1
|
So S, Asakawa M, Sawa H. Distinct functions of three Wnt proteins control mirror-symmetric organogenesis in the C. elegans gonad. eLife 2024; 13:e103035. [PMID: 39485276 PMCID: PMC11620738 DOI: 10.7554/elife.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024] Open
Abstract
Organogenesis requires the proper production of diverse cell types and their positioning/migration. However, the coordination of these processes during development remains poorly understood. The gonad in C. elegans exhibits a mirror-symmetric structure guided by the migration of distal tip cells (DTCs), which result from asymmetric divisions of somatic gonadal precursors (SGPs; Z1 and Z4). We found that the polarity of Z1 and Z4, which possess mirror-symmetric orientation, is controlled by the redundant functions of the LIN-17/Frizzled receptor and three Wnt proteins (CWN-1, CWN-2, and EGL-20) with distinct functions. In lin-17 mutants, CWN-2 promotes normal polarity in both Z1 and Z4, while CWN-1 promotes reverse and normal polarity in Z1 and Z4, respectively. In contrast, EGL-20 inhibits the polarization of both Z1 and Z4. In lin-17 egl-20 cwn-2 triple mutants with a polarity reversal of Z1, DTCs from Z1 frequently miss-migrate to the posterior side. Our further analysis demonstrates that the mis-positioning of DTCs in the gonad due to the polarity reversal of Z1 leads to mis-migration. Similar mis-migration was also observed in cki-1(RNAi) animals producing ectopic DTCs. These results highlight the role of Wnt signaling in coordinating the production and migration of DTCs to establish a mirror-symmetric organ.
Collapse
Affiliation(s)
- Shuhei So
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
| | - Masayo Asakawa
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| |
Collapse
|
2
|
Tolkin T, Burnett J, Hubbard EJA. A role for organ level dynamics in morphogenesis of the C. elegans hermaphrodite distal tip cell. Development 2024; 151:dev203019. [PMID: 39382030 PMCID: PMC11488634 DOI: 10.1242/dev.203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/15/2024] [Indexed: 10/10/2024]
Abstract
The morphology of cells in vivo can arise from a variety of mechanisms. In the Caenorhabditis elegans hermaphrodite gonad, the distal tip cell (DTC) elaborates into a complex plexus over a relatively short developmental time period, but the mechanisms underlying this change in cell morphology are not well defined. We correlated the time of DTC elaboration with the L4-to-adult molt, but ruled out a relevant heterochronic pathway as a cue for DTC elaboration. Instead, we found that the timing of gonad elongation and aspects of underlying germline flux influence DTC elaboration. We propose a 'hitch and tow' aspect of organ-level dynamics that contributes to cellular morphogenesis, whereby germline flux drags the flexible DTC cell cortex away from its stationary cell body. More broadly, we speculate that this mechanism may contribute to cell shape changes in other contexts with implications for development and disease.
Collapse
Affiliation(s)
- Theadora Tolkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Burnett
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
3
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Tan CH, Cheng KW, Park H, Chou TF, Sternberg PW. LINKIN-associated proteins necessary for tissue integrity during collective cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527750. [PMID: 36798316 PMCID: PMC9934607 DOI: 10.1101/2023.02.08.527750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell adhesion plays essential roles in almost every aspect of metazoan biology. LINKIN (Human: ITFG1, Caenorhabditis elegans: lnkn-1) is a conserved transmembrane protein that has been identified to be necessary for tissue integrity during migration. In C. elegans, loss of lnkn-1 results in the detachment of the lead migratory cell from the rest of the developing male gonad. Previously, three interactors of ITFG1/lnkn-1 - RUVBL1/ruvb-1, RUVBL2/ruvb-2, and alpha-tubulin - were identified by immunoprecipitation-mass spectrometry (IP-MS) analysis using human HEK293T cells and then validated in the nematode male gonad. The ITFG1-RUVBL1 interaction has since been independently validated in a breast cancer cell line model that also implicates the involvement of the pair in metastasis. Here, we showed that epitope-tagged ITFG1 localized to the cell surface of MDA-MB-231 breast cancer cells. Using IP-MS analysis, we identified a new list of potential interactors of ITFG1. Loss-of-function analysis of their C. elegans orthologs found that three of the interactors - ATP9A/tat-5, NME1/ndk-1, and ANAPC2/apc-2 - displayed migratory detachment phenotypes similar to that of lnkn-1. Taken together with the other genes whose reduction-of-function phenotype is similar to that of lnkn-1 (notably cohesion and condensin), suggests the involvement of membrane remodeling and chromosome biology in LINKIN-dependent cell adhesion and supports the hypothesis for a structural role of chromosomes in post-mitotic cells.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology
| |
Collapse
|
5
|
Fragoso-Luna A, Romero-Bueno R, Eibl M, Ayuso C, Muñoz-Jiménez C, Benes V, Cases I, Askjaer P. Expanded FLP toolbox for spatiotemporal protein degradation and transcriptomic profiling in Caenorhabditis elegans. Genetics 2023; 223:iyac166. [PMID: 36321973 PMCID: PMC9836023 DOI: 10.1093/genetics/iyac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
Control of gene expression in specific tissues and/or at certain stages of development allows the study and manipulation of gene function with high precision. Site-specific genome recombination by the flippase (FLP) and cyclization recombination (Cre) enzymes has proved particularly relevant. Joint efforts of many research groups have led to the creation of efficient FLP and Cre drivers to regulate gene expression in a variety of tissues in Caenorhabditis elegans. Here, we extend this toolkit by the addition of FLP lines that drive recombination specifically in distal tip cells, the somatic gonad, coelomocytes, and the epithelial P lineage. In some cases, recombination-mediated gene knockouts do not completely deplete protein levels due to persistence of long-lived proteins. To overcome this, we developed a spatiotemporally regulated degradation system for green fluorescent fusion proteins based on FLP-mediated recombination. Using 2 stable nuclear pore proteins, MEL-28/ELYS and NPP-2/NUP85 as examples, we report the benefit of combining tissue-specific gene knockout and protein degradation to achieve complete protein depletion. We also demonstrate that FLP-mediated recombination can be utilized to identify transcriptomes in a C. elegans tissue of interest. We have adapted RNA polymerase DamID for the FLP toolbox and by focusing on a well-characterized tissue, the hypodermis, we show that the vast majority of genes identified by RNA polymerase DamID are known to be expressed in this tissue. These tools allow combining FLP activity for simultaneous gene inactivation and transcriptomic profiling, thus enabling the inquiry of gene function in various complex biological processes.
