1
|
Syed ZA, Gomez RA, Borziak K, Asif A, Cong AS, O'Grady PM, Kim BY, Suvorov A, Petrov DA, Lüpold S, Wengert P, McDonough-Goldstein C, Ahmed-Braimah YH, Dorus S, Pitnick S. Genomics of a sexually selected sperm ornament and female preference in Drosophila. Nat Ecol Evol 2025; 9:336-348. [PMID: 39578595 DOI: 10.1038/s41559-024-02587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Our understanding of animal ornaments and the mating preferences driving their exaggeration is limited by knowledge of their genetics. Post-copulatory sexual selection is credited with the rapid evolution of female sperm-storage organ morphology and corresponding sperm quality traits across diverse taxa. In Drosophila, the mechanisms by which longer flagella convey an advantage in the competition among sperm for limited storage space in the female, and by which female sperm-storage organ morphology biases fertilization in favour of longer sperm have been resolved. However, the evolutionary genetics underlying this model post-copulatory ornament and preference system have remained elusive. Here we combined comparative analyses of 149 Drosophila species, a genome-wide association study in Drosophila melanogaster and molecular evolutionary analysis of ~9,400 genes to elucidate how sperm and female sperm-storage organ length co-evolved into one of nature's most extreme ornaments and preferences. Our results reveal a diverse repertoire of pleiotropic genes linking sperm length and seminal receptacle length expression to central nervous system development and sensory biology. Sperm length development appears condition-dependent and is governed by conserved hormonal (insulin/insulin-like growth factor) and developmental (including Notch and Fruitless) pathways. Central developmental pathway genes, including Notch, also comprised the majority of a restricted set of genes contributing to both intraspecific and interspecific variation in sperm length. Our findings support 'good genes' models of female preference evolution.
Collapse
Affiliation(s)
- Zeeshan A Syed
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| | - R Antonio Gomez
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Amaar Asif
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Abelard S Cong
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | | | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Peter Wengert
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | | | - Yasir H Ahmed-Braimah
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
2
|
Mo WZ, Li ZM, Deng XM, Chen AL, Ritchie MG, Yang DJ, He ZB, Toda MJ, Wen SY. Divergence and correlated evolution of male wing spot and courtship display between Drosophila nepalensis and D. trilutea. INSECT SCIENCE 2022; 29:1445-1460. [PMID: 34939317 DOI: 10.1111/1744-7917.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Male-specific wing spots are usually associated with wing displays in the courtship behavior of Drosophila and may play important roles in sexual selection. Two closely related species, D. nepalensis and D. trilutea, differ in wing spots and scissoring behavior. Here, we compare male morphological characters, pigmentation intensity of male wing spots, wing-scissoring behavior, courtship songs, and reproductive isolation between 2 species. F1 fertile females and sterile males result from the cross between females of D. nepalensis and males of D. trilutea. The pigmentation of wing spots is significantly weaker in D. trilutea than in D. nepalensis and the F1 hybrid. Males scissor both wings in front of the female during courtship, with a posture spreading wings more widely, and at a faster frequency in D. nepalensis than in D. trilutea and the F1s. Males of D. trilutea vibrate wings to produce 2 types (A and B) of pulse songs, whereas D. nepalensis and the F1s sing only type B songs. The incidence of wing vibration and scissoring during courtship suggests that wing vibration is essential but scissoring is a facultative courtship element for successful mating in both species. The association between the darker wing spots with more elaborate scissoring might be the consequence of correlated evolution of these traits in D. nepalensis; however, D. trilutea retains wing scissoring during courtship despite having weaker pigmentation of wing spots. The genetic architecture of 2 traits differs in the F1s, consistent with maternal or sex-linked effects for spots but nonadditive effects for scissoring.
