1
|
Priego Espinosa D, Espinal-Enríquez J, Aldana A, Aldana M, Martínez-Mekler G, Carneiro J, Darszon A. Reviewing mathematical models of sperm signaling networks. Mol Reprod Dev 2024; 91:e23766. [PMID: 39175359 DOI: 10.1002/mrd.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Dave Garbers' work significantly contributed to our understanding of sperm's regulated motility, capacitation, and the acrosome reaction. These key sperm functions involve complex multistep signaling pathways engaging numerous finely orchestrated elements. Despite significant progress, many parameters and interactions among these elements remain elusive. Mathematical modeling emerges as a potent tool to study sperm physiology, providing a framework to integrate experimental results and capture functional dynamics considering biochemical, biophysical, and cellular elements. Depending on research objectives, different modeling strategies, broadly categorized into continuous and discrete approaches, reveal valuable insights into cell function. These models allow the exploration of hypotheses regarding molecules, conditions, and pathways, whenever they become challenging to evaluate experimentally. This review presents an overview of current theoretical and experimental efforts to understand sperm motility regulation, capacitation, and the acrosome reaction. We discuss the strengths and weaknesses of different modeling strategies and highlight key findings and unresolved questions. Notable discoveries include the importance of specific ion channels, the role of intracellular molecular heterogeneity in capacitation and the acrosome reaction, and the impact of pH changes on acrosomal exocytosis. Ultimately, this review underscores the crucial importance of mathematical frameworks in advancing our understanding of sperm physiology and guiding future experimental investigations.
Collapse
Affiliation(s)
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Andrés Aldana
- Network Science Institute, Northeastern University, Boston, Massachusetts, USA
| | - Maximino Aldana
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jorge Carneiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
2
|
Wan KY. Active oscillations in microscale navigation. Anim Cogn 2023; 26:1837-1850. [PMID: 37665482 PMCID: PMC10769930 DOI: 10.1007/s10071-023-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Living organisms routinely navigate their surroundings in search of better conditions, more food, or to avoid predators. Typically, animals do so by integrating sensory cues from the environment with their locomotor apparatuses. For single cells or small organisms that possess motility, fundamental physical constraints imposed by their small size have led to alternative navigation strategies that are specific to the microscopic world. Intriguingly, underlying these myriad exploratory behaviours or sensory functions is the onset of periodic activity at multiple scales, such as the undulations of cilia and flagella, the vibrations of hair cells, or the oscillatory shape modes of migrating neutrophils. Here, I explore oscillatory dynamics in basal microeukaryotes and hypothesize that these active oscillations play a critical role in enhancing the fidelity of adaptive sensorimotor integration.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK.
| |
Collapse
|
3
|
Nowicka-Bauer K, Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility-An Overview. Int J Mol Sci 2021; 22:ijms22063259. [PMID: 33806823 PMCID: PMC8004680 DOI: 10.3390/ijms22063259] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Department of Chemical Physics, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
- Correspondence:
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| |
Collapse
|
4
|
Ramírez-Gómez HV, Jimenez Sabinina V, Velázquez Pérez M, Beltran C, Carneiro J, Wood CD, Tuval I, Darszon A, Guerrero A. Sperm chemotaxis is driven by the slope of the chemoattractant concentration field. eLife 2020; 9:50532. [PMID: 32149603 PMCID: PMC7093112 DOI: 10.7554/elife.50532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/06/2020] [Indexed: 01/24/2023] Open
Abstract
Spermatozoa of marine invertebrates are attracted to their conspecific female gamete by diffusive molecules, called chemoattractants, released from the egg investments in a process known as chemotaxis. The information from the egg chemoattractant concentration field is decoded into intracellular Ca2+ concentration ([Ca2+]i) changes that regulate the internal motors that shape the flagellum as it beats. By studying sea urchin species-specific differences in sperm chemoattractant-receptor characteristics we show that receptor density constrains the steepness of the chemoattractant concentration gradient detectable by spermatozoa. Through analyzing different chemoattractant gradient forms, we demonstrate for the first time that Strongylocentrotus purpuratus sperm are chemotactic and this response is consistent with frequency entrainment of two coupled physiological oscillators: i) the stimulus function and ii) the [Ca2+]i changes. We demonstrate that the slope of the chemoattractant gradients provides the coupling force between both oscillators, arising as a fundamental requirement for sperm chemotaxis.
Collapse
Affiliation(s)
- Héctor Vicente Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Vilma Jimenez Sabinina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martín Velázquez Pérez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Carmen Beltran
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, Oeiras, Portugal
| | - Christopher D Wood
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Idan Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Esporles, Spain.,Department of Physics, University of the Balearic Islands, Palma, Spain
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
5
|
Priego-Espinosa DA, Darszon A, Guerrero A, González-Cota AL, Nishigaki T, Martínez-Mekler G, Carneiro J. Modular analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm. PLoS Comput Biol 2020; 16:e1007605. [PMID: 32119665 PMCID: PMC7067495 DOI: 10.1371/journal.pcbi.1007605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/12/2020] [Accepted: 12/13/2019] [Indexed: 11/18/2022] Open
Abstract
Intracellular calcium ([Ca2+]i) is a basic and ubiquitous cellular signal controlling a wide variety of biological processes. A remarkable example is the steering of sea urchin spermatozoa towards the conspecific egg by a spatially and temporally orchestrated series of [Ca2+]i spikes. Although this process has been an experimental paradigm for reproduction and sperm chemotaxis studies, the composition and regulation of the signalling network underlying the cytosolic calcium fluctuations are hitherto not fully understood. Here, we used a differential equations model of the signalling network to assess which set of channels can explain the characteristic envelope and temporal organisation of the [Ca2+]i-spike trains. The signalling network comprises an initial membrane hyperpolarisation produced by an Upstream module triggered by the egg-released chemoattractant peptide, via receptor activation, cGMP synthesis and decay. Followed by downstream modules leading to intraflagellar pH (pHi), voltage and [Ca2+]i fluctuations. The Upstream module outputs were fitted to kinetic data on cGMP activity and early membrane potential changes measured in bulk cell populations. Two candidate modules featuring voltage-dependent Ca2+-channels link these outputs to the downstream dynamics and can independently explain the typical decaying envelope and the progressive spacing of the spikes. In the first module, [Ca2+]i-spike trains require the concerted action of a classical CaV-like channel and a potassium channel, BK (Slo1), whereas the second module relies on pHi-dependent CatSper dynamics articulated with voltage-dependent neutral sodium-proton exchanger (NHE). We analysed the dynamics of these two modules alone and in mixed scenarios. We show that the [Ca2+]i dynamics observed experimentally after sustained alkalinisation can be reproduced by a model featuring the CatSper and NHE module but not by those including the pH-independent CaV and BK module or proportionate mixed scenarios. We conclude in favour of the module containing CatSper and NHE and highlight experimentally testable predictions that would corroborate this conclusion. Fertilisation in marine invertebrates, such as the sea urchin, occurs during broadcast spawning events in which males and females of co-localised species ejaculate sperm and spawn eggs synchronously. During these events, spermatozoa have to find and fertilise conspecific eggs in the midst of all the other ones, which is a remarkable navigation and mating choice achievement. Sperm cells do this by navigating towards the source of species-specific peptides released by the egg, steered by spatial and temporally orchestrated peaks in intracellular calcium concentration that trigger sudden reorientations. How these calcium spikes are regulated and timed remains elusive. Different calcium channels have been implicated by indirect experimental evidence giving rise to a complex network of putative interacting components. We gained insight into the structure and function of this network by modelling it as a set of candidate modules that could be studied separately. By using this ‘divide and conquer’ approach to the complexity of the network, we could characterise the potential dynamics of each module and confront these dynamics with specific quantitative data. Our results indicate that the channel mediating calcium signals in sea urchin sperm is likely CatSper, a calcium channel necessary for human male fertility.
