOW-1 binding, suggesting alphaPS2 betaPS affinity is an active process as it is for vertebrate integrins. In contrast to vertebrate integrins, neither talin knockdown by RNA interference nor talin head overexpression had a significant effect on TWOW-1 binding. Furthermore, replacement of the transmembrane or talin-binding cytoplasmic domains of alphaPS2 betaPS with those of human alphaIIb beta3 failed to enable talin regulation of TWOW-1 binding. However, substitution of the extracellular and transmembrane domains of alphaPS2 betaPS with those of alphaIIb beta3 resulted in a constitutively active integrin whose affinity was reduced by talin knockdown. Furthermore, wild-type alphaIIb beta3 was activated by overexpression of Drosophila talin head domain. Thus, despite evolutionary conservation of talin's integrin/cytoskeleton linkage function, talin is not sufficient to regulate Drosophila alphaPS2 betaPS affinity because of structural features inherent in the alphaPS2 betaPS extracellular and/or transmembrane domains.
Collapse
Affiliation(s)
- Teresa L Helsten
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jani K, Schöck F. Zasp is required for the assembly of functional integrin adhesion sites. ACTA ACUST UNITED AC 2008; 179:1583-97. [PMID: 18166658 PMCID: PMC2373490 DOI: 10.1083/jcb.200707045] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The integrin family of heterodimeric transmembrane receptors mediates cell–matrix adhesion. Integrins often localize in highly organized structures, such as focal adhesions in tissue culture and myotendinous junctions in muscles. Our RNA interference screen for genes that prevent integrin-dependent cell spreading identifies Z band alternatively spliced PDZ-motif protein (zasp), encoding the only known Drosophila melanogaster Alp/Enigma PDZ-LIM domain protein. Zasp localizes to integrin adhesion sites and its depletion disrupts integrin adhesion sites. In tissues, Zasp colocalizes with βPS integrin in myotendinous junctions and with α-actinin in muscle Z lines. Zasp also physically interacts with α-actinin. Fly larvae lacking Zasp do not form Z lines and fail to recruit α-actinin to the Z line. At the myotendinous junction, muscles detach in zasp mutants with the onset of contractility. Finally, Zasp interacts genetically with integrins, showing that it regulates integrin function. Our observations point to an important function for Zasp in the assembly of integrin adhesion sites both in cell culture and in tissues.
Collapse
Affiliation(s)
- Klodiana Jani
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|