Collapse
Affiliation(s)
- Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Raquel Romero-Bueno
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Michael Eibl
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Celia Muñoz-Jiménez
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | | | - Ildefonso Cases
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| |
Collapse
|
6
|
Floxed exon (Flexon): A flexibly positioned stop cassette for recombinase-mediated conditional gene expression. Proc Natl Acad Sci U S A 2022; 119:2117451119. [PMID: 35027456 PMCID: PMC8784106 DOI: 10.1073/pnas.2117451119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Tools that afford spatiotemporal control of gene expression are crucial for studying genes and processes in multicellular organisms. Stop cassettes consist of exogenous sequences that interrupt gene expression and flanking site-specific recombinase sites to allow for tissue-specific excision and restoration of function by expression of the cognate recombinase. We describe a stop cassette called a flexon, composed of an artificial exon flanked by artificial introns that can be flexibly positioned in a gene. We demonstrate its efficacy in Caenorhabditis elegans for lineage-specific control of gene expression and for tissue-specific RNA interference and discuss other potential uses. The Flexon approach should be feasible in any system amenable to site-specific recombination-based methods and applicable to diverse areas including development, neuroscience, and metabolism. Conditional gene expression is a powerful tool for genetic analysis of biological phenomena. In the widely used “lox-stop-lox” approach, insertion of a stop cassette consisting of a series of stop codons and polyadenylation signals flanked by lox sites into the 5′ untranslated region (UTR) of a gene prevents expression until the cassette is excised by tissue-specific expression of Cre recombinase. Although lox-stop-lox and similar approaches using other site-specific recombinases have been successfully used in many experimental systems, this design has certain limitations. Here, we describe the Floxed exon (Flexon) approach, which uses a stop cassette composed of an artificial exon flanked by artificial introns, designed to cause premature termination of translation and nonsense-mediated decay of the mRNA and allowing for flexible placement into a gene. We demonstrate its efficacy in Caenorhabditis elegans by showing that, when promoters that cause weak and/or transient cell-specific expression are used to drive Cre in combination with a gfp(flexon) transgene, strong and sustained expression of green fluorescent protein (GFP) is obtained in specific lineages. We also demonstrate its efficacy in an endogenous gene context: we inserted a flexon into the Argonaute gene rde-1 to abrogate RNA interference (RNAi), and restored RNAi tissue specifically by expression of Cre. Finally, we describe several potential additional applications of the Flexon approach, including more precise control of gene expression using intersectional methods, tissue-specific protein degradation, and generation of genetic mosaics. The Flexon approach should be feasible in any system where a site-specific recombination-based method may be applied.
Collapse
|
7
|
Littleford HE, Kiontke K, Fitch DHA, Greenwald I. hlh-12, a gene that is necessary and sufficient to promote migration of gonadal regulatory cells in Caenorhabditis elegans, evolved within the Caenorhabditis clade. Genetics 2021; 219:iyab127. [PMID: 34740245 PMCID: PMC8570790 DOI: 10.1093/genetics/iyab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/12/2022] Open
Abstract
Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. Caenorhabditis elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female distal tip cells (fDTCs), while the anchor cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie the evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that hlh-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.
Collapse
Affiliation(s)
- Hana E Littleford
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Karin Kiontke
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - David H A Fitch
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Cell Non-autonomous Function of daf-18/PTEN in the Somatic Gonad Coordinates Somatic Gonad and Germline Development in C. elegans Dauer Larvae. Curr Biol 2019; 29:1064-1072.e8. [PMID: 30827916 DOI: 10.1016/j.cub.2019.01.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
C. elegans larvae integrate environmental information and developmental decisions [1-3]. In favorable conditions, worms develop rapidly and continuously through four larval stages into reproductive adulthood. However, if conditions are unfavorable through the second larval stage, worms enter dauer diapause, a state of global and reversible developmental arrest in which precursor cells remain quiescent and preserve developmental potential, anticipating developmental progression if conditions improve. Signaling from neurons, hypodermis, and intestine regulate the appearance and behavior of dauer larvae and many aspects of developmental arrest of the non-gonadal soma [1, 4, 5]. Here, we show that the decision of somatic gonad blast cells (SGBs) and germline stem cells (GSCs) to be quiescent or progress developmentally is regulated differently from the non-gonadal soma: daf-18/PTEN acts non-autonomously within the somatic gonad to maintain developmental quiescence of both SGBs and GSCs. Our analysis suggests that daf-18 acts in somatic gonad cells to produce a "pro-quiescence" signal (or signals) that acts inter se and between the somatic gonad and the germline. The inferred signal does not require DAF-2/insulin receptor or maintain quiescence of the nearby sex myoblasts, and developmental progression in daf-18(0) does not require dafachronic acids. Abrogating quiescence in dauer results in post-dauer sterility. Our results implicate the somatic gonad as an endocrine organ to synchronize somatic gonad and germline development during dauer diapause and recovery, and our finding that PTEN acts non-autonomously to control blast cell quiescence may be relevant to its function as a tumor suppressor in mammals and to combating parasitic nematodes.