Collapse
Affiliation(s)
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Adán Guerrero
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ana Laura González-Cota
- Washington University School of Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, St. Louis, Missouri, United States of America
| | - Takuya Nishigaki
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Martínez-Mekler
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Ciencias de la Complejidad UNAM, CDMX, México
- Laboratoire de Physique Statistique, Départment de Physique, Ecole Normale Supérieure, Paris, France
- * E-mail: (GMM); (JC)
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (GMM); (JC)
| |
Collapse
|
6
|
Zadmajid V, Myers JN, Sørensen SR, Ernest Butts IA. Ovarian fluid and its impacts on spermatozoa performance in fish: A review. Theriogenology 2019; 132:144-152. [PMID: 31022604 DOI: 10.1016/j.theriogenology.2019.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Factors such as gamete quality can profoundly affect fertility, but the spawning micro-environment that surrounds the spermatozoa and eggs during gamete contact has largely been neglected. In fishes, understanding these gametic interactions is crucial because each female creates a unique spawning environment by simultaneously expelling her distinct ovarian fluid (OF) along with an egg batch. In turn, OF has been shown to influence spermatozoa performance traits by modifying spermatozoa behaviors and fertilization outcomes. Here, we shed light on these gametic interactions by overviewing literature on OF and how it impacts spermatozoa performance traits. Fish OF is clear or has slight coloration and can constitute ≤10-30% of egg mass. Viscosity of the OF is ∼2- to 3-fold higher than water and its pH ranges 6.2 to 8.8. Osmolality of the OF is lower in freshwater (190-322 mOsmol/kg) than marine species (289-514 mOsmol/kg). Na+ (98.3-213.7 mmol/L) and Cl- (89.8-172.7 mmol/L) are predominant ions in OF, while K+ (1.7-19.3 mmol/L), Mg2+ (0.4-8.1 mmol/L), and Ca2+(0.5-9.7 mmol/L) ions are detected at lower concentrations. Protein levels can be high in OF and exhibit intra- and inter-species variation (54-826 mg/100 mL). Fish OF also contains a series of organic components and substances that enhance and/or attract sperm towards the vicinity of an egg. OF can also differentially impact sperm based on genetic relatedness of mates, male phenotype (i.e. alternative reproductive tactics), or geographic origin. To conclude, when testing further reproductive paradigms, we suggest a shift from classic spermatozoa activation medium (water only) to more natural spawning media, which encompass OF-spermatozoa interactions.
Collapse
Affiliation(s)
- Vahid Zadmajid
- Department of Fisheries Science, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Jaelen Nicole Myers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Sune Riis Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Ian Anthony Ernest Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.
| |
Collapse
|
7
|
Abstract
In many species, sperm must locate the female gamete to achieve fertilization. Molecules diffusing from the egg envelope, or the female genital tract, guide the sperm toward the oocyte through a process called chemotaxis. Sperm chemotaxis has been studied for more than 100 years being a widespread phenomenon present from lower plants to mammals. This process has been mostly studied in external fertilizers where gametes undergo a significant dilution, as compared to internal fertilizers where the encounter is more defined by the topology of the female tract and only a small fraction of sperm appear to chemotactically respond. Here, we summarize the main methods to measure sperm swimming responses to a chemoattractant, both in populations and in individual sperm. We discuss a novel chemotactic index (CI) to score sperm chemotaxis in external fertilizers having circular trajectories. This CI is based on the sperm progressive displacement and its orientation angle to the chemoattractant source.
Collapse
Affiliation(s)
- Héctor Vicente Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Idán Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico; Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
8
|
Inaba K, Shiba K. Microscopic analysis of sperm movement: links to mechanisms and protein components. Microscopy (Oxf) 2018; 67:144-155. [DOI: 10.1093/jmicro/dfy021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
9
|
Network model predicts that CatSper is the main Ca 2+ channel in the regulation of sea urchin sperm motility. Sci Rep 2017; 7:4236. [PMID: 28652586 PMCID: PMC5484689 DOI: 10.1038/s41598-017-03857-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Spermatozoa sea urchin swimming behaviour is regulated by small peptides from the egg outer envelope. Speract, such a peptide, after binding to its receptor in Strongylocentrotus purpuratus sperm flagella, triggers a signaling pathway that culminates with a train of intracellular calcium oscillations, correlated with changes in sperm swimming pattern. This pathway has been widely studied but not fully characterized. Recent work on Arbacia punctulata sea urchin spermatozoa has documented the presence of the Ca2+ CatSper channel in their flagella and its involvement in chemotaxis. However, if other calcium channels participate in chemotaxis remains unclear. Here, based on an experimentally-backed logical network model, we conclude that CatSper is fundamental in the S. purpuratus speract-activated sea urchin sperm signaling cascade, although other Ca2+ channels could still be relevant. We also present for the first time experimental corroboration of its active presence in S. purpuratus sperm flagella. We argue, prompted by in silico knock-out calculations, that CatSper is the main generator of calcium oscillations in the signaling pathway and that other calcium channels, if present, have a complementary role. The approach adopted here allows us to unveil processes, which are hard to detect exclusively by experimental procedures.
