1
|
Xu G, Chen Y, Wang F, Li E, Law JA. Transcription factors instruct DNA methylation patterns in plant reproductive tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639562. [PMID: 40027821 PMCID: PMC11870629 DOI: 10.1101/2025.02.21.639562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
DNA methylation is maintained by forming self-reinforcing connections with other repressive chromatin modifications, resulting in stably silenced genes and transposons. However, these mechanisms fail to explain how new methylation patterns are generated. In Arabidopsis, CLASSY3 (CLSY3) targets the RNA-directed DNA methylation (RdDM) machinery to different loci in reproductive tissues, generating distinct epigenomes via unknown mechanism(s). Here, we discovered that several different REPRODUCTIVE MERISTEM (REM) transcription factors are required for methylation at CLSY3 targets specific to male or female reproductive tissues. We designate these factors as REM INSTRUCT METHYLATION (RIMs) and demonstrate that disruption of their DNA binding domains, or the motifs they recognize, blocks RdDM. These findings not only reveal RIMs as the first sex-specific RdDM proteins but also establish a critical role for genetic information in targeting DNA methylation. This novel mode of targeting expands our understanding of how methylation is regulated to include inputs from both genetic and epigenetic information.
Collapse
|
2
|
Guerrero-Méndez C, Abraham-Juárez MJ. Factors specifying sex determination in maize. PLANT REPRODUCTION 2024; 37:171-178. [PMID: 37966579 PMCID: PMC11180155 DOI: 10.1007/s00497-023-00485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023]
Abstract
Plant architecture is an important feature for agronomic performance in crops. In maize, which is a monoecious plant, separation of floral organs to produce specific gametes has been studied from different perspectives including genetic, biochemical and physiological. Maize mutants affected in floral organ development have been key to identifying genes, hormones and other factors like miRNAs important for sex determination. In this review, we describe floral organ formation in maize, representative mutants and genes identified with a function in establishing sexual identity either classified as feminizing or masculinizing, and its relationship with hormones associated with sexual organ identity as jasmonic acid, brassinosteroid and gibberellin. Finally, we discuss the challenges and scopes of future research in maize sex determination.
Collapse
Affiliation(s)
- Cristina Guerrero-Méndez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821, Irapuato, Mexico
| | - María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821, Irapuato, Mexico.
| |
Collapse
|
3
|
Deans NC, Talbot JERB, Li M, Sáez-González C, Hövel I, Heavens D, Stam M, Hollick JB. Paramutation at the maize pl1 locus is associated with RdDM activity at distal tandem repeats. PLoS Genet 2024; 20:e1011296. [PMID: 38814980 PMCID: PMC11166354 DOI: 10.1371/journal.pgen.1011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/11/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Exceptions to Mendelian inheritance often highlight novel chromosomal behaviors. The maize Pl1-Rhoades allele conferring plant pigmentation can display inheritance patterns deviating from Mendelian expectations in a behavior known as paramutation. However, the chromosome features mediating such exceptions remain unknown. Here we show that small RNA production reflecting RNA polymerase IV function within a distal downstream set of five tandem repeats is coincident with meiotically-heritable repression of the Pl1-Rhoades transcription unit. A related pl1 haplotype with three, but not one with two, repeat units also displays the trans-homolog silencing typifying paramutations. 4C interactions, CHD3a-dependent small RNA profiles, nuclease sensitivity, and polyadenylated RNA levels highlight a repeat subregion having regulatory potential. Our comparative and mutant analyses show that transcriptional repression of Pl1-Rhoades correlates with 24-nucleotide RNA production and cytosine methylation at this subregion indicating the action of a specific DNA-dependent RNA polymerase complex. These findings support a working model in which pl1 paramutation depends on trans-chromosomal RNA-directed DNA methylation operating at a discrete cis-linked and copy-number-dependent transcriptional regulatory element.
Collapse
Affiliation(s)
- Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Joy-El R. B. Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Mowei Li
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Cristian Sáez-González
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Iris Hövel
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Jay B. Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
4
|
Xu D, Zeng L, Wang L, Yang DL. Rice requires a chromatin remodeler for Polymerase IV-small interfering RNA production and genomic immunity. PLANT PHYSIOLOGY 2024; 194:2149-2164. [PMID: 37992039 DOI: 10.1093/plphys/kiad624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Transgenes are often spontaneously silenced, which hinders the application of genetic modifications to crop breeding. While gene silencing has been extensively studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanism of transgene silencing remains elusive in crop plants. We used rice (Oryza sativa) plants silenced for a 35S::OsGA2ox1 (Gibberellin 2-oxidase 1) transgene to isolate five elements mountain (fem) mutants showing restoration of transgene expression. In this study, we isolated multiple fem2 mutants defective in a homolog of Required to Maintain Repression 1 (RMR1) of maize (Zea mays) and CLASSY (CLSY) of Arabidopsis. In addition to failing to maintain transgene silencing, as occurs in fem3, in which mutation occurs in NUCLEAR RNA POLYMERASE E1 (OsNRPE1), the fem2 mutant failed to establish transgene silencing of 35S::OsGA2ox1. Mutation in FEM2 eliminated all RNA POLYMERASE IV (Pol-IV)-FEM1/OsRDR2 (RNA-DEPENDENT RNA POLYMERASE 2)-dependent small interfering RNAs (siRNAs), reduced DNA methylation on genome-wide scale in rice seedlings, caused pleiotropic developmental defects, and increased disease resistance. Simultaneous mutation in 2 FEM2 homologous genes, FEM2-Like 1 (FEL1) and FEL2, however, did not affect DNA methylation and rice development and disease resistance. The predominant expression of FEM2 over FEL1 and FEL2 in various tissues was likely caused by epigenetic states. Overexpression of FEL1 but not FEL2 partially rescued hypomethylation of fem2, indicating that FEL1 maintains the cryptic function. In summary, FEM2 is essential for establishing and maintaining gene silencing; moreover, FEM2 is solely required for Pol IV-FEM1 siRNA biosynthesis and de novo DNA methylation.
Collapse
Affiliation(s)
- Dachao Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjun Zeng
- Institute of Crop Sciences, Yichun Academy of Sciences, Yichun, 336000 Jiangxi, China
| | - Lili Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Best N, Dilkes B. Genetic evidence that brassinosteroids suppress pistils in the maize tassel independent of the jasmonic acid pathway. PLANT DIRECT 2023; 7:e501. [PMID: 37440932 PMCID: PMC10333885 DOI: 10.1002/pld3.501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 07/15/2023]
Abstract
The developmental genetics of reproductive structure control in maize must consider both the staminate florets of the tassel and the pistillate florets of the ear synflorescences. Pistil abortion takes place in the tassel florets, and stamen arrest is affected in ear florets to give rise to the monoecious nature of maize. Gibberellin (GA) deficiency results in increased tillering, a dwarfed plant syndrome, and the retention of anthers in the ear florets of maize. The silkless1 mutant results in suppression of silks in the ear. We demonstrate in this study that jasmonic acid (JA) and GA act independently and show additive phenotypes resulting in androecious dwarf1;silkless1 double mutant plants. The persistence of pistils in the tassel can be induced by multiple mechanisms, including JA deficiency, GA excess, genetic control of floral determinacy, and organ identity. The silkless1 mutant can suppress both silks in the ear and the silks in the tassel of JA-deficient and AP2 transcription factor tasselseed mutants. We previously demonstrated that GA production was required for brassinosteroid (BR) deficiency to affect persistence of pistils in the tassel. We find that BR deficiency affects pistil persistence by an independent mechanism from the silkless1 mutant and JA pathway. The silkless1 mutant did not prevent the formation of pistils in the tassel by nana plant2 in double mutants. In addition, we demonstrate that there is more to the silkless1 mutant than just a suppression of pistil growth. We document novel phenotypes of silkless1 mutants including weakly penetrant ear fasciation and anther persistence in the ear florets. Thus, the JA/AP2 mechanism of pistil retention in the tassel and silk growth in the ear are similarly sensitive to loss of the SILKLESS1 protein, while the BR/GA mechanism is not.