Collapse
Affiliation(s)
- Wen-Zhou Mo
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhuo-Miao Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiang-Mei Deng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ai-Li Chen
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | | | - De-Jun Yang
- Acoustics Laboratory, Guangdong Institute of Metrology, South China National Centre of Metrology, Guangzhou, China
| | - Zhuo-Bin He
- Acoustics Laboratory, Guangdong Institute of Metrology, South China National Centre of Metrology, Guangzhou, China
| | | | - Shuo-Yang Wen
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Gao JJ, Barmina O, Thompson A, Kim BY, Suvorov A, Tanaka K, Watabe H, Toda MJ, Chen JM, Katoh TK, Kopp A. Secondary reversion to sexual monomorphism associated with tissue-specific loss of doublesex expression. Evolution 2022; 76:2089-2104. [PMID: 35841603 DOI: 10.1111/evo.14564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023]
Abstract
Animal evolution is characterized by frequent turnover of sexually dimorphic traits-new sex-specific characters are gained, and some ancestral sex-specific characters are lost, in many lineages. In insects, sexual differentiation is predominantly cell autonomous and depends on the expression of the doublesex (dsx) transcription factor. In most cases, cells that transcribe dsx have the potential to undergo sex-specific differentiation, while those that lack dsx expression do not. Consistent with this mode of development, comparative research has shown that the origin of new sex-specific traits can be associated with the origin of new spatial domains of dsx expression. In this report, we examine the opposite situation-a secondary loss of the sex comb, a male-specific grasping structure that develops on the front legs of some drosophilid species. We show that while the origin of the sex comb is linked to an evolutionary gain of dsx expression in the leg, sex comb loss in a newly identified species of Lordiphosa (Drosophilidae) is associated with a secondary loss of dsx expression. We discuss how the developmental control of sexual dimorphism affects the mechanisms by which sex-specific traits can evolve.
Collapse
Affiliation(s)
- Jian-Jun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, China.,State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, China
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kohtaro Tanaka
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Hideaki Watabe
- The Hokkaido University Museum, Kita-10, Nishi-8, Kitaku, Sapporo, 060-0810, Japan
| | - Masanori J Toda
- The Hokkaido University Museum, Kita-10, Nishi-8, Kitaku, Sapporo, 060-0810, Japan
| | - Ji-Min Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, China
| | - Takehiro K Katoh
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, China
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Different transcriptional responses by the CRISPRa system in distinct types of heterochromatin in Drosophila melanogaster. Sci Rep 2022; 12:11702. [PMID: 35810197 PMCID: PMC9271074 DOI: 10.1038/s41598-022-15944-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Transcription factors (TFs) activate gene expression by binding to elements close to promoters or enhancers. Some TFs can bind to heterochromatic regions to initiate gene activation, suggesting that if a TF is able to bind to any type of heterochromatin, it can activate transcription. To investigate this possibility, we used the CRISPRa system based on dCas9-VPR as an artificial TF in Drosophila. dCas9-VPR was targeted to the TAHRE telomeric element, an example of constitutive heterochromatin, and to promoters and enhancers of the HOX Ultrabithorax (Ubx) and Sex Combs Reduced (Scr) genes in the context of facultative heterochromatin. dCas9-VPR robustly activated TAHRE transcription, showing that although this element is heterochromatic, dCas9-VPR was sufficient to activate its expression. In the case of HOX gene promoters, although Polycomb complexes epigenetically silence these genes, both were ectopically activated. When the artificial TF was directed to enhancers, we found that the expression pattern was different compared to the effect on the promoters. In the case of the Scr upstream enhancer, dCas9-VPR activated the gene ectopically but with less expressivity; however, ectopic activation also occurred in different cells. In the case of the bxI enhancer located in the third intron of Ubx, the presence of dCas9-VPR is capable of increasing transcription initiation while simultaneously blocking transcription elongation, generating a lack of functional phenotype. Our results show that CRISPRa system is able to activate transcription in any type of heterochromatin; nevertheless, its effect on transcription is subject to the intrinsic characteristics of each gene or regulatory element.