Collapse
|
10
|
Okamoto DK. Competition among Eggs Shifts to Cooperation along a Sperm Supply Gradient in an External Fertilizer. Am Nat 2016; 187:E129-42. [DOI: 10.1086/685813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:415-26. [PMID: 26772728 DOI: 10.1016/j.bbabio.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it.
Collapse
|
12
|
Fabbrocini A, D'Adamo R, Del Prete F, Maurizio D, Specchiulli A, Oliveira LFJ, Silvestri F, Sansone G. The sperm motility pattern in ecotoxicological tests. The CRYO-Ecotest as a case study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 123:53-59. [PMID: 26318919 DOI: 10.1016/j.ecoenv.2015.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Changes in environmental stressors inevitably lead to an increasing need for innovative and more flexible monitoring tools. The aim of this work has been the characterization of the motility pattern of the cryopreserved sea bream semen after exposure to a dumpsite leachate sample, for the identification of the best representative parameters to be used as endpoints in an ecotoxicological bioassay. Sperm motility has been evaluated either by visual and by computer-assisted analysis; parameters concerning motility on activation and those describing it in the times after activation (duration parameters) have been assessed, discerning them in terms of sensitivity, reliability and methodology of assessment by means of multivariate analyses. The EC50 values of the evaluated endpoints ranged between 2.3 and 4.5ml/L, except for the total motile percentage (aTM, 7.0ml/L), which proved to be the less sensitive among all the tested parameters. According to the multivariate analyses, a difference in sensitivity among "activation" endpoints in respect of "duration" ones can be inferred; on the contrary, endpoints seem to be equally informative either describing total motile sperm or the rapid sub-population, as well as the assessment methodology seems to be not discriminating. In conclusion, the CRYO-Ecotest is a multi-endpoint bioassay that can be considered a promising innovative ecotoxicological tool, characterized by a high plasticity, as its endpoints can be easy tailored each time according to the different needs of the environmental quality assessment programs.
Collapse
Affiliation(s)
- Adele Fabbrocini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, UOS Lesina (FG), Italy.
| | - Raffaele D'Adamo
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, UOS Lesina (FG), Italy
| | | | - Daniela Maurizio
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, UOS Lesina (FG), Italy
| | | | - Luis F J Oliveira
- Instituto Oceanográfico - USP, São Paulo, Brazil; The Capes Foundation - Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Fausto Silvestri
- Dipartimento di Biologia, Università degli Studi Federico II, Napoli, Italy; FIPERJ - Fundação Instituto de Pesca do Estado do Rio de Janeiro, Centro Angra dos Reis (RJ), Brazil
| | - Giovanni Sansone
- Dipartimento di Biologia, Università degli Studi Federico II, Napoli, Italy
| |
Collapse
|
13
|
González-Cota AL, Silva PÂ, Carneiro J, Darszon A. Single cell imaging reveals that the motility regulator speract induces a flagellar alkalinization that precedes and is independent of Ca²⁺ influx in sea urchin spermatozoa. FEBS Lett 2015; 589:2146-54. [PMID: 26143372 DOI: 10.1016/j.febslet.2015.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023]
Abstract
Speract, a peptide from the egg jelly coat of certain sea urchin species, modulates sperm motility through a signaling pathway involving several ionic fluxes leading to pHi and [Ca²⁺]i increases. [Ca²⁺]i oscillations in the flagellum regulate its beating pattern modulating sperm swimming. Recent evidence showed the importance of pHi in controlling Ca²⁺ influx and chemotaxis. However, spatio-temporal characterization of the flagellar pHi increase triggered by speract, and its correlation to that of [Ca²⁺]i is lacking. Here, we show for the first time in single sea urchin spermatozoa that the speract-induced flagellar pHi increase precedes and is independent of [Ca²⁺]i increase. Our results support a leading role of pHi in modulating the Ca²⁺ signals that govern sperm swimming.
Collapse
Affiliation(s)
- Ana Laura González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca, Mor., México
| | | | | | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca, Mor., México.
| |
Collapse
|
14
|
In silico determination of the effect of multi-target drugs on calcium dynamics signaling network underlying sea urchin spermatozoa motility. PLoS One 2014; 9:e104451. [PMID: 25162222 PMCID: PMC4146467 DOI: 10.1371/journal.pone.0104451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The motility of spermatozoa of both Lytechinus pictus and Strongylocentrotus purpuratus sea urchin species is modulated by the egg-derived decapeptide speract via an oscillatory [Ca2+]-dependent signaling pathway. Comprehension of this pathway is hence directly related to the understanding of regulated sperm swimming. Niflumic acid (NFA), a nonsteroidal anti-inflammatory drug alters several ion channels. Though unspecific, NFA profoundly affects how sea urchin sperm respond to speract, increasing the [Ca2+]i oscillation period, amplitude, peak and average level values of the responses in immobilized and swimming cells. A previous logical network model we developed for the [Ca2+] dynamics of speract signaling cascade in sea urchin sperm allows integrated dissection of individual and multiple actions of NFA. Among the channels affected by NFA are: hyperpolarization-activated and cyclic nucleotide gated Na+ channels (HCN), [Ca2+]-dependent Cl- channels (CaCC) and [Ca2+]-dependent K+ channels (CaKC), all present in the sea urchin genome. Here, using our model we investigated the effect of blocking in silico HCN and CaCC channels suggested by experiments. Regarding CaKC channels, arguments can be provided for either their blockage or activation by NFA. Our study yielded two scenarios compliant with experimental observations: i) under CaKC inhibition, this [Ca2+]-dependent K+ channel should be different from the Slo1 channel and ii) under activation of the CaKC channel, another [Ca2+] channel not considered previously in the network is required, such as the pH-dependent CatSper channel. Additionally, our findings predict cause-effect relations resulting from a selective inhibition of those channels. Knowledge of these relations may be of consequence for a variety of electrophysiological studies and have an impact on drug related investigations. Our study contributes to a better grasp of the network dynamics and suggests further experimental work.