Collapse
Affiliation(s)
- Norman Best
- Agriculture Research Service, Plant Genetics Research UnitUSDAColumbiaMissouriUSA
| | - Brian Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
6
|
Wang Y, Li Y, Zhang W, Yang Y, Ma Y, Li X, Meng D, Luo H, Xue W, Lv X, Li F, Du W, Geng X. BSA-Seq and Transcriptomic Analysis Provide Candidate Genes Associated with Inflorescence Architecture and Kernel Orientation by Phytohormone Homeostasis in Maize. Int J Mol Sci 2023; 24:10728. [PMID: 37445901 DOI: 10.3390/ijms241310728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The developmental plasticity of the maize inflorescence depends on meristems, which directly affect reproductive potential and yield. However, the molecular roles of upper floral meristem (UFM) and lower floral meristem (LFM) in inflorescence and kernel development have not been fully elucidated. In this study, we characterized the reversed kernel1 (rk1) novel mutant, which contains kernels with giant embryos but shows normal vegetative growth like the wild type (WT). Total RNA was extracted from the inflorescence at three stages for transcriptomic analysis. A total of 250.16-Gb clean reads were generated, and 26,248 unigenes were assembled and annotated. Gene ontology analyses of differentially expressed genes (DEGs) detected in the sexual organ formation stage revealed that cell differentiation, organ development, phytohormonal responses and carbohydrate metabolism were enriched. The DEGs associated with the regulation of phytohormone levels and signaling were mainly expressed, including auxin (IAA), jasmonic acid (JA), gibberellins (GA), and abscisic acid (ABA). The transcriptome, hormone evaluation and immunohistochemistry observation revealed that phytohormone homeostasis were affected in rk1. BSA-Seq and transcriptomic analysis also provide candidate genes to regulate UFM and LFM development. These results provide novel insights for understanding the regulatory mechanism of UFM and LFM development in maize and other plants.
Collapse
Affiliation(s)
- Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjie Zhang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Yang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Ma
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyang Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dexuan Meng
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haishan Luo
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Xue
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiangling Lv
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Fenghai Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaolin Geng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
8
|
Wang Y, Le BH, Wang J, You C, Zhao Y, Galli M, Xu Y, Gallavotti A, Eulgem T, Mo B, Chen X. ZMP recruits and excludes Pol IV-mediated DNA methylation in a site-specific manner. SCIENCE ADVANCES 2022; 8:eadc9454. [PMID: 36427317 PMCID: PMC9699677 DOI: 10.1126/sciadv.adc9454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In plants, RNA-directed DNA methylation (RdDM) uses small interfering RNAs (siRNAs) to target transposable elements (TEs) but usually avoids genes. RNA polymerase IV (Pol IV) shapes the landscape of DNA methylation through its pivotal role in siRNA biogenesis. However, how Pol IV is recruited to specific loci, particularly how it avoids genes, is poorly understood. Here, we identified a Pol IV-interacting protein, ZMP (zinc finger, mouse double-minute/switching complex B, Plus-3 protein), which exerts a dual role in regulating siRNA biogenesis and DNA methylation at specific genomic regions. ZMP is required for siRNA biogenesis at some pericentromeric regions and prevents Pol IV from targeting a subset of TEs and genes at euchromatic loci. As a chromatin-associated protein, ZMP prefers regions with depleted histone H3 lysine 4 (H3K4) methylation abutted by regions with H3K4 methylation, probably monitoring changes in local H3K4 methylation status to regulate Pol IV's chromatin occupancy. Our findings uncover a mechanism governing the specificity of RdDM.
Collapse
Affiliation(s)
- Yuan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Brandon H. Le
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jianqiang Wang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| | - Yonghui Zhao
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Ye Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Aubert J, Bellegarde F, Oltehua-Lopez O, Leblanc O, Arteaga-Vazquez MA, Martienssen RA, Grimanelli D. AGO104 is a RdDM effector of paramutation at the maize b1 locus. PLoS One 2022; 17:e0273695. [PMID: 36040902 PMCID: PMC9426929 DOI: 10.1371/journal.pone.0273695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.
Collapse
Affiliation(s)
- Juliette Aubert
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Fanny Bellegarde
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Olivier Leblanc
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, United States of America
| | - Daniel Grimanelli
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
- * E-mail:
| |
Collapse
|
10
|
Wang L, Zheng K, Zeng L, Xu D, Zhu T, Yin Y, Zhan H, Wu Y, Yang DL. Reinforcement of CHH methylation through RNA-directed DNA methylation ensures sexual reproduction in rice. PLANT PHYSIOLOGY 2022; 188:1189-1209. [PMID: 34791444 PMCID: PMC8825330 DOI: 10.1093/plphys/kiab531] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 05/23/2023]
Abstract
DNA methylation is an important epigenetic mark that regulates the expression of genes and transposons. RNA-directed DNA methylation (RdDM) is the main molecular pathway responsible for de novo DNA methylation in plants. Although the mechanism of RdDM has been well studied in Arabidopsis (Arabidopsis thaliana), most mutations in RdDM genes cause no remarkable developmental defects in Arabidopsis. Here, we isolated and cloned Five Elements Mountain 1 (FEM1), which encodes RNA-dependent RNA polymerase 2 (OsRDR2) in rice (Oryza sativa). Mutation in OsRDR2 abolished the accumulation of 24-nt small interfering RNAs, and consequently substantially decreased genome-wide CHH (H = A, C, or T) methylation. Moreover, male and female reproductive development was disturbed, which led to sterility in osrdr2 mutants. We discovered that OsRDR2-dependent DNA methylation may regulate the expression of multiple key genes involved in stamen development, meiosis, and pollen viability. In wild-type (WT) plants but not in osrdr2 mutants, genome-wide CHH methylation levels were greater in panicles, stamens, and pistils than in seedlings. The global increase of CHH methylation in reproductive organs of the WT was mainly explained by the enhancement of RdDM activity, which includes OsRDR2 activity. Our results, which revealed a global increase in CHH methylation through enhancement of RdDM activity in reproductive organs, suggest a crucial role for OsRDR2 in the sexual reproduction of rice.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kezhi Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjun Zeng
- Yichun Academy of Science, Yichun 336000, Jiangxi Province, China
| | - Dachao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yumeng Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - María Jazmín Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
12
|
Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022; 119:2115871119. [PMID: 34996873 PMCID: PMC8764674 DOI: 10.1073/pnas.2115871119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. The genes regulating this growth suppression and how they have evolved remain largely unknown. We discovered that two classic developmental genes with ancient roles in controlling vegetative branching were recruited to suppress carpel development in maize. Our results highlight the power of forward genetics to reveal unpredictable genetic interactions and hidden pleiotropy of developmental genes. More broadly, our findings illustrate how ancient gene functions are recruited to new developmental contexts in the evolution of plant form. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
|
13
|