Collapse
|
5
|
Wang Y, Rensink AH, Fricke U, Riddle MC, Trent C, van de Zande L, Verhulst EC. Doublesex regulates male-specific differentiation during distinct developmental time windows in a parasitoid wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103724. [PMID: 35093500 DOI: 10.1016/j.ibmb.2022.103724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Sexually dimorphic traits in insects are subject to sexual selection, but our knowledge of the underlying molecular mechanisms is still scarce. Here we investigate how the highly conserved gene, Doublesex (Dsx), is involved in shaping sexual dimorphism in the model parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). First, we present the revised Dsx gene structure including an alternative transcription start, and two additional male NvDsx transcript isoforms. We show sex-specific NvDsx expression and splicing throughout development, and demonstrate that transient NvDsx silencing in different male developmental stages shifts two sexually dimorphic traits from male to female morphology, with the effect being dependent on the timing of silencing. In addition, we determined the effect of NvDsx on the development of reproductive organs. Transient silencing of NvDsx in early male larvae affects the growth and differentiation of the internal and external reproductive tissues. We did not observe phenotypic changes in females after NvDsx silencing. Our results indicate that male NvDsx is required to suppress female-specific traits and/or to promote male-specific traits during distinct developmental windows. This provides new insights into the regulatory activity of Dsx during male wasp development in the Hymenoptera.
Collapse
Affiliation(s)
- Yidong Wang
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Anna H Rensink
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Ute Fricke
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Megan C Riddle
- Biology Department, Western Washington University, Washington, USA
| | - Carol Trent
- Biology Department, Western Washington University, Washington, USA
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Eveline C Verhulst
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands; Wageningen University, Laboratory of Genetics, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Buffry AD, McGregor AP. Micromanagement of Drosophila Post-Embryonic Development by Hox Genes. J Dev Biol 2022; 10:13. [PMID: 35225966 PMCID: PMC8883937 DOI: 10.3390/jdb10010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Hox genes function early in development to determine regional identity in animals. Consequently, the loss or gain of Hox gene expression can change this identity and cause homeotic transformations. Over 20 years ago, it was observed that the role of Hox genes in patterning animal body plans involves the fine-scale regulation of cell fate and identity during development, playing the role of 'micromanagers' as proposed by Michael Akam in key perspective papers. Therefore, as well as specifying where structures develop on animal bodies, Hox genes can help to precisely sculpt their morphology. Here, we review work that has provided important insights about the roles of Hox genes in influencing cell fate during post-embryonic development in Drosophila to regulate fine-scale patterning and morphology. We also explore how this is achieved through the regulation of Hox genes, specific co-factors and their complex regulation of hundreds of target genes. We argue that further investigating the regulation and roles of Hox genes in Drosophila post-embryonic development has great potential for understanding gene regulation, cell fate and phenotypic differentiation more generally.
Collapse
|
7
|
Conner WR, Delaney EK, Bronski MJ, Ginsberg PS, Wheeler TB, Richardson KM, Peckenpaugh B, Kim KJ, Watada M, Hoffmann AA, Eisen MB, Kopp A, Cooper BS, Turelli M. A phylogeny for the Drosophila montium species group: A model clade for comparative analyses. Mol Phylogenet Evol 2021; 158:107061. [PMID: 33387647 PMCID: PMC7946709 DOI: 10.1016/j.ympev.2020.107061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
The Drosophila montium species group is a clade of 94 named species, closely related to the model species D. melanogaster. The montium species group is distributed over a broad geographic range throughout Asia, Africa, and Australasia. Species of this group possess a wide range of morphologies, mating behaviors, and endosymbiont associations, making this clade useful for comparative analyses. We use genomic data from 42 available species to estimate the phylogeny and relative divergence times within the montium species group, and its relative divergence time from D. melanogaster. To assess the robustness of our phylogenetic inferences, we use 3 non-overlapping sets of 20 single-copy coding sequences and analyze all 60 genes with both Bayesian and maximum likelihood methods. Our analyses support monophyly of the group. Apart from the uncertain placement of a single species, D. baimaii, our analyses also support the monophyly of all seven subgroups proposed within the montium group. Our phylograms and relative chronograms provide a highly resolved species tree, with discordance restricted to estimates of relatively short branches deep in the tree. In contrast, age estimates for the montium crown group, relative to its divergence from D. melanogaster, depend critically on prior assumptions concerning variation in rates of molecular evolution across branches, and hence have not been reliably determined. We discuss methodological issues that limit phylogenetic resolution - even when complete genome sequences are available - as well as the utility of the current phylogeny for understanding the evolutionary and biogeographic history of this clade.