Collapse
|
15
|
Nishigaki T, José O, González-Cota AL, Romero F, Treviño CL, Darszon A. Intracellular pH in sperm physiology. Biochem Biophys Res Commun 2014; 450:1149-58. [PMID: 24887564 PMCID: PMC4146485 DOI: 10.1016/j.bbrc.2014.05.100] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.
Collapse
Affiliation(s)
- Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Omar José
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Ana Laura González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Francisco Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
16
|
Fabbrocini A, D’Adamo R, Pelosi S, Oliveira LF, Silvestri F, Sansone G. Gamete cryobanks for laboratory research: Developing a rapid and easy-to-perform protocol for the cryopreservation of the sea urchin Paracentrotus lividus (Lmk, 1816) spermatozoa. Cryobiology 2014; 69:149-56. [DOI: 10.1016/j.cryobiol.2014.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
|
17
|
Black Tea High-Molecular-Weight Polyphenol Increases the Motility of Sea Urchin Sperm by Activating Mitochondrial Respiration. Biosci Biotechnol Biochem 2014; 76:2321-4. [DOI: 10.1271/bbb.120493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
19
|
Evans JP, Sherman CDH. Sexual selection and the evolution of egg-sperm interactions in broadcast-spawning invertebrates. THE BIOLOGICAL BULLETIN 2013; 224:166-183. [PMID: 23995741 DOI: 10.1086/bblv224n3p166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many marine invertebrate taxa are broadcast spawners, where multiple individuals release their gametes into the water for external fertilization, often in the presence of gametes from heterospecifics. Consequently, sperm encounter the considerable challenges of locating and fertilizing eggs from conspecific females. To overcome these challenges, many taxa exhibit species-specific attraction of sperm toward eggs through chemical signals released from eggs (sperm chemotaxis) and species-specific gamete recognition proteins (GRPs) that mediate compatibility of gametes at fertilization. In this prospective review, we highlight these selective forces, but also emphasize the role that sexual selection, manifested through sperm competition, cryptic female choice, and evolutionary conflicts of interest between the sexes (sexual conflict), can also play in mediating the action of egg chemoattractants and GRPs, and thus individual reproductive fitness. Furthermore, we explore patterns of selection at the level of gametes (sperm phenotype, gamete plasticity, and egg traits) to identify putative traits targeted by sexual selection in these species. We conclude by emphasizing the excellent, but relatively untapped, potential of broadcast-spawning marine invertebrates as model systems to illuminate several areas of research in post-mating sexual selection.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
20
|
De Lisa E, Salzano AM, Moccia F, Scaloni A, Di Cosmo A. Sperm-attractant peptide influences the spermatozoa swimming behavior in internal fertilization in Octopus vulgaris. J Exp Biol 2013; 216:2229-37. [DOI: 10.1242/jeb.081885] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Marine invertebrates exhibit both chemokinesis and chemotaxis phenomena, induced in most cases by the release of water-borne peptides or pheromones. In mollusks, several peptides released during egg-laying improve both male attraction and mating. Unlike other cephalopods, Octopus vulgaris adopts an indirect internal fertilization strategy. We here report on the identification and characterization of a chemoattractant peptide isolated from mature eggs of octopus females. Using two-chamber and time-lapse microscopy assays, we demonstrate that this bioactive peptide is able to increase sperm motility and induce chemotaxis by changing the octopus spermatozoa swimming behavior in a dose-dependent manner. We also provide evidence that chemotaxis in the octopus requires the presence of extracellular calcium and membrane protein phophorylation at tyrosine. This study is the first report on a sperm-activating factor in a non-free-spawning marine animal.
Collapse
Affiliation(s)
- Emilia De Lisa
- Department of Structural and Functional Biology, University of Napoli ‘Federico II’, 80126 Napoli, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, Laboratory of Physiology, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anna Di Cosmo
- Department of Structural and Functional Biology, University of Napoli ‘Federico II’, 80126 Napoli, Italy
| |
Collapse
|
21
|
Guerrero A, Espinal J, Wood CD, Rendón JM, Carneiro J, Martínez-Mekler G, Darszon A. Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients. J Cell Sci 2013; 126:1477-87. [DOI: 10.1242/jcs.121442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In many broadcast-spawning marine organisms, oocytes release chemicals that guide conspecific spermatozoa towards their source through chemotaxis. In the sea urchin Lytechinus pictus, the chemoattractant peptide speract triggers a train of fluctuations of intracellular Ca2+ concentration in the sperm flagella. Each transient Ca2+ elevation leads to a momentary increase in flagellar bending asymmetry, known as a chemotactic turn. Furthermore, chemotaxis requires a precise spatiotemporal coordination between the Ca2+-dependent turns and the form of chemoattractant gradient. Spermatozoa that display Ca2+-dependent turns while swimming down the chemoattractant gradient, and conversely suppress turning events while swimming up gradient, successfully approach the center of the gradient. Previous experiments in Strongylocentrotus purpuratus sea urchin spermatozoa showed that niflumic acid (NFA), an inhibitor of several ion channels, drastically altered the speract-induced Ca2+ fluctuations and swimming patterns. In this study, mathematical modeling of the speract-dependent Ca2+ signaling pathway suggests that NFA, by potentially affecting HCN, CaCC and CaKC channels, may alter the temporal organization of Ca2+ fluctuations, and therefore disrupt chemotaxis. Here we investigate our hypothesis using a novel automated method for analyzing sperm behavior. We show that NFA does indeed disrupt chemotactic responses of L. pictus spermatozoa, although the temporal coordination between the Ca2+-dependent turns and the form of chemoattractant gradient is unaltered. Instead, NFA disrupts sperm chemotaxis by altering the arc length traveled during each chemotactic turning event. This alteration in the chemotactic turn trajectory disorientates spermatozoa at the termination of the turning event. We conclude that NFA disrupts chemotaxis without affecting how the spermatozoa decode environmental cues.