Minow MAA, Lukens L, Rossi V, Colasanti J. Patterns of stability and change in the maize genome: a case study of small RNA transcriptomes in two recombinant inbred lines and their progenitors. Genome 2021; 65:1-12. [PMID: 34597524 DOI: 10.1139/gen-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small RNAs (sRNAs) are epigenetic regulators of eukaryotic genes and transposable elements (TEs). Diverse sRNA expression patterns exist within a species, but how this diversity arises is not well understood. To provide a window into the dynamics of maize sRNA patterning, sRNA and mRNA transcriptomes were examined in two related Zea mays recombinant inbred lines (RILs) and their inbred parents. Analysis of these RILs revealed that most clusters of sRNA expression retained the parental sRNA expression level. However, expression states that differ from the parental allele were also observed, predominantly reflecting decreases in sRNA expression. When RIL sRNA expression differed from the parental allele, the new state was frequently similar between the two RILs, and similar to the expression state found at the allele in the other parent. Novel sRNA expression patterns, distinct from those of either parent, were rare. Additionally, examination of sRNA expression over TEs revealed one TE family, Gyma, which showed consistent enrichment for RIL sRNA expression differences compared to those found in parental alleles. These findings provide insights into how sRNA silencing might evolve over generations and suggest that further investigation into the molecular nature of sRNA trans regulators is warranted.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lewis Lukens
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126 Bergamo, Italy
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
The effect of RNA polymerase V on 24-nt siRNA accumulation depends on DNA methylation contexts and histone modifications in rice. Proc Natl Acad Sci U S A 2021; 118:2100709118. [PMID: 34290143 DOI: 10.1073/pnas.2100709118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) functions in de novo methylation in CG, CHG, and CHH contexts. Here, we performed map-based cloning of OsNRPE1, which encodes the largest subunit of RNA polymerase V (Pol V), a key regulator of gene silencing and reproductive development in rice. We found that rice Pol V is required for CHH methylation on RdDM loci by transcribing long noncoding RNAs. Pol V influences the accumulation of 24-nucleotide small interfering RNAs (24-nt siRNAs) in a locus-specific manner. Biosynthesis of 24-nt siRNAs on loci with high CHH methylation levels and low CG and CHG methylation levels tends to depend on Pol V. In contrast, low methylation levels in the CHH context and high methylation levels in CG and CHG contexts predisposes 24-nt siRNA accumulation to be independent of Pol V. H3K9me1 and H3K9me2 tend to be enriched on Pol V-independent 24-nt siRNA loci, whereas various active histone modifications are enriched on Pol V-dependent 24-nt siRNA loci. DNA methylation is required for 24-nt siRNAs biosynthesis on Pol V-dependent loci but not on Pol V-independent loci. Our results reveal the function of rice Pol V for long noncoding RNA production, DNA methylation, 24-nt siRNA accumulation, and reproductive development.
Collapse
|
15
|
Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function. PLoS Genet 2020; 16:e1009243. [PMID: 33320854 PMCID: PMC7837471 DOI: 10.1371/journal.pgen.1009243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/26/2021] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process. Genes are switched “on” and “off” during normal development by regulating DNA accessibility within the chromosomes. How certain gene variants permanently maintain “off” states from one generation to the next remains unclear, but studies in multiple eukaryotes implicate roles for specific types of small RNAs, some of which define cytosine methylation patterns. In corn, these RNAs come from at least two RNA polymerase II-derived complexes sharing a common catalytic subunit (RPD1). Although RPD1 both controls the normal developmental switching of many genes and permanently maintains some of these “off” states across generations, how RPD1 function defines heritable DNA accessibility is unknown. We discovered that a protein (CHD3a) belonging to a group known to alter nucleosome positioning is also required to help maintain a heritable “off” state for one particular corn gene variant controlling both plant and flower color. We also found CHD3a necessary for normal plant development and sperm transmission consistent with the idea that proper nucleosome positioning defines evolutionarily-important gene expression patterns. Because both CHD3a and RPD1 maintain the heritable “off” state of a specific gene variant, their functions appear to be mechanistically linked.
Collapse
|
16
|
Xue L, Wu H, Chen Y, Li X, Hou J, Lu J, Wei S, Dai X, Olson MS, Liu J, Wang M, Charlesworth D, Yin T. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nat Commun 2020; 11:5893. [PMID: 33208755 PMCID: PMC7674411 DOI: 10.1038/s41467-020-19559-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Almost all plants in the genus Populus are dioecious (i.e. trees are either male or female), but it is unknown whether dioecy evolved in a common ancestor or independently in different subgenera. Here, we sequence the small peritelomeric X- and Y-linked regions of P. deltoides chromosome XIX. Two genes are present only in the Y-linked region. One is a duplication of a non-Y-linked, female-specifically expressed response regulator, which produces siRNAs that block this gene's expression, repressing femaleness. The other is an LTR/Gypsy transposable element family member, which generates long non-coding RNAs. Overexpression of this gene in A. thaliana promotes androecium development. We also find both genes in the sex-determining region of P. simonii, a different poplar subgenus, which suggests that they are both stable components of poplar sex-determining systems. By contrast, only the duplicated response regulator gene is present in the sex-linked regions of P. davidiana and P. tremula. Therefore, findings in our study suggest dioecy may have evolved independently in different poplar subgenera.
Collapse
Affiliation(s)
- Liangjiao Xue
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Huaitong Wu
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Yingnan Chen
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Xiaoping Li
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Jing Hou
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Jing Lu
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Suyun Wei
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Xiaogang Dai
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Mingxiu Wang
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Tongming Yin
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China.
| |
Collapse
|
17
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
18
|
Genome-Wide Identification and Coexpression Network Analysis of DNA Methylation Pathway Genes and Their Differentiated Functions in Ginkgo biloba L. FORESTS 2020. [DOI: 10.3390/f11101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA methylation plays a vital role in diverse biological processes. DNA methyltransferases (DNMTs) genes and RNA-directed DNA methylation (RdDM)-related genes are key genes responsible for establishing and maintaining genome DNA methylation in plants. In the present study, we systematically identified nine GbDNMTs in Ginkgo biloba, including the three common families of GbMET1a/1b, GbCMT2, and GbDRMa/b/2a/2b/2c, and a fourth family—GbDNMT3—which is absent in most angiosperms. We also identified twenty RdDM-related genes, including four GbDCLs, six GbAGOs, and ten GbRDRs. Expression analysis of the genes showed the different patterns of individual genes, and 15 of 29 genes displayed expression change under five types of abiotic stress. Gene coexpression analysis and weighted gene co-expression network analysis (WGCNA) using 126 public transcriptomic datasets revealed that these genes were clustered into two groups. In group I, genes covered members from all six families which were preferentially expressed in the ovulate strobile and fruit. A gene ontology (GO) enrichment analysis of WGCNA modules indicated that group I genes were most correlated with the biological process of cell proliferation. Group II only consisted of RdDM-related genes, including GbDRMs, GbAGOs, and GbRDRs, but no GbDCLs, and these genes were specifically expressed in the cambium, suggesting that they may function in a dicer-like (DCL)-independent RdDM pathway in specific tissues. The gene module related to group II was most enriched in signal transduction, cell communication, and the response to the stimulus. These results demonstrate that gene family members could be conserved or diverged across species, and multi-member families in the same pathway may cluster into different modules to function differentially. The study provides insight into the DNA methylation genes and their possible functions in G. biloba, laying a foundation for the further study of DNA methylation in gymnosperms.