Collapse
|
9
|
Unconventional function of an Achaete-Scute homolog as a terminal selector of nociceptive neuron identity. PLoS Biol 2018; 16:e2004979. [PMID: 29672507 PMCID: PMC5908064 DOI: 10.1371/journal.pbio.2004979] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/12/2018] [Indexed: 11/19/2022] Open
Abstract
Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor-encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an "ur-" bHLH gene.
Collapse
|
10
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
11
|
Sallee MD, Littleford HE, Greenwald I. A bHLH Code for Sexually Dimorphic Form and Function of the C. elegans Somatic Gonad. Curr Biol 2017; 27:1853-1860.e5. [PMID: 28602651 DOI: 10.1016/j.cub.2017.05.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
How sexually dimorphic gonads are generated is a fundamental question at the interface of developmental and evolutionary biology [1-3]. In C. elegans, sexual dimorphism in gonad form and function largely originates in different apportionment of roles to three regulatory cells of the somatic gonad primordium in young larvae. Their essential roles include leading gonad arm outgrowth, serving as the germline niche, connecting to epithelial openings, and organizing reproductive organ development. The development and function of the regulatory cells in both sexes requires the basic-helix-loop-helix (bHLH) transcription factor HLH-2, the sole ortholog of the E proteins mammalian E2A and Drosophila Daughterless [4-8], yet how they adopt different fates to execute their different roles has been unknown. Here, we show that each regulatory cell expresses a distinct complement of bHLH-encoding genes-and therefore distinct HLH-2:bHLH dimers-and formulate a "bHLH code" hypothesis for regulatory cell identity. We support this hypothesis by showing that the bHLH gene complement is both necessary and sufficient to confer particular regulatory cell fates. Strikingly, prospective regulatory cells can be directly reprogrammed into other regulatory cell types simply by loss or ectopic expression of bHLH genes, and male-to-female and female-to-male transformations indicate that the code is instructive for sexual dimorphism. The bHLH code appears to be embedded in a bow-tie regulatory architecture [9, 10], wherein sexual, positional, temporal, and lineage inputs connect through bHLH genes to diverse outputs for terminal features and provides a plausible mechanism for the evolutionary plasticity of gonad form seen in nematodes [11-15].
Collapse
Affiliation(s)
- Maria D Sallee
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Hana E Littleford
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
12
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
13
|
Schwendeman AR, Shaham S. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors. PLoS One 2016; 11:e0164595. [PMID: 27716809 PMCID: PMC5055323 DOI: 10.1371/journal.pone.0164595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death) is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery.
Collapse
Affiliation(s)
- Andrew R. Schwendeman
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kinet MJ, Malin JA, Abraham MC, Blum ES, Silverman MR, Lu Y, Shaham S. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans. eLife 2016; 5. [PMID: 26952214 PMCID: PMC4821803 DOI: 10.7554/elife.12821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 01/18/2023] Open
Abstract
Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis
regulators cause only minor defects in vertebrate development, suggesting that
another developmental cell death mechanism exists. While some non-apoptotic programs
have been molecularly characterized, none appear to control developmental cell
culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic
cell death process operating in Caenorhabditis elegans and
vertebrate development, and is therefore a compelling candidate process complementing
apoptosis. However, the details of LCD execution are not known. Here we delineate a
molecular-genetic pathway governing LCD in C. elegans. Redundant
activities of antagonistic Wnt signals, a temporal control pathway, and
mitogen-activated protein kinase kinase signaling control heat shock factor 1
(HSF-1), a conserved stress-activated transcription factor. Rather than protecting
cells, HSF-1 promotes their demise by activating components of the ubiquitin
proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3
components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities
between LCD and developmental apoptosis, and provide testable predictions for
analyzing LCD in vertebrates. DOI:http://dx.doi.org/10.7554/eLife.12821.001 Embryos make numerous new cells as they develop, but also destroy many cells to
remove the faulty ones and to ensure that tissues grow to the right size and shape.
This deliberate form of cell death must be precisely regulated to prevent too many
cells or healthy cells, from being destroyed. Understanding the molecular mechanisms
that govern cell death is therefore important for understanding normal development
and also human disease. One well-studied process that leads to cell death is called apoptosis. This process
carefully dismantles and breaks down the components of a cell, but does not seem to
account for all cell death that occurs during animal development. Recently another
developmental cell-death pathway, called the linker-cell-type death, was discovered
in a small roundworm called Caenorhabditis elegans. This pathway
appears to work in mammalian cells as well, and may help to break down nerve fibers
that are not needed. However, many of this pathway’s component parts remained
unknown. Kinet, Malin et al. have now used a combination of genetics and cell biology in
C. elegans to uncover the components of linker-cell-type death
and to investigate how they interact. The results of these studies revealed a
hierarchy of genetic interactions that governs this pathway in C.
elegans. One protein called HSF-1 plays a particularly important role.