Collapse
|
22
|
Aguilera LU, Galindo BE, Sánchez D, Santillán M. What is the core oscillator in the speract-activated pathway of the Strongylocentrotus purpuratus sperm flagellum? Biophys J 2012; 102:2481-8. [PMID: 22713563 DOI: 10.1016/j.bpj.2012.03.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/06/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Sperm chemotaxis has an important role in fertilization. Most of our knowledge regarding this phenomenon comes from studies in organisms whose fertilization occurs externally, like sea urchins. Sea urchin spermatozoa respond to sperm-activating peptides, which diffuse from the egg jelly coat and interact with their receptor in the flagellum, triggering several physiological responses: changes in membrane potential, intracellular pH, cyclic nucleotide levels, and intracellular Ca2+ concentration ([Ca2+]). In particular, flagellar [Ca2+] has been shown to oscillate. These [Ca2+] oscillations are correlated with changes in the flagellar shape and so with the regulation of the sperm swimming paths. In this study, we demonstrate, from a mathematical modeling perspective, that the reported speract-activated signaling pathway in Strongylocentrotus purpuratus (speract being a sperm-activating peptide specific to this species) has the necessary elements to replicate the reported [Ca2+] oscillations. We further investigate which elements of this signaling pathway constitute the core oscillator.
Collapse
Affiliation(s)
- Luis U Aguilera
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Mexico
| | | | | | | |
Collapse
|
23
|
Servin-Vences MR, Tatsu Y, Ando H, Guerrero A, Yumoto N, Darszon A, Nishigaki T. A caged progesterone analog alters intracellular Ca2+ and flagellar bending in human sperm. Reproduction 2012; 144:101-9. [PMID: 22580372 DOI: 10.1530/rep-11-0268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Progesterone is a physiological agonist for mammalian sperm, modulating its flagellar movement and facilitating the acrosome reaction. To study the initial action of progesterone, we developed a caged analog with a photosensitive group: nitrophenylethanediol, at position 20. Using this compound combined with stroboscopic illumination, we performed Ca(2)(+) imaging of human spermatozoa and analyzed the effects of progesterone on the intracellular Ca(2)(+) concentration ([Ca(2)(+)](i)) of beating flagella for the first time. We observed a transient [Ca(2)(+)](i) increase in the head and the flagellum upon photolysis of the caged progesterone and an increase in flagellar curvature. Detailed kinetic analysis revealed that progesterone elicits an increase in the [Ca(2)(+)](i) immediately in the flagellum (mid-piece and principal piece), thereafter in the head with a short time lag. This observation is different from the progesterone-induced Ca(2)(+) mobilization in mouse spermatozoa, where the Ca(2)(+) rise initiates at the base of the sperm head. Our finding is mostly consistent with the recent discovery that progesterone activates CatSper channels in human spermatozoa, but not in mouse spermatozoa.
Collapse
Affiliation(s)
- M Rocio Servin-Vences
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | |
Collapse
|
24
|
Alvarez L, Dai L, Friedrich BM, Kashikar ND, Gregor I, Pascal R, Kaupp UB. The rate of change in Ca(2+) concentration controls sperm chemotaxis. ACTA ACUST UNITED AC 2012; 196:653-63. [PMID: 22371558 PMCID: PMC3307702 DOI: 10.1083/jcb.201106096] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sperm navigate in a chemoattractant gradient by translating changes in intracellular calcium concentration over time into changes in curvature of the swimming path. During chemotaxis and phototaxis, sperm, algae, marine zooplankton, and other microswimmers move on helical paths or drifting circles by rhythmically bending cell protrusions called motile cilia or flagella. Sperm of marine invertebrates navigate in a chemoattractant gradient by adjusting the flagellar waveform and, thereby, the swimming path. The waveform is periodically modulated by Ca2+ oscillations. How Ca2+ signals elicit steering responses and shape the path is unknown. We unveil the signal transfer between the changes in intracellular Ca2+ concentration ([Ca2+]i) and path curvature (κ). We show that κ is modulated by the time derivative d[Ca2+]i/dt rather than the absolute [Ca2+]i. Furthermore, simulation of swimming paths using various Ca2+ waveforms reproduces the wealth of swimming paths observed for sperm of marine invertebrates. We propose a cellular mechanism for a chemical differentiator that computes a time derivative. The cytoskeleton of cilia, the axoneme, is highly conserved. Thus, motile ciliated cells in general might use a similar cellular computation to translate changes of [Ca2+]i into motion.