Collapse
|
19
|
Zhang S, Wu XQ, Xie HT, Zhao SS, Wu JG. Multifaceted roles of RNA polymerase IV in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5725-5732. [PMID: 32969476 PMCID: PMC7541909 DOI: 10.1093/jxb/eraa346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discuss the latest findings on RNA polymerase IV (Pol IV) in plant growth and development, providing new insights and expanding on new ideas for further, more in-depth research on Pol IV.
Collapse
Affiliation(s)
- Shuai Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Qing Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Ting Xie
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan-Shan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Debladis E, Lee TF, Huang YJ, Lu JH, Mathioni SM, Carpentier MC, Llauro C, Pierron D, Mieulet D, Guiderdoni E, Chen PY, Meyers BC, Panaud O, Lasserre E. Construction and characterization of a knock-down RNA interference line of OsNRPD1 in rice ( Oryza sativa ssp japonica cv Nipponbare). Philos Trans R Soc Lond B Biol Sci 2020; 375:20190338. [PMID: 32075556 DOI: 10.1098/rstb.2019.0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM) is a silencing mechanism relying on the production of 24-nt small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) to trigger methylation and inactivation of transposable elements (TEs). We present the construction and characterization of osnrpd1, a knock-down RNA interference line of OsNRPD1 gene that encodes the largest subunit of Pol IV in rice (Oryza sativa ssp japonica cv Nipponbare). We show that osnrpd1 displays a lower accumulation of OsNRPD1 transcripts, associated with an overall reduction of 24-nt siRNAs and DNA methylation level in all three contexts, CG, CHG and CHH. We uncovered new insertions of known active TEs, the LTR retrotransposons Tos17 and Lullaby and the long interspersed nuclear element-type retrotransposon Karma. However, we did not observe any clear developmental phenotype, contrary to what was expected for a mutant severely affected in RdDM. In addition, despite the presence of many putatively functional TEs in the rice genome, we found no evidence of in planta global reactivation of transposition. This knock-down of OsNRPD1 likely led to a weakly affected line, with no effect on development and a limited effect on transposition. We discuss the possibility that a knock-out mutation of OsNRPD1 would cause sterility in rice. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Emilie Debladis
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | - Tzuu-Fen Lee
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Yan-Jiun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | - Christel Llauro
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | - Davy Pierron
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | | | | | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA.,Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Institut Universitaire de France, Paris, France
| | - Eric Lasserre
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
21
|
Khadka J, Yadav NS, Guy M, Grafi G, Golan-Goldhirsh A. Epigenetic aspects of floral homeotic genes in relation to sexual dimorphism in the dioecious plant Mercurialis annua. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6245-6259. [PMID: 31504768 PMCID: PMC6859717 DOI: 10.1093/jxb/erz379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/08/2019] [Indexed: 05/26/2023]
Abstract
In plants, dioecy characterizes species that carry male and female flowers on separate plants and it occurs in about 6% of angiosperms; however, the molecular mechanisms that underlie dioecy are essentially unknown. The ability for sex-reversal by hormone application raises the hypothesis that the genes required for the expression of both sexes are potentially functional but are regulated by epigenetic means. In this study, proteomic analysis of nuclear proteins isolated from flower buds of females, males, and feminized males of the dioecious plant Mercurialis annua revealed differential expression of nuclear proteins that are implicated in chromatin structure and function, including floral homeotic proteins. Focusing on floral genes, we found that class B genes were mainly expressed in male flowers, while class D genes, as well as SUPERMAN-like genes, were mainly expressed in female flowers. Cytokinin-induced feminization of male plants was associated with down-regulation of male-specific genes concomitantly with up-regulation of female-specific genes. No correlation was found between the expression of class B and D genes and the changes in DNA methylation or chromatin conformation of these genes. Thus, we could not confirm DNA methylation or chromatin conformation of floral genes to be the major determinant regulating sexual dimorphisms. Instead, determination of sex in M. annua might be controlled upstream of floral genes by one or more sex-specific factors that affect hormonal homeostasis. A comprehensive model is proposed for sex-determination in M. annua.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | | | - Micha Guy
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | | | | |
Collapse
|
22
|
Lunde C, Kimberlin A, Leiboff S, Koo AJ, Hake S. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun Biol 2019; 2:114. [PMID: 30937397 PMCID: PMC6433927 DOI: 10.1038/s42003-019-0354-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Maize is monecious, with separate male and female inflorescences. Maize flowers are initially bisexual but achieve separate sexual identities through organ arrest. Loss-of-function mutants in the jasmonic acid (JA) pathway have only female flowers due to failure to abort silks in the tassel. Tasselseed5 (Ts5) shares this phenotype but is dominant. Positional cloning and transcriptomics of tassels identified an ectopically expressed gene in the CYP94B subfamily, Ts5 (ZmCYP94B1). CYP94B enzymes are wound inducible and inactivate bioactive jasmonoyl-L-isoleucine (JA-Ile). Consistent with this result, tassels and wounded leaves of Ts5 mutants displayed lower JA and JA-lle precursors and higher 12OH-JA-lle product than the wild type. Furthermore, many wounding and jasmonate pathway genes were differentially expressed in Ts5 tassels. We propose that the Ts5 phenotype results from the interruption of JA signaling during sexual differentiation via the upregulation of ZmCYP94B1 and that its proper expression maintains maize monoecy.
Collapse
Affiliation(s)
- China Lunde
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Samuel Leiboff
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| | - Abraham J. Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Sarah Hake
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| |
Collapse
|
23
|
Zwirek M, Waugh R, McKim SM. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. THE NEW PHYTOLOGIST 2019; 221:1950-1965. [PMID: 30339269 PMCID: PMC6492131 DOI: 10.1111/nph.15548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/22/2018] [Indexed: 05/24/2023]
Abstract
Hordeum species develop a central spikelet flanked by two lateral spikelets at each inflorescence node. In 'two-rowed' spikes, the central spikelet alone is fertile and sets grain, while in 'six-rowed' spikes, lateral spikelets can also produce grain. Induced loss-of-function alleles of any of five Six-rowed spike (VRS) genes (VRS1-5) cause complete to intermediate gains of lateral spikelet fertility. Current six-row cultivars contain natural defective vrs1 and vrs5 alleles. Little information is known about VRS mechanism(s). We used comparative developmental, expression and genetic analyses on single and double vrs mutants to learn more about how VRS genes control development and assess their agronomic potential. We show that all VRS genes repress fertility at carpel and awn emergence in developing lateral spikelets. VRS4, VRS3 and VRS5 work through VRS1 to suppress fertility, probably by inducing VRS1 expression. Pairing vrs3, vrs4 or vrs5 alleles increased lateral spikelet fertility, despite the presence of a functional VRS1 allele. The vrs3 allele caused loss of spikelet identity and determinacy, improved grain homogeneity and increased tillering in a vrs4 background, while with vrs5, decreased tiller number and increased grain weight. Interactions amongst VRS genes control spikelet infertility, determinacy and outgrowth, and novel routes to improving six-row grain.