This protein is a transcription factor and it binds to, and regulates, the activities
of various genes. HSF-1 usually works in cells to protect them from stress, but
Kinet, Malin et al. showed that it instead promotes linker-cell-type death by
activating a molecular machine, called the proteasome, that breaks down proteins. The
experiments also revealed two proteins (called BTBD-2 and SIAH-1) that may be
important for shuttling specific proteins for degradation by the proteasome. Three signalling pathways that regulate important developmental processes also
regulate the activation of linker-cell-type death. Kinet, Malin et al. propose that
these signalling pathways do so by working together to activate HSF-1, which in turn
activates the genes that lead to the destruction of cells by the proteasome. A future challenge is to understand in more detail how the more recently discovered
cell death pathway actually kills cells. Further work could also explore how HSF-1, a
protein that normally protects cells, is transformed into a cell-killing protein. DOI:http://dx.doi.org/10.7554/eLife.12821.002
Collapse
Affiliation(s)
- Maxime J Kinet
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Jennifer A Malin
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Mary C Abraham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Elyse S Blum
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Melanie R Silverman
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| |
Collapse
|
15
|
Meighan CM, Kann AP, Egress ER. Transcription factor hlh-2/E/Daughterless drives expression of α integrin ina-1 during DTC migration in C. elegans. Gene 2015; 568:220-6. [PMID: 25982859 DOI: 10.1016/j.gene.2015.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/24/2022]
Abstract
Integrins are involved in a vast number of cell behaviors due to their roles in adhesion and signaling. The regulation of integrin expression is of particular interest as a mechanism to drive developmental events and for the role of altered integrin expression profiles in cancer. Dynamic regulation of the expression of integrin receptors is required for the migration of the distal tip cell (DTC) during gonadogenesis in Caenorhabditis elegans. α integrin ina-1 is required for DTC motility, yet is up-regulated by an unknown mechanism. Analysis of the promoter for α integrin ina-1 identified two E-box sequences that are required for ina-1 expression in the DTC. Knockdown of transcription factor hlh-2, an established E-box binding partner and ortholog of E/Daughterless, prevented expression of a transcriptional fusion of the ina-1 promoter to RFP and blocked DTC migration. Similarly, knockdown of hlh-2 also prevented expression of a translational fusion of the genomic ina-1 gene to GFP while blocking DTC migration. Knockdown of HLH-2 binding partner MIG-24 also reduced ina-1 expression and DTC migration. Overall, these results show that the transcription factor hlh-2 is required for up-regulation of ina-1 at the onset of DTC migration.
Collapse
Affiliation(s)
| | - Allison P Kann
- Christopher Newport University, Newport News, VA 23606, USA.
| | - Emily R Egress
- Christopher Newport University, Newport News, VA 23606, USA.
| |
Collapse
|
16
|
The BED finger domain protein MIG-39 halts migration of distal tip cells in Caenorhabditis elegans. Dev Biol 2014; 397:151-61. [PMID: 25446539 DOI: 10.1016/j.ydbio.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022]
Abstract
Organs are often formed by the extension and branching of epithelial tubes. An appropriate termination of epithelial tube extension is important for generating organs of the proper size and morphology. However, the mechanism by which epithelial tubes terminate their extension is mostly unknown. Here we show that the BED-finger domain protein MIG-39 acts to stop epithelial tube extension in Caenorhabditis elegans. The gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern during larval development and stop migrating at the young adult stage, generating a gonad with anterior and posterior U-shaped arms. In mig-39 mutants, however, DTCs overshot their normal stopping position. MIG-39 promoted the deceleration of DTCs, leading to the proper timing and positioning of the cessation of DTC migration. Among three Rac GTPase genes, mutations in ced-10 and rac-2 enhanced the overshoot of anterior DTCs, while they suppressed that of posterior DTCs of mig-39 mutants. On the other hand, the mutation in mig-2 suppressed both the anterior and posterior DTC defects of mig-39. Genetic analyses suggested that MIG-39 acts in parallel with Rac GTPases in stopping DTC migration. We propose a model in which the anterior and posterior DTCs respond in an opposite manner to the levels of Rac activities in the cessation of DTC migration.