Collapse
Affiliation(s)
- William R Conner
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Michael J Bronski
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Paul S Ginsberg
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA(1)
| | - Timothy B Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Kelly M Richardson
- Bio21 Institute, School of BioScience, University of Melbourne, Victoria 3010, Australia
| | - Brooke Peckenpaugh
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA(1)
| | - Kevin J Kim
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Masayoshi Watada
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ary A Hoffmann
- Bio21 Institute, School of BioScience, University of Melbourne, Victoria 3010, Australia
| | - Michael B Eisen
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Ament DC, Hash JM, Almeida EAB. Remarkable sexually dimorphic features of Coniceromyia(Diptera: Phoridae): evolution in the light of phylogeny and comparative evidence about their function. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractConiceromyia is a genus of 100 species of phorid flies mostly distributed in the Neotropical region. The genus is distinguishable based on several male-exclusive features in different parts of the body, many of which are unique among the Phoridae. In addition, many species of Coniceromyia have nearly identical morphology of their male copulatory apparatus (i.e. hypopygium). The co-occurrence of these unusual characteristics suggests an evolutionary correlation between them. To investigate this possible correlation and to understand other aspects of the evolution of these puzzling male-exclusive characters, we performed the first phylogenetic analysis of Coniceromyia, based on morphological and molecular data. Ancestral state reconstructions and comparative analyses then allowed us to infer the evolution of these characters and search for general evolutionary patterns and correlated histories. We demonstrate that these male-exclusive features varied from highly homoplastic to uniquely derived on the phylogenetic history of Coniceromyia. For some characters, we found evidence of a biased evolution favouring gains over losses of the feature, but no male characteristics were significantly correlated with hypopygium morphology. The evolutionary patterns of the male-exclusive features and comparative evidence with other better known groups suggest possible functions for these features related to sexual selection.
Collapse
Affiliation(s)
- Danilo C Ament
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, FFCLRP, Universidade de São Paulo, CEP, Ribeirão Preto, SP, Brazil
| | - John M Hash
- Entomology Section, Natural History Museum of Los Angeles County, 900 W Exposition Blvd, Los Angeles, CA, USA
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, FFCLRP, Universidade de São Paulo, CEP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Willink B, Duryea MC, Wheat C, Svensson EI. Changes in gene expression during female reproductive development in a color polymorphic insect. Evolution 2020; 74:1063-1081. [DOI: 10.1111/evo.13979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Beatriz Willink
- Department of Biology, Evolutionary Ecology Unit, Ecology BuildingLund University Lund 223–62 Sweden
- Current Address: School of BiologyUniversity of Costa Rica San José 11501–2060 Costa Rica
| | | | | | - Erik I. Svensson
- Department of Biology, Evolutionary Ecology Unit, Ecology BuildingLund University Lund 223–62 Sweden
| |
Collapse
|
10
|
Luo Y, Zhang Y, Farine J, Ferveur J, Ramírez S, Kopp A. Evolution of sexually dimorphic pheromone profiles coincides with increased number of male-specific chemosensory organs in Drosophila prolongata. Ecol Evol 2019; 9:13608-13618. [PMID: 31871670 PMCID: PMC6912897 DOI: 10.1002/ece3.5819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
Binary communication systems that involve sex-specific signaling and sex-specific signal perception play a key role in sexual selection and in the evolution of sexually dimorphic traits. The driving forces and genetic changes underlying such traits can be investigated in systems where sex-specific signaling and perception have emerged recently and show evidence of potential coevolution. A promising model is found in Drosophila prolongata, which exhibits a species-specific increase in the number of male chemosensory bristles. We show that this transition coincides with recent evolutionary changes in cuticular hydrocarbon (CHC) profiles. Long-chain CHCs that are sexually monomorphic in the closest relatives