Collapse
Affiliation(s)
- Monika Zwirek
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Robbie Waugh
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Sarah M. McKim
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
24
|
Anderson SN, Zynda GJ, Song J, Han Z, Vaughn MW, Li Q, Springer NM. Subtle Perturbations of the Maize Methylome Reveal Genes and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation Pathways. G3 (BETHESDA, MD.) 2018; 8:1921-1932. [PMID: 29618467 PMCID: PMC5982821 DOI: 10.1534/g3.118.200284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
Abstract
DNA methylation is a chromatin modification that can provide epigenetic regulation of gene and transposon expression. Plants utilize several pathways to establish and maintain DNA methylation in specific sequence contexts. The chromomethylase (CMT) genes maintain CHG (where H = A, C or T) methylation. The RNA-directed DNA methylation (RdDM) pathway is important for CHH methylation. Transcriptome analysis was performed in a collection of Zea mays lines carrying mutant alleles for CMT or RdDM-associated genes. While the majority of the transcriptome was not affected, we identified sets of genes and transposon families sensitive to context-specific decreases in DNA methylation in mutant lines. Many of the genes that are up-regulated in CMT mutant lines have high levels of CHG methylation, while genes that are differentially expressed in RdDM mutants are enriched for having nearby mCHH islands, implicating context-specific DNA methylation in the regulation of expression for a small number of genes. Many genes regulated by CMTs exhibit natural variation for DNA methylation and transcript abundance in a panel of diverse inbred lines. Transposon families with differential expression in the mutant genotypes show few defining features, though several families up-regulated in RdDM mutants show enriched expression in endosperm tissue, highlighting the potential importance for this pathway during reproduction. Taken together, our findings suggest that while the number of genes and transposon families whose expression is reproducibly affected by mild perturbations in context-specific methylation is small, there are distinct patterns for loci impacted by RdDM and CMT mutants.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Gregory J Zynda
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
25
|
Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 PMCID: PMC5887141 DOI: 10.1534/genetics.117.300625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
|
26
|
Zhao Y, Zhang Y, Wang L, Wang X, Xu W, Gao X, Liu B. Mapping and Functional Analysis of a Maize Silkless Mutant sk-A7110. FRONTIERS IN PLANT SCIENCE 2018; 9:1227. [PMID: 30186299 PMCID: PMC6111845 DOI: 10.3389/fpls.2018.01227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/31/2018] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) stigma, which is commonly known as silk, is indispensable for reproduction and thus for grain yield. Here, we isolated a spontaneous mutant sk-A7110, which completely lacks silk; scanning electron microscopy showed that the sk-A7110 pistils degenerated during late floret differentiation. Genetic analysis confirmed that this trait was controlled by a recessive nuclear gene and sk-A7110 was mapped to a 74.13-kb region on chromosome 2 between the simple sequence repeat markers LA714 and L277. Sequence analysis of candidate genes in this interval identified a single-nucleotide insertion at position 569 downstream of the transcriptional start site in Zm00001d002970, which encodes a UDP-glycosyltransferase; this insertion produces a frameshift and premature translational termination. RNA-sequencing analysis of young ears identified 258 differentially expressed genes (DEGs) between sk-A7110 and the wild type (WT), including 119 up- and 139 down-regulated genes. Interestingly, most DEGs related to jasmonic acid (JA) synthesis were up-regulated in the mutant compared to WT. Consistent with this, the JA and JA-Isoleucine (JA-Ile) contents were significantly higher in sk-A7110 ears than in WT. At the same time, RNA-sequencing analysis of tassels showed that sk-A7110 could reduce the number of tassel branches in maize by down-regulating the expression of UB2 and UB3 genes. Our identification of the sk-A7110 mutant and the responsible gene will facilitate further studies on female infertility research or maize breeding.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongzhong Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lijing Wang
- Agricultural Technology Promotion Center of Yanzhou, Jining, China
| | - Xueran Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wei Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xianyu Gao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Baoshen Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Baoshen Liu,
| |
Collapse
|
27
|
Forestan C, Farinati S, Aiese Cigliano R, Lunardon A, Sanseverino W, Varotto S. Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription. BMC PLANT BIOLOGY 2017; 17:161. [PMID: 29025411 PMCID: PMC5639751 DOI: 10.1186/s12870-017-1108-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. RESULTS In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. CONCLUSIONS This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Alice Lunardon
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
- Present Address: Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, PA 16802 USA
| | | | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| |
Collapse
|
28
|
Cho J, Paszkowski J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge. eLife 2017; 6:e30038. [PMID: 28847366 PMCID: PMC5599236 DOI: 10.7554/elife.30038] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.
Collapse
Affiliation(s)
- Jungnam Cho
- The Sainsbury Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
29
|
Cho J, Paszkowski J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge. eLife 2017; 6:30038. [PMID: 28847366 DOI: 10.7554/elife.30038.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/21/2017] [Indexed: 05/23/2023] Open
Abstract
It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.
Collapse
Affiliation(s)
- Jungnam Cho
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Latrasse D, Rodriguez-Granados NY, Veluchamy A, Mariappan KG, Bevilacqua C, Crapart N, Camps C, Sommard V, Raynaud C, Dogimont C, Boualem A, Benhamed M, Bendahmane A. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenetics Chromatin 2017; 10:22. [PMID: 28592995 PMCID: PMC5460419 DOI: 10.1186/s13072-017-0132-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Melon (Cucumis melo) is an important vegetable crop from the Cucurbitaceae family and a reference model specie for sex determination, fruit ripening and vascular fluxes studies. Nevertheless, the nature and role of its epigenome in gene expression regulation and more specifically in sex determination remains largely unknown. RESULTS We have investigated genome wide H3K27me3 and H3K9ac histone modifications and gene expression dynamics, in five melon organs. H3K9ac and H3K27me3 were mainly distributed along gene-rich regions and constrained to gene bodies. H3K9ac was preferentially located at the TSS, whereas H3K27me3 distributed uniformly from TSS to TES. As observed in other species, H3K9ac and H3K27me3 correlated with high and low gene expression levels, respectively. Comparative analyses of unisexual flowers pointed out sex-specific epigenetic states of TFs involved in ethylene response and flower development. Chip-qPCR analysis of laser dissected carpel and stamina primordia, revealed sex-specific histone modification of MADS-box genes. Using sex transition mutants, we demonstrated that the female promoting gene, CmACS11, represses the expression of the male promoting gene CmWIP1 via deposition of H3K27me3. CONCLUSIONS Our findings reveal the organ-specific landscapes of H3K9ac and H3K27me3 in melon. Our results also provide evidence that the sex determination genes recruit histone modifiers to orchestrate unisexual flower development in monoecious species.