Collapse
|
17
|
Huang TF, Cho CY, Cheng YT, Huang JW, Wu YZ, Yeh AYC, Nishiwaki K, Chang SC, Wu YC. BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans. PLoS Genet 2014; 10:e1004428. [PMID: 24968003 PMCID: PMC4072510 DOI: 10.1371/journal.pgen.1004428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022] Open
Abstract
Spatiotemporal regulation of cell migration is crucial for animal development and organogenesis. Compared to spatial signals, little is known about temporal signals and the mechanisms integrating the two. In the Caenorhabditis elegans hermaphrodite, the stereotyped migration pattern of two somatic distal tip cells (DTCs) is responsible for shaping the gonad. Guidance receptor UNC-5 is necessary for the dorsalward migration of DTCs. We found that BLMP-1, similar to the mammalian zinc finger transcription repressor Blimp-1/PRDI-BF1, prevents precocious dorsalward turning by inhibiting precocious unc-5 transcription and is only expressed in DTCs before they make the dorsalward turn. Constitutive expression of blmp-1 when BLMP-1 would normally disappear delays unc-5 transcription and causes turn retardation, demonstrating the functional significance of blmp-1 down-regulation. Correct timing of BLMP-1 down-regulation is redundantly regulated by heterochronic genes daf-12, lin-29, and dre-1, which regulate the temporal fates of various tissues. DAF-12, a steroid hormone receptor, and LIN-29, a zinc finger transcription factor, repress blmp-1 transcription, while DRE-1, the F-Box protein of an SCF ubiquitin ligase complex, binds to BLMP-1 and promotes its degradation. We have therefore identified a gene circuit that integrates the temporal and spatial signals and coordinates with overall development of the organism to direct cell migration during organogenesis. The tumor suppressor gene product FBXO11 (human DRE-1 ortholog) also binds to PRDI-BF1 in human cell cultures. Our data suggest evolutionary conservation of these interactions and underscore the importance of DRE-1/FBXO11-mediated BLMP-1/PRDI-BF1 degradation in cellular state transitions during metazoan development. The migratory path of DTCs determines the shape of the C. elegans gonad. How the spatiotemporal migration pattern is regulated is not clear. We identified a conserved transcription factor BLMP-1 as a central component of a gene regulatory circuit required for the spatiotemporal control of DTC migration. BLMP-1 levels regulate the timing of the DTC dorsal turn, as high levels delay the turn and low levels result in an early turn. We identify and characterize upstream regulators that control BLMP-1 levels. These regulators function in two ways, i.e. by destabilization of BLMP-1 through ubiquitin-mediated proteolysis and by transcriptional repression of the blmp-1 gene to down-regulate BLMP-1. Interestingly, blmp-1 also negatively controls these regulators. Our data suggest that a dietary signal input acts together with a double-negative feedback loop to switch DTCs from the “blmp-1-on” to the “blmp-1-off” state, promoting their dorsal turn. Furthermore, we show that some protein interactions in the circuit are conserved in C. elegans and humans. Our work defines a novel function of the conserved blmp-1 gene in the temporal control of cell migration, and establishes a gene regulatory circuit that integrates the temporal and spatial inputs to direct cell migration during organogenesis.
Collapse
Affiliation(s)
- Tsai-Fang Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Cho
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Cheng
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Jheng-Wei Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yun-Zhe Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Athena Yi-Chun Yeh
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, Gakuen, Sanda, Japan
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Wong MC, Kennedy WP, Schwarzbauer JE. Transcriptionally regulated cell adhesion network dictates distal tip cell directionality. Dev Dyn 2014; 243:999-1010. [PMID: 24811939 DOI: 10.1002/dvdy.24146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. RESULTS Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. CONCLUSIONS Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | | | |
Collapse
|
19
|
Dopamine signaling in C. elegans is mediated in part by HLH-17-dependent regulation of extracellular dopamine levels. G3-GENES GENOMES GENETICS 2014; 4:1081-9. [PMID: 24709946 PMCID: PMC4065251 DOI: 10.1534/g3.114.010819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Caenorhabditis elegans, the dopamine transporter DAT-1 regulates synaptic dopamine (DA) signaling by controlling extracellular DA levels. In dat-1(ok157) animals, DA is not taken back up presynaptically but instead reaches extrasynpatic sites, where it activates the dopamine receptor DOP-3 on choligeneric motor neurons and causes animals to become paralyzed in water. This phenotype is called swimming-induced paralysis (SWIP) and is dependent on dat-1 and dop-3. Upstream regulators of dat-1 and dop-3 have yet to be described in C. elegans. In our previous studies, we defined a role for HLH-17 during dopamine response through its regulation of the dopamine receptors. Here we continue our characterization of the effects of HLH-17 on dopamine signaling. Our results suggest that HLH-17 acts downstream of dopamine synthesis to regulate the expression of dop-3 and dat-1. First, we show that hlh-17 animals display a SWIP phenotype that is consistent with its regulation of dop-3 and dat-1. Second, we show that this behavior is enhanced by treatment with the dopamine reuptake inhibitor, bupropion, in both hlh-17 and dat-1 animals, a result suggesting that SWIP behavior is regulated via a mechanism that is both dependent on and independent of DAT-1. Third, and finally, we show that although the SWIP phenotype of hlh-17 animals is unresponsive to the dopamine agonist, reserpine, and to the antidepressant, fluoxetine, hlh-17 animals are not defective in acetylcholine signaling. Taken together, our work suggests that HLH-17 is required to maintain normal levels of dopamine in the synaptic cleft through its regulation of dop-3 and dat-1.