of D. prolongata (D. rhopaloa, D. carrolli, D. kurseongensis, and D. fuyamai) are strongly male-biased in this species. We also identify an intraspecific female-limited polymorphism, where some females have male-like CHC profiles. Both the origin of sexually dimorphic CHC profiles and the female-limited polymorphism in D. prolongata involve changes in the relative amounts of three mono-alkene homologs, 9-tricosene, 9-pentacosene, and 9-heptacosene, all of which share a common biosynthetic origin and point to a potentially simple genetic change underlying these traits. Our results suggest that pheromone synthesis may have coevolved with chemosensory perception and open the way for reconstructing the origin of sexual dimorphism in this communication system.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and EcologyUniversity of California‐DavisDavisCAUSA
| | - Yunwei Zhang
- Department of StatisticsUniversity of California‐DavisDavisCAUSA
- Present address:
School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
| | - Jean‐Pierre Farine
- Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne‐DijonDijonFrance
| | - Jean‐François Ferveur
- Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne‐DijonDijonFrance
| | - Santiago Ramírez
- Department of Evolution and EcologyUniversity of California‐DavisDavisCAUSA
| | - Artyom Kopp
- Department of Evolution and EcologyUniversity of California‐DavisDavisCAUSA
| |
Collapse
|
11
|
Kopp A, Barmina O, Prigent SR. Phylogenetic position of the Drosophila fima and dentissima lineages, and the status of the D. melanogaster species group. Mol Phylogenet Evol 2019; 139:106543. [PMID: 31247309 DOI: 10.1016/j.ympev.2019.106543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022]
Abstract
The subgenus Sophophora of Drosophila, which includes D. melanogaster, is an important model for the study of molecular evolution, comparative genomics, and evolutionary developmental biology. Numerous phylogenetic studies have examined species relationships in the well-known melanogaster, obscura, willistoni, and saltans species groups, as well as the relationships among these clades. In contrast, other species groups of Sophophora have been relatively neglected and have not been subjected to molecular phylogenetic analysis. Here, we focus on the endemic African Drosophila fima and dentissima lineages. We find that both these clades fall within the broadly defined melanogaster species group, but are otherwise distantly related to each other. The new phylogeny supports pervasive divergent and convergent evolution of male-specific grasping structures (sex combs). We discuss the implications of these results for defining the boundaries of the melanogaster species group, and weigh the relative merits of "splitting" and "lumping" approaches to the taxonomy of this key model system.
Collapse
Affiliation(s)
- A Kopp
- Department of Evolution and Ecology, University of California Davis, United States.
| | - O Barmina
- Department of Evolution and Ecology, University of California Davis, United States
| | - S R Prigent
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR7205, CNRS-MNHN-UPMC-EPHE, PSL University, 45 rue Buffon, 75005 Paris, France
| |
Collapse
|
12
|
Crumière AJJ, Khila A. Hox genes mediate the escalation of sexually antagonistic traits in water striders. Biol Lett 2019; 15:20180720. [PMID: 30958129 PMCID: PMC6405465 DOI: 10.1098/rsbl.2018.0720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Sexual conflict occurs when traits favoured in one sex impose fitness costs on the other sex. In the case of sexual conflict over mating rate, the sexes often undergo antagonistic coevolution and escalation of traits that enhance females' resistance to superfluous mating and traits that increase males' persistence. How this escalation in sexually antagonistic traits is established during ontogeny remains unclear. In the water strider Rhagovelia antilleana, male persistence traits consist of sex combs on the forelegs and multiple rows of spines and a thick femur in the rear legs. Female resistance traits consist of a prominent spike-like projection of the pronotum. RNAi knockdown against the Hox gene Sex Combs Reduced resulted in the reduction in both the sex comb in males and the pronotum projection in females. RNAi against the Hox gene Ultrabithorax resulted in the complete loss or reduction of all persistence traits in male rear legs. These results demonstrate that Hox genes can be involved in intra- and inter-locus sexual conflict and mediate escalation of sexually antagonistic traits.