Collapse
Affiliation(s)
- David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Natalia Y. Rodriguez-Granados
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Kiruthiga Gayathri Mariappan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Claudia Bevilacqua
- UMR 1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - Nicolas Crapart
- UMR 1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - Celine Camps
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Vivien Sommard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Catherine Dogimont
- UR 1052, Unité de Génétique et d’Amélioration des Fruits et Légumes, INRA, BP94, 84143 Montfavet, France
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| |
Collapse
|
31
|
Epigenetic Control of Gene Expression in Maize. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 328:25-48. [DOI: 10.1016/bs.ircmb.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Li Q, Liu B. Genetic regulation of maize flower development and sex determination. PLANTA 2017; 245:1-14. [PMID: 27770199 DOI: 10.1007/s00425-016-2607-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 10/14/2016] [Indexed: 05/23/2023]
Abstract
The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.
Collapse
Affiliation(s)
- Qinglin Li
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| |
Collapse
|
33
|
Smith AR, Zhao D. Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains. FRONTIERS IN PLANT SCIENCE 2016; 7:1503. [PMID: 27790226 PMCID: PMC5064672 DOI: 10.3389/fpls.2016.01503] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Natural floral organ degeneration or abortion results in unisexual or fully sterile flowers, while abiotic stresses lead to sterility after initiation of floral reproductive organs. Since normal flower development is essential for plant sexual reproduction and crop yield, it is imperative to have a better understanding of plant sterility under regular and stress conditions. Here, we review the functions of ABC genes together with their downstream genes in floral organ degeneration and the formation of unisexual flowers in Arabidopsis and several agriculturally significant cereal grains. We further explore the roles of hormones, including auxin, brassinosteroids, jasmonic acid, gibberellic acid, and ethylene, in floral organ formation and fertility. We show that alterations in genes affecting hormone biosynthesis, hormone transport and perception cause loss of stamens/carpels, abnormal floral organ development, poor pollen production, which consequently result in unisexual flowers and male/female sterility. Moreover, abiotic stresses, such as heat, cold, and drought, commonly affect floral organ development and fertility. Sterility is induced by abiotic stresses mostly in male floral organ development, particularly during meiosis, tapetum development, anthesis, dehiscence, and fertilization. A variety of genes including those involved in heat shock, hormone signaling, cold tolerance, metabolisms of starch and sucrose, meiosis, and tapetum development are essential for plants to maintain normal fertility under abiotic stress conditions. Further elucidation of cellular, biochemical, and molecular mechanisms about regulation of fertility will improve yield and quality for many agriculturally valuable crops.
Collapse
Affiliation(s)
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, MilwaukeeWI, USA
| |
Collapse
|
34
|
Sobral R, Silva HG, Morais-Cecílio L, Costa MMR. The Quest for Molecular Regulation Underlying Unisexual Flower Development. FRONTIERS IN PLANT SCIENCE 2016; 7:160. [PMID: 26925078 PMCID: PMC4759290 DOI: 10.3389/fpls.2016.00160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/30/2016] [Indexed: 05/16/2023]
Abstract
The understanding of the molecular mechanisms responsible for the making of a unisexual flower has been a long-standing quest in plant biology. Plants with male and female flowers can be divided mainly into two categories: dioecious and monoecious, and both sexual systems co-exist in nature in ca of 10% of the angiosperms. The establishment of male and female traits has been extensively described in a hermaphroditic flower and requires the interplay of networks, directly and indirectly related to the floral organ identity genes including hormonal regulators, transcription factors, microRNAs, and chromatin-modifying proteins. Recent transcriptomic studies have been uncovering the molecular processes underlying the establishment of unisexual flowers and there are many parallelisms between monoecious, dioecious, and hermaphroditic individuals. Here, we review the paper entitled "Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber" published in 2014 in the Frontiers of Plant Science (volume 5 |Article 599) and discussed it in the context of recent studies with other dioecious and monoecious plants that utilized high-throughput platforms to obtain transcriptomic profiles of male and female unisexual flowers. In some unisexual flowers, the developmental programs that control organ initiation fail and male or female organs do not form, whereas in other species, organ initiation and development occur but they abort or arrest during different species-specific stages of differentiation. Therefore, a direct comparison of the pathways responsible for the establishment of unisexual flowers in different species are likely to reveal conserved modules of gene regulatory hubs involved in stamen or carpel development, as well as differences that reflect the different stages of development in which male and/or female organ arrest or loss-of-function occurs.
Collapse
Affiliation(s)
- Rómulo Sobral
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Helena G. Silva
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Leonor Morais-Cecílio
- Departamento de Recursos Naturais Ambiente e Território, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Maria M. R. Costa
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| |
Collapse
|
35
|
Du S, Sang Y, Liu X, Xing S, Li J, Tang H, Sun L. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L. FRONTIERS IN PLANT SCIENCE 2016; 7:871. [PMID: 27379148 PMCID: PMC4910463 DOI: 10.3389/fpls.2016.00871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/02/2016] [Indexed: 05/21/2023]
Abstract
In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.
Collapse
|
36
|
Klein-Cosson C, Chambrier P, Rogowsky PM, Vernoud V. Regulation of a maize HD-ZIP IV transcription factor by a non-conventional RDR2-dependent small RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:747-758. [PMID: 25619590 DOI: 10.1111/tpj.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Small non-coding RNAs are versatile riboregulators that control gene expression at the transcriptional or post-transcriptional level, governing many facets of plant development. Here we present evidence for the existence of a 24 nt small RNA (named small1) that is complementary to the 3' UTR of OCL1 (Outer Cell Layer1), the founding member of the maize HD-ZIP IV gene family encoding plant-specific transcription factors that are mainly involved in epidermis differentiation and specialization. The biogenesis of small1 depends on DICER-like 3 (DCL3), RNA-dependent RNA polymerase 2 (RDR2) and RNA polymerase IV, components that are usually required for RNA-dependent DNA-methylation. Unexpectedly, GFP sensor experiments in transient and stable transformation systems revealed that small1 may regulate its target at the post-transcriptional level, mainly through translational repression. This translational repression is attenuated in an rdr2 mutant background in which small1 does not accumulate. Our experiments further showed the possible involvement of a secondary stem-loop structure present in the 3' UTR of OCL1 for efficient target repression, suggesting the existence of several regulatory mechanisms affecting OCL1 mRNA stability and translation.
Collapse
Affiliation(s)
- Catherine Klein-Cosson
- Unité Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, F-69364, Lyon, France; Institut National de la Recherche Agronomique, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France; Centre National de la Recherche Scientifique, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | | | | | | |
Collapse
|
37
|
Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 2015; 199:1107-25. [PMID: 25653306 DOI: 10.1534/genetics.115.174714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.
Collapse
|
38
|
Aryal R, Ming R. Sex determination in flowering plants: papaya as a model system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:56-62. [PMID: 24467896 DOI: 10.1016/j.plantsci.2013.10.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 05/23/2023]
Abstract
Unisexuality in flowering plants evolved from a hermaphrodite ancestor. Transition from hermaphrodite to unisexual flowers has occurred multiple times across the different lineages of the angiosperms. Sexuality in plants is regulated by genetic, epigenetic and physiological mechanisms. The most specialized mechanism of sex determination is sex chromosomes. The sex chromosomes ensure the stable segregation of sexual phenotypes by preventing the recombination of sex determining genes. Despite continuous efforts, sex determining genes of dioecious plants have not yet been cloned. Concerted efforts with various model systems are necessary to understand the complex mechanism of sex determination in plants. Papaya (Carica papaya L.) is a tropical fruit tree with three sex forms, male, hermaphrodite, and female. Sexuality in papaya is determined by an XY chromosome system that is in an early evolutionary stage. The male and hermaphrodite of papaya are controlled by two different types of Y chromosomes: Y and Y(h). Large amounts of information in the area of genetics, genomics, and epigenetics of papaya have been accumulated over the last few decades. Relatively short lifecycle, small genome size, and readily available genetic and genomic resources render papaya an excellent model system to study sex determination and sex chromosomes in flowering plants.