Collapse
|
20
|
The novel secreted factor MIG-18 acts with MIG-17/ADAMTS to control cell migration in Caenorhabditis elegans. Genetics 2013; 196:471-9. [PMID: 24318535 DOI: 10.1534/genetics.113.157685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The migration of Caenorhabditis elegans gonadal distal tip cells (DTCs) offers an excellent model to study the migration of epithelial tubes in organogenesis. mig-18 mutants cause meandering or wandering migration of DTCs during gonad formation, which is very similar to that observed in animals with mutations in mig-17, which encodes a secreted metalloprotease of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family. MIG-18 is a novel secreted protein that is conserved only among nematode species. The mig-17(null) and mig-18 double mutants exhibited phenotypes similar to those in mig-17(null) single mutants. In addition, the mutations in fbl-1/fibulin-1 and let-2/collagen IV that suppress mig-17 mutations also suppressed the mig-18 mutation, suggesting that mig-18 and mig-17 function in a common genetic pathway. The Venus-MIG-18 fusion protein was secreted from muscle cells and localized to the gonadal basement membrane, a tissue distribution reminiscent of that observed for MIG-17. Overexpression of MIG-18 in mig-17 mutants and vice versa partially rescued the relevant DTC migration defects, suggesting that MIG-18 and MIG-17 act cooperatively rather than sequentially. We propose that MIG-18 may be a cofactor of MIG-17/ADAMTS that functions in the regulation of the gonadal basement membrane to achieve proper direction of DTC migration during gonadogenesis.
Collapse
|
21
|
Physiological control of germline development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:101-31. [PMID: 22872476 DOI: 10.1007/978-1-4614-4015-4_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intersection between developmental programs and environmental conditions that alter physiology is a growing area of research interest. The C. elegans germ line is emerging as a particularly sensitive and powerful model for these studies. The germ line is subject to environmentally regulated diapause points that allow worms to withstand harsh conditions both prior to and after reproduction commences. It also responds to more subtle changes in physiological conditions. Recent studies demonstrate that different aspects of germ line development are sensitive to environmental and physiological changes and that conserved signaling pathways such as the AMPK, Insulin/IGF, TGFβ, and TOR-S6K, and nuclear hormone receptor pathways mediate this sensitivity. Some of these pathways genetically interact with but appear distinct from previously characterized mechanisms of germline cell fate control such as Notch signaling. Here, we review several aspects of hermaphrodite germline development in the context of "feasting," "food-limited," and "fasting" conditions. We also consider connections between lifespan, metabolism and the germ line, and we comment on special considerations for examining germline development under altered environmental and physiological conditions. Finally, we summarize the major outstanding questions in the field.
Collapse
|
22
|
Blum ES, Abraham MC, Yoshimura S, Lu Y, Shaham S. Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein. Science 2012; 335:970-3. [PMID: 22363008 DOI: 10.1126/science.1215156] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Death is a vital developmental cell fate. In Caenorhabditis elegans, programmed death of the linker cell, which leads gonadal elongation, proceeds independently of caspases and apoptotic effectors. To identify genes promoting linker-cell death, we performed a genome-wide RNA interference screen. We show that linker-cell death requires the gene pqn-41, encoding an endogenous polyglutamine-repeat protein. pqn-41 functions cell-autonomously and is expressed at the onset of linker-cell death. pqn-41 expression is controlled by the mitogen-activated protein kinase kinase SEK-1, which functions in parallel to the zinc-finger protein LIN-29 to promote cellular demise. Linker-cell death is morphologically similar to cell death associated with normal vertebrate development and polyglutamine-induced neurodegeneration. Our results may therefore provide molecular inroads to understanding nonapoptotic cell death in metazoan development and disease.
Collapse
Affiliation(s)
- Elyse S Blum
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
23
|
Kovacevic I, Ho R, Cram EJ. CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans. Mech Dev 2012; 128:548-59. [PMID: 22285439 DOI: 10.1016/j.mod.2012.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/19/2023]
Abstract
The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC.
Collapse
Affiliation(s)
- Ismar Kovacevic
- Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave., Boston, MA 02115, United States
| | | | | |
Collapse
|
24
|
Kim HS, Murakami R, Quintin S, Mori M, Ohkura K, Tamai KK, Labouesse M, Sakamoto H, Nishiwaki K. VAB-10 spectraplakin acts in cell and nuclear migration in Caenorhabditis elegans. Development 2011; 138:4013-23. [PMID: 21831923 PMCID: PMC3160096 DOI: 10.1242/dev.059568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 11/20/2022]
Abstract
Cytoskeletal regulation is important in cell migration. The Caenorhabditis elegans gonadal distal tip cells (DTCs) offer a simple model with which to investigate the mechanism of cell migration in organogenesis. Here, we report that one of the spectraplakin isoforms, VAB-10B1, plays an essential role in cell and nuclear migration of DTCs by regulating the actin and microtubule (MT) cytoskeleton. In the vab-10(tk27) mutant, which lacks VAB-10B1, alignment of filamentous (F)-actin and MTs was weakly and severely disorganized, respectively, which resulted in a failure to translocate the DTC nucleus and a premature termination of DTC migration. An MT growing-tip marker, EBP-2-GFP, revealed that polarized outgrowth of MTs towards the nuclei of migrating DTCs was strikingly impaired in tk27 animals. A vab-10 mini-gene encoding only the actin- and MT-binding domains significantly rescued the gonadal defects, suggesting that VAB-10B1 has a role in linking actin and MT filaments. These results suggest that VAB-10B1/spectraplakin regulates the polarized alignment of MTs, possibly by linking F-actin and MTs, which enables normal nuclear translocation and cell migration of DTCs.