Collapse
Affiliation(s)
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
13
|
Gompel N, Kopp A. Drosophila (Sophophora) carrolli n. sp., a new species from Brunei, closely related to Drosophila (Sophophora) rhopaloa Bock Wheeler, 1972 (Diptera: Drosophilidae). Zootaxa 2018; 4434:502-510. [PMID: 30313176 DOI: 10.11646/zootaxa.4434.3.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 11/04/2022]
Abstract
We describe a new species in the Drosophila melanogaster species group, Drosophila carrolli n. sp., showing morphological affinities with D. rhopaloa Bock Wheeler, 1972.
Collapse
Affiliation(s)
- Nicolas Gompel
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany..
| | | |
Collapse
|
14
|
Eksi SE, Barmina O, McCallough CL, Kopp A, Orenic TV. A Distalless-responsive enhancer of the Hox gene Sex combs reduced is required for segment- and sex-specific sensory organ development in Drosophila. PLoS Genet 2018; 14:e1007320. [PMID: 29634724 PMCID: PMC5909922 DOI: 10.1371/journal.pgen.1007320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022] Open
Abstract
Hox genes are involved in the patterning of animal body parts at multiple levels of regulatory hierarchies. Early expression of Hox genes in different domains along the embryonic anterior-posterior (A/P) axis in insects, vertebrates, and other animals establishes segmental or regional identity. However, Hox gene function is also required later in development for the patterning and morphogenesis of limbs and other organs. In Drosophila, spatiotemporal modulation of Sex combs reduced (Scr) expression within the first thoracic (T1) leg underlies the generation of segment- and sex-specific sense organ patterns. High Scr expression in defined domains of the T1 leg is required for the development of T1-specific transverse bristle rows in both sexes and sex combs in males, implying that the patterning of segment-specific sense organs involves incorporation of Scr into the leg development and sex determination gene networks. We sought to gain insight into this process by identifying the cis-and trans-regulatory factors that direct Scr expression during leg development. We have identified two cis-regulatory elements that control spatially modulated Scr expression within T1 legs. One of these enhancers directs sexually dimorphic expression and is required for the formation of T1-specific bristle patterns. We show that the Distalless and Engrailed homeodomain transcription factors act through sequences in this enhancer to establish elevated Scr expression in spatially defined domains. This enhancer functions to integrate Scr into the intrasegmental gene regulatory network, such that Scr serves as a link between leg patterning, sex determination, and sensory organ development.
Collapse
Affiliation(s)
- Sebnem Ece Eksi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States of America
| | - Christopher L. McCallough
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States of America
- * E-mail: (AK); (TVO)
| | - Teresa Vales Orenic
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
- * E-mail: (AK); (TVO)
| |
Collapse
|
15
|
Fartyal RS, Sati PC, Pradhan S, Kandpal MC, Toda MJ, Chatterjee RN, Singh BK, Bhardwai A. A review of the genus Lordiphosa Basden in India, with descriptions of four new species from the Himalayan region (Diptera, Drosophilidae). Zookeys 2017:49-79. [PMID: 29118592 PMCID: PMC5672582 DOI: 10.3897/zookeys.688.12590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/01/2017] [Indexed: 11/19/2022] Open
Abstract
All Indian species of the genus Lordiphosa Basden are reviewed, with descriptions of four new species, L.curva Fartyal & Toda, sp. n. of the denticeps species group and L.ayarpathaensis Kandpal & Singh, sp. n., L.makaibarensis Pradhan & Chatterjee, sp. n. and L.srinagarensis Sati & Fartyal, sp. n. of the nigricolor species group. Two of the new species, L.ayarpathaensis and L.makaibarensis, were found visiting flowers of Hedychiumspicatum and Daturasuaveolens, respectively. This is the first record of flower visitation in Lordiphosa flies. In addition, L.parantillaria (Kumar & Gupta, 1990), syn. n. is synonymized with L.antillaria (Okada, 1984). Supplementary and revised descriptions for L.antillaria and L.neokurokawai (Singh & Gupta, 1981) and a key to all Indian species of Lordiphosa are provided.