Collapse
Affiliation(s)
- Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Burnett LA, Sugiyama H, Bieber AL, Chandler DE. Egg jelly proteins stimulate directed motility in Xenopus laevis sperm. Mol Reprod Dev 2012; 78:450-62. [PMID: 21692128 DOI: 10.1002/mrd.21325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously we have shown that extracts from Xenopus egg jelly (egg water) increase the passage of sperm through a porous membrane in a dose-dependent manner. Although this assay has shown that sperm accumulation occurs only in the presence of an egg water gradient, it has not revealed the dynamic features of how Xenopus sperm swim in such gradients. Here, we use video microscopic observations to trace sperm trajectories in a Zigmond chamber. Our results show that Xenopus sperm swim in linear and gently curving paths and only infrequently perform turns. In the presence of an egg water gradient, however, the percent of sperm swimming up the gradient axis and the net distance traveled by each sperm along this axis was increased significantly. There was no change in curvilinear velocity. Rather, the orientation of sperm travel was shifted to more closely match that of the gradient axis. In addition, using a porous filter assay, we demonstrate that the egg water protein allurin, in both purified and recombinant forms, stimulates directed motility of sperm. Finally, we use Oregon Green 488-conjugated allurin to show that this protein binds primarily to the sperm midpiece; binding of allurin to the entire head was observed in a minor subpopulation of sperm. Dose dependence of allurin binding occurred over the 0-1 µg/ml range and correlated well with previously published dose-dependent sperm attraction data. Binding was rapid with a half-time of about 10 sec. These data suggest that egg water proteins bind to sperm and modify sperm-orienting behavior.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Molecular and Cellular Biology Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | |
Collapse
|
26
|
Burnett LA, Washburn CA, Sugiyama H, Xiang X, Olson JH, Al-Anzi B, Bieber AL, Chandler DE. Allurin, an amphibian sperm chemoattractant having implications for mammalian sperm physiology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:1-61. [PMID: 22449486 DOI: 10.1016/b978-0-12-394306-4.00007-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eggs of many species are surrounded by extracellular coats that emit ligands to which conspecific sperm respond by undergoing chemotaxis and changes in metabolism, motility, and acrosomal status in preparation for fertilization. Here we review methods used to measure sperm chemotaxis and focus on recent studies of allurin, a 21-kDa protein belonging to the Cysteine-RIch Secretory Protein (CRISP) family that has chemoattraction activity for both amphibian and mammalian sperm. Allurin is unique in being the first extensively characterized Crisp protein found in the female reproductive tract and is the product of a newly discovered amphibian gene within a gene cluster that has been largely conserved in mammals. Study of its expression, function, and tertiary structure could lead to new insights in the role of Crisp proteins in sperm physiology.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
PIMENTEL J, CARNEIRO J, DARSZON A, CORKIDI G. A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions. J Microsc 2011; 245:72-81. [DOI: 10.1111/j.1365-2818.2011.03545.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium Channels in the Development, Maturation, and Function of Spermatozoa. Physiol Rev 2011; 91:1305-55. [DOI: 10.1152/physrev.00028.2010] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A proper dialogue between spermatozoa and the egg is essential for conception of a new individual in sexually reproducing animals. Ca2+ is crucial in orchestrating this unique event leading to a new life. No wonder that nature has devised different Ca2+-permeable channels and located them at distinct sites in spermatozoa so that they can help fertilize the egg. New tools to study sperm ionic currents, and image intracellular Ca2+ with better spatial and temporal resolution even in swimming spermatozoa, are revealing how sperm ion channels participate in fertilization. This review critically examines the involvement of Ca2+ channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it. Remarkably, these tiny specialized cells can express exclusive channels like CatSper for Ca2+ and SLO3 for K+, which are attractive targets for contraception and for the discovery of novel signaling complexes. Learning more about fertilization is a matter of capital importance; societies face growing pressure to counteract rising male infertility rates, provide safe male gamete-based contraceptives, and preserve biodiversity through improved captive breeding and assisted conception initiatives.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Carmen Beltran
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
29
|
Espinal J, Aldana M, Guerrero A, Wood C, Darszon A, Martínez-Mekler G. Discrete dynamics model for the speract-activated Ca2+ signaling network relevant to sperm motility. PLoS One 2011; 6:e22619. [PMID: 21857937 PMCID: PMC3156703 DOI: 10.1371/journal.pone.0022619] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/26/2011] [Indexed: 01/05/2023] Open
Abstract
Understanding how spermatozoa approach the egg is a central biological issue. Recently a considerable amount of experimental evidence has accumulated on the relation between oscillations in intracellular calcium ion concentration ([Ca]) in the sea urchin sperm flagellum, triggered by peptides secreted from the egg, and sperm motility. Determination of the structure and dynamics of the signaling pathway leading to these oscillations is a fundamental problem. However, a biochemically based formulation for the comprehension of the molecular mechanisms operating in the axoneme as a response to external stimulus is still lacking. Based on experiments on the S. purpuratus sea urchin spermatozoa, we propose a signaling network model where nodes are discrete variables corresponding to the pathway elements and the signal transmission takes place at discrete time intervals according to logical rules. The validity of this model is corroborated by reproducing previous empirically determined signaling features. Prompted by the model predictions we performed experiments which identified novel characteristics of the signaling pathway. We uncovered the role of a high voltage-activated channel as a regulator of the delay in the onset of fluctuations after activation of the signaling cascade. This delay time has recently been shown to be an important regulatory factor for sea urchin sperm reorientation. Another finding is the participation of a voltage-dependent calcium-activated channel in the determination of the period of the fluctuations. Furthermore, by analyzing the spread of network perturbations we find that it operates in a dynamically critical regime. Our work demonstrates that a coarse-grained approach to the dynamics of the signaling pathway is capable of revealing regulatory sperm navigation elements and provides insight, in terms of criticality, on the concurrence of the high robustness and adaptability that the reproduction processes are predicted to have developed throughout evolution.
Collapse
Affiliation(s)
- Jesús Espinal
- Instituto de Ciencias Fsicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Ciencias de la Complejidad, Ciudad Universitaria, México, México
| | - Maximino Aldana
- Instituto de Ciencias Fsicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Ciencias de la Complejidad, Ciudad Universitaria, México, México
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiologa Molecular, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Christopher Wood
- Departamento de Genética del Desarrollo y Fisiologa Molecular, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiologa Molecular, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Martínez-Mekler
- Instituto de Ciencias Fsicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Ciencias de la Complejidad, Ciudad Universitaria, México, México
- Centro Internacional de Ciencias, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
30
|
Sperm chemotaxis, fluid shear, and the evolution of sexual reproduction. Proc Natl Acad Sci U S A 2011; 108:13200-5. [PMID: 21788487 DOI: 10.1073/pnas.1018666108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemical communication is fundamental to sexual reproduction, but how sperm search for and find an egg remains enigmatic. For red abalone (Haliotis rufescens), a large marine snail, the relationship between chemical signaling and fluid motion largely determines fertilization success. Egg-derived attractant plumes are dynamic, changing their size and shape in response to unique combinations of physical and chemical environmental features. Attractant plumes that promote sexual reproduction, however, are limited to a precise set of hydrodynamic conditions. Performance-maximizing shears are those that most closely match flows in native spawning habitats. Under conditions in which reproductive success is chronically limited by sperm availability, gametes are under selection for mechanisms that increase sperm-egg encounter. Here, chemoattraction is found to provide a cheap evolutionary alternative for enhancing egg target size without enlarging cytoplasmic and/or cell volume. Because egg signaling and sperm response may be tuned to meet specific fluid-dynamic constraints, shear could act as a critical selective pressure that drives gamete evolution and determines fitness.
Collapse
|
31
|
Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique. Mol Hum Reprod 2011; 17:478-99. [PMID: 21642646 DOI: 10.1093/molehr/gar044] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca(2+) in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca(2+) and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (H(v)1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible.