Collapse
Affiliation(s)
- Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Ryoko Murakami
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Sophie Quintin
- Development and Stem Cells program, IGBMC, CNRS UMR7104/INSERM U. 964//Université de Strasbourg, Illkirch, Cedex F-67404, France
| | - Masataka Mori
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Kiyotaka Ohkura
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | | | - Michel Labouesse
- Development and Stem Cells program, IGBMC, CNRS UMR7104/INSERM U. 964//Université de Strasbourg, Illkirch, Cedex F-67404, France
| | - Hiroshi Sakamoto
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
25
|
Schindler AJ, Sherwood DR. The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans. Dev Biol 2011; 357:380-91. [PMID: 21784067 DOI: 10.1016/j.ydbio.2011.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
Cell invasion through basement membrane is a specialized cellular behavior critical for many developmental processes and leukocyte trafficking. Invasive cellular behavior is also inappropriately co-opted during cancer progression. Acquisition of an invasive phenotype is accompanied by changes in gene expression that are thought to coordinate the steps of invasion. The transcription factors responsible for these changes in gene expression, however, are largely unknown. C. elegans anchor cell (AC) invasion is a genetically tractable in vivo model of invasion through basement membrane. AC invasion requires the conserved transcription factor FOS-1A, but other transcription factors are thought to act in parallel to FOS-1A to control invasion. Here we identify the transcription factor HLH-2, the C. elegans ortholog of Drosophila Daughterless and vertebrate E proteins, as a regulator of AC invasion. Reduction of HLH-2 function by RNAi or with a hypomorphic allele causes defects in AC invasion. Genetic analysis indicates that HLH-2 has functions outside of the FOS-1A pathway. Using expression analysis, we identify three genes that are transcriptionally regulated by HLH-2: the protocadherin cdh-3, and two genes encoding secreted extracellular matrix proteins, mig-6/papilin and him-4/hemicentin. Further, we show that reduction of HLH-2 function causes defects in polarization of F-actin to the invasive cell membrane, a process required for the AC to generate protrusions that breach the basement membrane. This work identifies HLH-2 as a regulator of the invasive phenotype in the AC, adding to our understanding of the transcriptional networks that control cell invasion.
Collapse
|
26
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
27
|
Korta DZ, Hubbard EJA. Soma-germline interactions that influence germline proliferation in Caenorhabditis elegans. Dev Dyn 2010; 239:1449-59. [PMID: 20225254 PMCID: PMC3323287 DOI: 10.1002/dvdy.22268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Caenorhabditis elegans boasts a short lifecycle and high fecundity, two features that make it an attractive and powerful genetic model organism. Several recent studies indicate that germline proliferation, a prerequisite to optimal fecundity, is tightly controlled over the course of development. Cell proliferation control includes regulation of competence to proliferate, a poorly understood aspect of cell fate specification, as well as cell-cycle control. Furthermore, dynamic regulation of cell proliferation occurs in response to multiple external signals. The C. elegans germ line is proving a valuable model for linking genetic, developmental, systemic, and environmental control of cell proliferation. Here, we consider recent studies that contribute to our understanding of germ cell proliferation in C. elegans. We focus primarily on somatic control of germline proliferation, how it differs at different life stages, and how it can be altered in the context of the life cycle and changes in environmental status.
Collapse
Affiliation(s)
- Dorota Z. Korta
- Developmental Genetics Program, Department of Pathology, Helen and Martin Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| | - E. Jane Albert Hubbard
- Developmental Genetics Program, Department of Pathology, Helen and Martin Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
28
|
Grove CA, de Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyk ML, Walhout AJ. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 2009; 138:314-27. [PMID: 19632181 PMCID: PMC2774807 DOI: 10.1016/j.cell.2009.04.058] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 03/06/2009] [Accepted: 04/23/2009] [Indexed: 01/20/2023]
Abstract
Differences in expression, protein interactions, and DNA binding of paralogous transcription factors ("TF parameters") are thought to be important determinants of regulatory and biological specificity. However, both the extent of TF divergence and the relative contribution of individual TF parameters remain undetermined. We comprehensively identify dimerization partners, spatiotemporal expression patterns, and DNA-binding specificities for the C. elegans bHLH family of TFs, and model these data into an integrated network. This network displays both specificity and promiscuity, as some bHLH proteins, DNA sequences, and tissues are highly connected, whereas others are not. By comparing all bHLH TFs, we find extensive divergence and that all three parameters contribute equally to bHLH divergence. Our approach provides a framework for examining divergence for other protein families in C. elegans and in other complex multicellular organisms, including humans. Cross-species comparisons of integrated networks may provide further insights into molecular features underlying protein family evolution. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.
Collapse
Affiliation(s)
- Christian A. Grove
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Federico de Masi
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - M. Inmaculada Barrasa
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel E. Newburger
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences & Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Albertha J.M. Walhout
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
29
|
Abstract
Stem cells, their niches, and their relationship to cancer are under intense investigation. Because tumors and metastases acquire self-renewing capacity, mechanisms for their establishment may involve cell-cell interactions similar to those between stem cells and stem cell niches. On the basis of our studies in Caenorhabditis elegans, we introduce the concept of a "latent niche" as a differentiated cell type that does not normally contact stem cells nor act as a niche but that can, under certain conditions, promote the ectopic self-renewal, proliferation, or survival of competent cells that it inappropriately contacts. Here, we show that ectopic germ-line stem cell proliferation in C. elegans is driven by a latent niche mechanism and that the molecular basis for this mechanism is inappropriate Notch activation. Furthermore, we show that continuous Notch signaling is required to maintain ectopic germ-line proliferation. We highlight the latent niche concept by distinguishing it from a normal stem cell niche, a premetastatic niche and an ectopic niche. One of the important distinguishing features of this mechanism for tumor initiation is that it could operate in the absence of genetic changes to the tumor cell or the tumor-promoting cell. We propose that a latent niche mechanism may underlie tumorigenesis and metastasis in humans.