Collapse
Affiliation(s)
- Rishi Aryal
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
39
|
McKeown PC, Spillane C. Landscaping plant epigenetics. Methods Mol Biol 2014; 1112:1-24. [PMID: 24478004 DOI: 10.1007/978-1-62703-773-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.
Collapse
Affiliation(s)
- Peter C McKeown
- Genetics & Biotechnology Lab, Plant & Agribiosciences Centre (PABC), School of Natural Sciences, National University of Ireland, Galway (NUI Galway), Ireland
| | | |
Collapse
|
40
|
Erhard KF, Parkinson SE, Gross SM, Barbour JER, Lim JP, Hollick JB. Maize RNA polymerase IV defines trans-generational epigenetic variation. THE PLANT CELL 2013; 25:808-19. [PMID: 23512852 PMCID: PMC3634690 DOI: 10.1105/tpc.112.107680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays) RNA Polymerase IV (Pol IV) largest subunit, RNA Polymerase D1 (RPD1 or NRPD1), is required for facilitating paramutations, restricting expression patterns of genes required for normal development, and generating small interfering RNA (siRNAs). Despite this expanded role for maize Pol IV relative to Arabidopsis thaliana, neither the general characteristics of Pol IV-regulated haplotypes, nor their prevalence, are known. Here, we show that specific haplotypes of the purple plant1 locus, encoding an anthocyanin pigment regulator, acquire and retain an expanded expression domain following transmission from siRNA biogenesis mutants. This conditioned expression pattern is progressively enhanced over generations in Pol IV mutants and then remains heritable after restoration of Pol IV function. This unusual genetic behavior is associated with promoter-proximal transposon fragments but is independent of sequences required for paramutation. These results indicate that trans-generational Pol IV action defines the expression patterns of haplotypes using co-opted transposon-derived sequences as regulatory elements. Our results provide a molecular framework for the concept that induced changes to the heterochromatic component of the genome are coincident with heritable changes in gene regulation. Alterations of this Pol IV-based regulatory system can generate potentially desirable and adaptive traits for selection to act upon.
Collapse
Affiliation(s)
- Karl F. Erhard
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Susan E. Parkinson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Stephen M. Gross
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Joy-El R. Barbour
- Department of Molecular Cell Biology, University of California, Berkeley, California 94720-3200
| | - Jana P. Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Jay B. Hollick
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Address correspondence to
| |
Collapse
|
41
|
Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn 2013; 242:360-70. [PMID: 23335256 DOI: 10.1002/dvdy.23924] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 01/22/2023] Open
Abstract
Epigenetics is commonly defined as the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. The three major epigenetic mechanisms for gene expression regulation include DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms provide organisms with the ability to integrate genomic and environmental information to modify the activity of their genes for generating a particular phenotype. During development, cells differentiate, acquire, and maintain identity through changes in gene expression. This is crucial for sex determination and differentiation, which are among the most important developmental processes for the proper functioning and perpetuation of species. This review summarizes studies showing how epigenetic regulatory mechanisms contribute to sex determination and reproductive organ formation in plants, invertebrates, and vertebrates. Further progress will be made by integrating several approaches, including genomics and Next Generation Sequencing to create epigenetic maps related to different aspects of sex determination and gonadogenesis. Epigenetics will also contribute to understand the etiology of several disorders of sexual development. It also might play a significant role in the control of reproduction in animal farm production and will aid in recognizing the environmental versus genetic influences on sex determination of sensitive species in a global change scenario.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
42
|
Lempe J, Lachowiec J, Sullivan AM, Queitsch C. Molecular mechanisms of robustness in plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:62-9. [PMID: 23279801 PMCID: PMC3577948 DOI: 10.1016/j.pbi.2012.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 05/18/2023]
Abstract
Robustness, the ability of organisms to buffer phenotypes against perturbations, has drawn renewed interest among developmental biologists and geneticists. A growing body of research supports an important role of robustness in the genotype to phenotype translation, with far-reaching implications for evolutionary processes and disease susceptibility. Similar to animals and fungi, plant robustness is a function of genetic network architecture. Most perturbations are buffered; however, perturbation of network hubs destabilizes many traits. Here, we review recent advances in identifying molecular robustness mechanisms in plants that have been enabled by a combination of classical genetics and population genetics with genome-scale data.
Collapse
Affiliation(s)
- Janne Lempe
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
43
|
Hollick JB. Paramutation: a trans-homolog interaction affecting heritable gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:536-543. [PMID: 23017240 DOI: 10.1016/j.pbi.2012.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Paramutation describes both the process and results of trans-sensing between chromosomes that causes specific heritable changes in gene regulation. RNA molecules are implicated in mediating similar events in maize, mouse, and Drosophila. Changes in both small RNA profiles and cytosine methylation patterns in Arabidopsis hybrids represent a potential molecular equivalent to the interactions responsible for paramutations. Despite a seemingly unifying feature of RNA-directed changes, both recent and historical works show that paramutations in maize require plant-specific proteins and lack expected hallmarks of a trans-effect mediated solely by RNAs. Recent examples of nearby transposons affecting RNA polymerase II functions lead to an opinion that paramutations represent an emergent property of the transcriptional dynamics ongoing in plant genomes between repetitious features and nearby genes.
Collapse
Affiliation(s)
- Jay B Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Tricker PJ, Gibbings JG, Rodríguez López CM, Hadley P, Wilkinson MJ. Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3799-813. [PMID: 22442411 PMCID: PMC3733579 DOI: 10.1093/jxb/ers076] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 05/18/2023]
Abstract
Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana 'Landsberg erecta' plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant's resilience to fluctuating relative humidity.
Collapse
Affiliation(s)
- Penny J. Tricker
- School of Biological Sciences, Philip Lyle Building, University of Reading, Whiteknights, Reading RG6 6BX, UK
| | - J. George Gibbings
- School of Biological Sciences, Philip Lyle Building, University of Reading, Whiteknights, Reading RG6 6BX, UK
| | - Carlos M. Rodríguez López
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, University of Aberystwyth, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Paul Hadley
- School of Biological Sciences, Philip Lyle Building, University of Reading, Whiteknights, Reading RG6 6BX, UK
| | - Mike J. Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, University of Aberystwyth, Aberystwyth, Ceredigion SY23 3DA, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Adam H, Collin M, Richaud F, Beulé T, Cros D, Omoré A, Nodichao L, Nouy B, Tregear JW. Environmental regulation of sex determination in oil palm: current knowledge and insights from other species. ANNALS OF BOTANY 2011; 108:1529-37. [PMID: 21712294 PMCID: PMC3219494 DOI: 10.1093/aob/mcr151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/07/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND The African oil palm (Elaeis guineensis) is a monoecious species of the palm subfamily Arecoideae. It may be qualified as 'temporally dioecious' in that it produces functionally unisexual male and female inflorescences in an alternating cycle on the same plant, resulting in an allogamous mode of reproduction. The 'sex ratio' of an oil palm stand is influenced by both genetic and environmental factors. In particular, the enhancement of male inflorescence production in response to water stress has been well documented. SCOPE This paper presents a review of our current understanding of the sex determination process in oil palm and discusses possible insights that can be gained from other species. Although some informative phenological studies have been carried out, nothing is as yet known about the genetic basis of sex determination in oil palm, nor the mechanisms by which this process is regulated. Nevertheless new genomics-based techniques, when combined with field studies and biochemical and molecular cytological-based approaches, should provide a new understanding of the complex processes governing oil palm sex determination in the foreseeable future. Current hypotheses and strategies for future research are discussed.