Collapse
Affiliation(s)
- Yuriy Kirichok
- Department of Physiology, University of California San Francisco UCSF Mail Code 2140, Genentech Hall Room N272F 600 16th Street, San Francisco, CA 94158, USA.
| | | |
Collapse
|
32
|
Guerrero A, Carneiro J, Pimentel A, Wood CD, Corkidi G, Darszon A. Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions. Mol Hum Reprod 2011; 17:511-23. [PMID: 21642645 PMCID: PMC3136205 DOI: 10.1093/molehr/gar042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The spermatozoon must find its female gamete partner and deliver its genetic material to generate a new individual. This requires that the spermatozoon be motile and endowed with sophisticated swimming strategies to locate the oocyte. A common strategy is chemotaxis, in which spermatozoa detect and follow a gradient of chemical signals released by the egg and its associated structures. Decoding the female gamete’s positional information is a process that spermatozoa undergo in a three-dimensional (3D) space; however, due to their speed and small size, this process has been studied almost exclusively in spermatozoa restricted to swimming in two dimensions (2D). This review examines the relationship between the mechanics of sperm propulsion and the physiological function of these cells in 3D. It also considers whether it is possible to derive all the 3D sperm swimming characteristics by extrapolating from 2D measurements. It is concluded that full insight into flagellar beat dynamics, swimming paths and chemotaxis under physiological conditions will eventually require quantitative imaging of flagellar form, ion flux changes, cell trajectories and modelling of free-swimming spermatozoa in 3D.
Collapse
Affiliation(s)
- Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnologıa, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | | | | | | | |
Collapse
|
33
|
Yoshida M, Yoshida K. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol Hum Reprod 2011; 17:457-65. [PMID: 21610215 DOI: 10.1093/molehr/gar041] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan.
| | | |
Collapse
|
34
|
Liu G, Innes D, Thompson RJ. Quantitative analysis of sperm plane circular movement in the blue mussels Mytilus edulis, M. trossulus and their hybrids. ACTA ACUST UNITED AC 2011; 315:280-90. [DOI: 10.1002/jez.674] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/07/2010] [Accepted: 01/15/2011] [Indexed: 11/07/2022]
|
35
|
Gasparini C, Pilastro A. Cryptic female preference for genetically unrelated males is mediated by ovarian fluid in the guppy. Proc Biol Sci 2011; 278:2495-501. [PMID: 21227973 DOI: 10.1098/rspb.2010.2369] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As inbreeding is costly, it has been suggested that polyandry may evolve as a means to reduce the negative fitness consequences of mating with genetically related males. While several studies provide support for this hypothesis, evidence of pure post-copulatory mechanisms capable of biasing paternity towards genetically unrelated males is still lacking; yet these are necessary to support inbreeding avoidance models of polyandry evolution. Here we showed, by artificially inseminating a group of female guppies with an equal number of sperm from related (full-sib) and unrelated males, that sperm competition success of the former was 10 per cent lower, on average, than that of the unrelated male. The paternity bias towards unrelated males was not due to differential embryo survival, as the size of the brood produced by control females, which were artificially inseminated with the sperm of a single male, was not influenced by their relatedness with the male. Finally, we collected ovarian fluid (OF) from virgin females. Using computer-assisted sperm analysis, we found that sperm velocity, a predictor of sperm competition success in the guppy, was significantly lower when measured in a solution containing the OF from a sister as compared with that from an unrelated female. Our results suggest that sperm-OF interaction mediates sperm competition bias towards unrelated mates and highlight the role of post-copulatory mechanisms in reducing the cost of mating with relatives in polyandrous females.
Collapse
|
36
|
Fabbrocini A, Di Stasio M, D'Adamo R. Computerized sperm motility analysis in toxicity bioassays: a new approach to pore water quality assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1588-1595. [PMID: 20537390 DOI: 10.1016/j.ecoenv.2010.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/28/2010] [Accepted: 05/02/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to test the sensitivity of computerized sperm motility analysis in the sea urchin Paracentrotus lividus as the endpoint in toxicity bioassays. The tested matrices were pore water samples collected in an agriculture-impacted Mediterranean lagoon, Lake Varano (Italy). Two standardized bioassays were also conducted as controls, the P. lividus spermiotoxicity test and the Vibrio fischeri (Microtox®) test. VCL (curvilinear velocity), VSL (straight line velocity), VAP (average path velocity), and the percentage of rapid spermatozoa recorded by the Sperm Class Analyzer® system showed high sensitivity and discrimination ability, to a degree comparable with the larval development endpoint of the spermiotoxicity test. The test evaluated in this study requires small volumes of matrices, involves minimal sample manipulation, and can easily be extended to many other bioindicator species. It may therefore be considered a promising "quick response tool" following hazardous events that may adversely affect an aquatic ecosystem.
Collapse
Affiliation(s)
- Adele Fabbrocini
- Consiglio Nazionale delle Ricerche-Istituto di Scienze Marine, UOS Lesina, via Pola 4, 71010 Lesina (FG), Italy.
| | | | | |
Collapse
|
37
|
Guerrero A, Nishigaki T, Carneiro J, Yoshiro Tatsu, Wood CD, Darszon A. Tuning sperm chemotaxis by calcium burst timing. Dev Biol 2010; 344:52-65. [DOI: 10.1016/j.ydbio.2010.04.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 12/20/2022]
|
38
|
Pimentel JA, Corkidi G. Three dimensional template matching segmentation method for motile cells in 3D+t video sequences. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:4777-4780. [PMID: 21096252 DOI: 10.1109/iembs.2010.5626633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work, we describe a segmentation cell method oriented to deal with experimental data obtained from 3D+t microscopical volumes. The proposed segmentation technique takes advantage of the pattern of appearances exhibited by the objects (cells) from different focal planes, as a result of the object translucent properties and its interaction with light. This information allows us to discriminate between cells and artifacts (dust an other) with equivalent size and shape that are present in the biological preparation. Using a simple correlation criteria, the method matches a 3D video template (extracted from a sample of cells) with the motile cells contained into the biological sample, obtaining a high rate of true positives while discarding artifacts. In this work, our analysis is focused on sea urchin spermatozoa cells but is applicable to many other microscopical structures having the same optical properties.