Collapse
Affiliation(s)
- Rajendra S Fartyal
- Systematics, Cytogenetics and Molecular Laboratory, Department of Zoology and Biotechnology, Srinagar-Garhwal, Uttarakhand, India
| | - Pradeep C Sati
- Systematics, Cytogenetics and Molecular Laboratory, Department of Zoology and Biotechnology, Srinagar-Garhwal, Uttarakhand, India
| | - Sushmika Pradhan
- P.G. Department of Zoology, Darjeeling Government College, Darjeeling, West Bengal, India.,Genetics Research Unit, Department of Zoology, University of Calcutta, West Bengal, India
| | - Mukul C Kandpal
- Cytogenetics Laboratory, Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Masanori J Toda
- Hokkaido University Museum, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Rabindra N Chatterjee
- Genetics Research Unit, Department of Zoology, University of Calcutta, West Bengal, India
| | - Birendra K Singh
- Cytogenetics Laboratory, Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Asha Bhardwai
- Systematics, Cytogenetics and Molecular Laboratory, Department of Zoology and Biotechnology, Srinagar-Garhwal, Uttarakhand, India
| |
Collapse
|
16
|
Cloud-Richardson KM, Smith BR, Macdonald SJ. Genetic dissection of intraspecific variation in a male-specific sexual trait in Drosophila melanogaster. Heredity (Edinb) 2016; 117:417-426. [PMID: 27530909 PMCID: PMC5117841 DOI: 10.1038/hdy.2016.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023] Open
Abstract
An open question in evolutionary biology is the relationship between standing variation for a trait and the variation that leads to interspecific divergence. By identifying loci underlying phenotypic variation in intra- and interspecific crosses we can determine the extent to which polymorphism and divergence are controlled by the same genomic regions. Sexual traits provide abundant examples of morphological and behavioral diversity within and among species, and here we leverage variation in the Drosophila sex comb to address this question. The sex comb is an array of modified bristles or ‘teeth' present on the male forelegs of several Drosophilid species. Males use the comb to grasp females during copulation, and ablation experiments have shown that males lacking comb teeth typically fail to mate. We measured tooth number in >700 genotypes derived from a multiparental advanced-intercross population, mapping three moderate-effect loci contributing to trait heritability. Two quantitative trait loci (QTLs) coincide with previously identified intra- and interspecific sex comb QTL, but such overlap can be explained by chance alone, in part because of the broad swathes of the genome implicated by earlier, low-resolution QTL scans. Our mapped QTL regions encompass 70–124 genes, but do not include those genes known to be involved in developmental specification of the comb. Nonetheless, we identified plausible candidates within all QTL intervals, and used RNA interference to validate effects at four loci. Notably, TweedleS expression knockdown substantially reduces tooth number. The genes we highlight are strong candidates to harbor segregating, functional variants contributing to sex comb tooth number.