Collapse
|
30
|
Knauff EA, Franke L, van Es MA, van den Berg LH, van der Schouw YT, Laven JS, Lambalk CB, Hoek A, Goverde AJ, Christin-Maitre S, Hsueh AJ, Wijmenga C, Fauser BC. Genome-wide association study in premature ovarian failure patients suggests ADAMTS19 as a possible candidate gene. Hum Reprod 2009; 24:2372-8. [DOI: 10.1093/humrep/dep197] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
31
|
Chesney MA, Lam N, Morgan DE, Phillips BT, Kimble J. C. elegans HLH-2/E/Daughterless controls key regulatory cells during gonadogenesis. Dev Biol 2009; 331:14-25. [PMID: 19376107 DOI: 10.1016/j.ydbio.2009.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 03/20/2009] [Accepted: 04/13/2009] [Indexed: 12/23/2022]
Abstract
The Caenorhabditis elegans distal tip cell (DTC) provides a niche for germline stem cells in both hermaphrodites and males. The hermaphrodite distal tip cell (hDTC) also provides "leader" function to control gonadal elongation and shape, while in males, leader function is allocated to the linker cell (LC). Therefore, the male distal tip cell (mDTC) serves as a niche but not as a leader. The C. elegans homolog of E/Daughterless, HLH-2, was previously implicated in hDTC specification. Here we report that HLH-2 is also critical for hDTC maintenance, hDTC niche function and hDTC expression of a lag-2/DSL ligand reporter. We also find that HLH-2 functions in males to direct linker cell specification and to promote both mDTC maintenance and the mDTC niche function. We conclude that HLH-2 functions in both sexes to promote leader cell specification and DTC niche function.
Collapse
Affiliation(s)
- Michael A Chesney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | |
Collapse
|
32
|
Infrared laser–mediated gene induction in targeted single cells in vivo. Nat Methods 2008; 6:79-81. [DOI: 10.1038/nmeth.1278] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/29/2008] [Indexed: 11/08/2022]
|
33
|
Abstract
We present a two-part system for conditional FLP-out of FRT-flanked sequences in Caenorhabditis elegans to control gene activity in a spatially and/or temporally regulated manner. Using reporters, we assess the system for efficacy and demonstrate its use as a cell lineage marking tool. In addition, we construct and test a dominant-negative form of hlh-12, a gene that encodes a basic helix-loop-helix (bHLH) transcription factor required for proper distal tip cell (DTC) migration. We show that this allele can be conditionally expressed from a heat-inducible FLP recombinase and can interfere with DTC migration. Using the same DTC assay, we conditionally express an hlh-12 RNAi-hairpin and induce the DTC migration defect. Finally, we introduce a set of traditional and Gateway-compatible vectors to facilitate construction of plasmids for this technology using any promoter, reporter, and gene/hairpin of interest.
Collapse
|
34
|
Ihara S, Nishiwaki K. Stage-specific activation of MIG-17/ADAMTS controls cell migration in Caenorhabditis elegans. FEBS J 2008; 275:4296-305. [PMID: 18637819 DOI: 10.1111/j.1742-4658.2008.06573.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activation of ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family proteases depends on removal of the prodomain. Although several studies suggest that ADAMTS activities play roles in development, homeostasis and disease, it remains unclear when and where the enzymes are activated in vivo. MIG-17, a Caenorhabditis elegans glycoprotein belonging to the ADAMTS family, is secreted from the body wall muscle cells and localizes to the gonadal basement membrane to control the migration of gonadal distal tip cells. Here, we developed a monoclonal antibody that recognizes the N-terminal neo-epitope of the activated MIG-17. In western blotting, the antibody specifically detected the activated form, the signal for which dramatically increased during the third and fourth larval stages, when MIG-17 is required to direct distal tip cell migration. In in situ staining, the monoclonal antibody recognized the activated form in the basement membrane, whereas it failed to detect a processing-resistant mutant form localized to the basement membrane. MIG-17 was activated in the basement membranes of the muscle, intestine and gonad in the third larval stage, and downregulated in nongonadal basement membranes in young adults and in gonadal basement membranes in older adults. Thus, the activation of MIG-17 is regulated in a spatiotemporal manner during C. elegans development. This is the first report demonstrating the regulated activation of an ADAMTS protein in vivo. Our results suggest that monoclonal antibodies against neo-epitopes have potential as powerful tools for detecting activation of ADAMTSs during development and in disease pathogenesis.
Collapse
Affiliation(s)
- Shinji Ihara
- RIKEN Center for Developmental Biology, Hyogo, Japan
| | | |
Collapse
|
35
|
Abstract
Like many stem cell systems, the Caenorhabditis elegans germ line contains a self-renewing germ cell population that is maintained by a niche. Although the exact cellular mechanism for self-renewal is not yet known, three recent studies shed considerable light on the cell cycle behavior of germ cells, including a support for significant and plastic renewal potential. This review brings together the results of the three recent cell-based studies, places them in the context of previous work, and discusses future perspectives for the field.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- New York University School of Medicine, Developmental Genetics, Skirball Institute for Biomolecular Medicine, Department of Pathology, Helen and Martin Kimmel Center for Stem Cell Biology, New York, New York 10016, USA.
| |
Collapse
|