Collapse
Affiliation(s)
| | | | - Frédérique Richaud
- CIRAD, IRD/CIRAD Palm Developmental Biology Group, UMR DIADE, Centre IRD, 911 avenue Agropolis, 34394 Montpellier, France
| | - Thierry Beulé
- CIRAD, IRD/CIRAD Palm Developmental Biology Group, UMR DIADE, Centre IRD, 911 avenue Agropolis, 34394 Montpellier, France
| | | | | | | | - Bruno Nouy
- PalmElit SAS, Parc Agropolis Bt. 14, 2214 Boulevard de la Lironde, 34980 Montferrier sur Lez, France
| | | |
Collapse
|
46
|
Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 2011; 7:e1002383. [PMID: 22125498 PMCID: PMC3219606 DOI: 10.1371/journal.pgen.1002383] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022] Open
Abstract
We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects. Genetic architecture is of broad interest in evolutionary biology, plant and animal breeding, and medicine, because it influences both the response to selection and the success of trait mapping. Results from the most rigorously studied genetic systems suggest a similar genetic architecture across all species and traits studied, with many loci of small effect. A few strongly selected traits in domesticated organisms show unusual genetic architecture, for reasons that are unclear. We compare maize inflorescence, flowering, and leaf traits and show that inflorescence traits have distinct genetic architectures characterized by larger effects. Female inflorescences (ears) have larger effects than male inflorescences (tassels) even though the two structures have similar developmental origins. Analysis of pleiotropic loci shows that these larger effects are not inherent features of the underlying polymorphisms. Rather, maize inflorescences appear to be exceptionally labile, with female inflorescences more labile than male inflorescences. These results support the canalization hypothesis, which predicts that rapidly changing traits will have larger effects. We suggest that maize inflorescence traits, and ear traits in particular, have larger effects than flowering or leaf traits as a result of strong directional selection during maize domestication.
Collapse
Affiliation(s)
- Patrick J. Brown
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (PJ Brown); (TR Rocheford)
| | - Narasimham Upadyayula
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Gregory S. Mahone
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Feng Tian
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Peter J. Bradbury
- United States Department of Agriculture – Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Sean Myles
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - James B. Holland
- United States Department of Agriculture – Agricultural Research Service and Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sherry Flint-Garcia
- United States Department of Agriculture – Agricultural Research Service and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Michael D. McMullen
- United States Department of Agriculture – Agricultural Research Service and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture – Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Torbert R. Rocheford
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (PJ Brown); (TR Rocheford)
| |
Collapse
|
47
|
Identification of epigenetic regulators of a transcriptionally silenced transgene in maize. G3-GENES GENOMES GENETICS 2011; 1:75-83. [PMID: 22384320 PMCID: PMC3276119 DOI: 10.1534/g3.111.000232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/17/2011] [Indexed: 01/12/2023]
Abstract
Transcriptional gene silencing is a gene regulatory mechanism essential to all organisms. Many transcriptional regulatory mechanisms are associated with epigenetic modifications such as changes in chromatin structure, acetylation and methylation of core histone proteins, and DNA methylation within regulatory regions of endogenous genes and transgenes. Although several maize mutants have been identified from prior forward genetic screens for epigenetic transcriptional silencing, these screens have been far from saturated. Herein, the transcriptionally silent b1 genomic transgene (BTG-silent), a stable, epigenetically silenced transgene in Zea mays (maize), is demonstrated to be an effective phenotype for a forward genetic screen. When the transgene is reactivated, a dark purple plant phenotype is evident because the B1 transcription factor activates anthocyanin biosynthesis, making loss of silencing mutants easy to identify. Using BTG-silent, ten new putative mutants were identified and named transgene reactivated1 through 11 (tgr1-6 and tgr8-11). Three of these mutants have been examined in more detail, and molecular and genetic assays demonstrated that these mutants have both distinct and overlapping phenotypes with previously identified maize mutants that relieve epigenetic transcriptional silencing. Linkage analysis suggests that tgr2 and tgr3 do not correspond to a mutation at previously identified maize loci resulting from other forward genetic screens, while tgr1 shows linkage to a characterized gene. These results suggest that the mutants are a valuable resource for future studies because some of the mutants are likely to reveal genes that encode products required for epigenetic gene regulation in maize but are not currently represented by sequenced mutations.
Collapse
|
48
|
Simon SA, Meyers BC. Small RNA-mediated epigenetic modifications in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:148-55. [PMID: 21159545 DOI: 10.1016/j.pbi.2010.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 05/21/2023]
Abstract
Epigenetic modifications in plants can be directed and mediated by small RNAs (sRNAs). This regulation is composed of a highly interactive network of sRNA-directed DNA methylation, histone, and chromatin modifications, all of which control transcription. Identification and functional characterization of components of the siRNA-directed DNA methylation pathway have provided insights into epigenetic pathways that form heterochromatin and into chromatin-based pathways for gene silencing, paramutation, genetic imprinting, and epigenetic reprogramming. Next-generation sequencing technologies have facilitated new discoveries and have helped create a basic blueprint of the plant epigenome. As the multiple layers of epigenetic regulation in plants are dissected, a more comprehensive understanding of the biological importance of epigenetic marks and states has been developed.
Collapse
Affiliation(s)
- Stacey A Simon
- Department of Plant and Soil Sciences & Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
49
|
Erhard KF, Hollick JB. Paramutation: a process for acquiring trans-generational regulatory states. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:210-216. [PMID: 21420347 DOI: 10.1016/j.pbi.2011.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/14/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
Basic tenets of Mendelian inheritance are violated by paramutations in which trans-homolog interactions lead to heritable changes in gene regulation and phenotype. First described in plants, similar behaviors have now been noted in diverse eukaryotes. Genetic and molecular studies of paramutations occurring in maize indicate that components of a small interfering RNA (siRNA) biogenesis pathway are required for the maintenance of meiotically heritable regulatory states. Although these findings lead to a hypothesis that siRNAs themselves mediate paramutation interactions, an assessment of existing data supports the opinion that siRNAs alone are insufficient. Recent evidence implies that transcription of paramutation-associated repeats and siRNA-facilitated chromatin changes at affected loci are involved in directing and maintaining the heritable changes in gene regulation that typify paramutations.
Collapse
Affiliation(s)
- Karl F Erhard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
50
|
Abstract
DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review.
Collapse
Affiliation(s)
- Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Taiping Chen
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Jian-Kang Zhu
- Plant Stress Genomics Research Center, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Horticulture and Landscape Architecture Department, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|