Collapse
Affiliation(s)
- J A Pimentel
- Engineering and Computer Science, Universidad Nacional Autónoma de México, 04510 CU Distrito Federal, México.
| | | |
Collapse
|
39
|
De Blas GA, Darszon A, Ocampo AY, Serrano CJ, Castellano LE, Hernández-González EO, Chirinos M, Larrea F, Beltrán C, Treviño CL. TRPM8, a versatile channel in human sperm. PLoS One 2009; 4:e6095. [PMID: 19582168 PMCID: PMC2705237 DOI: 10.1371/journal.pone.0006095] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/30/2009] [Indexed: 01/12/2023] Open
Abstract
Background The transient receptor potential channel (TRP) family includes more than 30 proteins; they participate in various Ca2+ dependent processes. TRPs are functionally diverse involving thermal, chemical and mechanical transducers which modulate the concentration of intracellular Ca2+ ([Ca2+]i). Ca2+ triggers and/or regulates principal sperm functions during fertilization such as motility, capacitation and the acrosome reaction. Nevertheless, the presence of the TRPM subfamily in sperm has not been explored. Principal Findings Here we document with RT-PCR, western blot and immunocitochemistry analysis the presence of TRPM8 in human sperm. We also examined the participation of this channel in sperm function using specific agonists (menthol and temperature) and antagonists (BCTC and capsazepine). Computer-aided sperm analysis revealed that menthol did not significantly alter human sperm motility. In contrast, menthol induced the acrosome reaction in human sperm. This induction was inhibited about 70% by capsazepine (20 µM) and 80% by BCTC (1.6 µM). Activation of TRPM8 either by temperature or menthol induced [Ca2+]i increases in human sperm measured by fluorescence in populations or individual sperm cells, effect that was also inhibited by capsazepine (20 µM) and BCTC (1.6 µM). However, the progesterone and ZP3-induced acrosome reaction was not inhibited by capsazepine or BCTC, suggesting that TRPM8 activation triggers this process by a different signaling pathway. Conclusions This is the first report dealing with the presence of a thermo sensitive channel (TRPM8) in human sperm. This channel could be involved in cell signaling events such as thermotaxis or chemotaxis.
Collapse
Affiliation(s)
- Gerardo A. De Blas
- Departmento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departmento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Ana Y. Ocampo
- Departmento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | | | - Laura E. Castellano
- Departamento de Ciencias Aplicadas al Trabajo, División de Ciencias de la Salud, Universidad de Guanajuato León, Guanajuato, México
| | | | - Mayel Chirinos
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Distrito Federal, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Distrito Federal, México
| | - Carmen Beltrán
- Departmento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Claudia L. Treviño
- Departmento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
40
|
Smith DJ, Gaffney EA, Gadêlha H, Kapur N, Kirkman-Brown JC. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. ACTA ACUST UNITED AC 2009; 66:220-36. [DOI: 10.1002/cm.20345] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Shiba K, Baba SA, Inoue T, Yoshida M. Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc Natl Acad Sci U S A 2008; 105:19312-7. [PMID: 19047630 PMCID: PMC2614758 DOI: 10.1073/pnas.0808580105] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) is known to have important roles in sperm chemotaxis, although the relationship between intracellular Ca(2+) concentration ([Ca(2+)](i)) and modulation of the swimming and chemotactic behavior of spermatozoa has not been elucidated. Using a high-speed Ca(2+) imaging system, we examined the chemotactic behavior and [Ca(2+)](i) in individual ascidian sperm cells exhibiting chemotactic responses toward sperm activating and attracting factor (SAAF), a chemoattractant released by eggs. In this study, we found that transient [Ca(2+)](i) increased in the flagellum (Ca(2+) bursts) concomitantly with a change in the swimming direction in an SAAF gradient field. During the initial phase of the Ca(2+) bursts, the flagellum of the spermatozoon exhibited highly asymmetric waveforms enabling the quick turning of the swimming path. However, the flagellum subsequently changed to symmetric beating, causing the spermatozoon to swim straight. Interestingly, during such responses, [Ca(2+)](i) remained higher than the basal level, indicating that the series of responses was not simply determined by Ca(2+) concentrations. Also, we found that Ca(2+) bursts were consistently evoked at points at which the spermatozoon attained around a temporally minimal value for a given SAAF concentration. We concluded that Ca(2+) bursts induced around a local minimal SAAF concentration trigger a sequence of flagellar responses comprising quick turning followed by straight swimming to direct spermatozoa efficiently toward eggs.
Collapse
Affiliation(s)
- Kogiku Shiba
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Shoji A. Baba
- Department of Advanced Biosciences, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan; and
| | - Takafumi Inoue
- Department of Life Science and Bio-Science, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| |
Collapse
|
42
|
Ohmuro-Matsuyama Y, Tatsu Y. Photocontrolled Cell Adhesion on a Surface Functionalized with a Caged Arginine-Glycine-Aspartate Peptide. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Ohmuro‐Matsuyama Y, Tatsu Y. Photocontrolled Cell Adhesion on a Surface Functionalized with a Caged Arginine‐Glycine‐Aspartate Peptide. Angew Chem Int Ed Engl 2008; 47:7527-9. [DOI: 10.1002/anie.200802731] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Ohmuro‐Matsuyama
- National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka 563‐8577 (Japan), Fax: (+81) 72‐751‐9628 http://staff.aist.go.jp/y‐tatsu/
| | - Yoshiro Tatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka 563‐8577 (Japan), Fax: (+81) 72‐751‐9628 http://staff.aist.go.jp/y‐tatsu/
| |
Collapse
|
44
|
Corkidi G, Taboada B, Wood C, Guerrero A, Darszon A. Tracking sperm in three-dimensions. Biochem Biophys Res Commun 2008; 373:125-9. [PMID: 18555013 DOI: 10.1016/j.bbrc.2008.05.189] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
|
45
|
Affiliation(s)
- U. Benjamin Kaupp
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Nachiket D. Kashikar
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Ingo Weyand
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| |
Collapse
|
46
|
Márton ML, Dresselhaus T. A comparison of early molecular fertilization mechanisms in animals and flowering plants. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-007-0062-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|