Collapse
Affiliation(s)
| | - B R Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - S J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.,Center for Computational Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
17
|
Choi JY, Aquadro CF. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes. Genome Biol Evol 2015; 7:3097-114. [PMID: 26507797 PMCID: PMC4994752 DOI: 10.1093/gbe/evv207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Molecular Biology and Genetics, Cornell University
| | | |
Collapse
|
18
|
Grimaldi D, Ginsberg PS, Thayer L, McEvey S, Hauser M, Turelli M, Brown B. Strange little flies in the big city: exotic flower-breeding drosophilidae (Diptera) in urban Los Angeles. PLoS One 2015; 10:e0122575. [PMID: 25923661 PMCID: PMC4414507 DOI: 10.1371/journal.pone.0122575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
Urban landscapes are commonly considered too mundane and corrupted to be biotically interesting. Recent insect surveys employing 29 Malaise traps throughout Los Angeles, California, however, have uncovered breeding populations of two unexpected species of one of the most studied and familiar groups of organisms, Drosophila "fruit" flies. Unlike most introduced species of drosophilids, which breed in fresh or decaying fruits, these are specialized flower-breeders. A common species in the survey was Drosophila (Drosophila) gentica Wheeler and Takada, previously collected only once, in El Salvador. It belongs to the flavopilosa species group, all species of which have been known until now from central Chile, Argentina and Uruguay, to Veracruz, Mexico and the Caribbean, breeding in flowers of Cestrum ("jessamine") and Sessea (Solanaceae). The Los Angeles populations are probably breeding in a native and/or introduced Cestrum; in addition, populations in San Luis Obispo County were visiting ornamental Cestrum. Drosophila gentica occurs as far north as San Francisco, where it was found breeding in Cestrum aurantiacum. D. gentica is redescribed and figured in detail for diagnostic and identification purposes. Specimens from Jamaica previously identified as D. gentica are a distinct species but are not formally described in lieu of complete male specimens. Rare in the Malaise traps was Drosophila (Sophophora) flavohirta Malloch, a common species in Australia on the blossoms of native Myrtaceae, found on introduced Eucalyptus in South Africa and both Eucalyptus and Syzygium in Madagascar; adults feed on myrtaceous pollen and nectar, larvae breed in the flowers. It is also redescribed in detail, including its unusual egg. This is the first New World report of this species; DNA sequences confirm it is a morphologically highly aberrant member of the D. melanogaster species group. This study reveals how intensive field sampling can uncover remarkable biodiversity in even the most urbanized areas.
Collapse
Affiliation(s)
- David Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, 10024–5192, United States of America
- * E-mail:
| | - Paul S. Ginsberg
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| | - Lesley Thayer
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, 10024–5192, United States of America
| | - Shane McEvey
- Department of Entomology, The Australian Museum, Sydney, New South Wales, Australia
| | - Martin Hauser
- California Department of Food and Agriculture, Sacramento, California, United States of America
| | - Michael Turelli
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| | - Brian Brown
- Entomology Section, Natural History Museum of Los Angeles County, Los Angeles, California, United States of America
| |
Collapse
|
19
|
Camino EM, Butts JC, Ordway A, Vellky JE, Rebeiz M, Williams TM. The evolutionary origination and diversification of a dimorphic gene regulatory network through parallel innovations in cis and trans. PLoS Genet 2015; 11:e1005136. [PMID: 25835988 PMCID: PMC4383587 DOI: 10.1371/journal.pgen.1005136] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/10/2015] [Indexed: 01/15/2023] Open
Abstract
The origination and diversification of morphological characteristics represents a key problem in understanding the evolution of development. Morphological traits result from gene regulatory networks (GRNs) that form a web of transcription factors, which regulate multiple cis-regulatory element (CRE) sequences to control the coordinated expression of differentiation genes. The formation and modification of GRNs must ultimately be understood at the level of individual regulatory linkages (i.e., transcription factor binding sites within CREs) that constitute the network. Here, we investigate how elements within a network originated and diversified to generate a broad range of abdominal pigmentation phenotypes among Sophophora fruit flies. Our data indicates that the coordinated expression of two melanin synthesis enzymes, Yellow and Tan, recently evolved through novel CRE activities that respond to the spatial patterning inputs of Hox proteins and the sex-specific input of Bric-à-brac transcription factors. Once established, it seems that these newly evolved activities were repeatedly modified by evolutionary changes in the network’s trans-regulators to generate large-scale changes in pigment pattern. By elucidating how yellow and tan are connected to the web of abdominal trans-regulators, we discovered that the yellow and tan abdominal CREs are composed of distinct regulatory inputs that exhibit contrasting responses to the same Hox proteins and Hox cofactors. These results provide an example in which CRE origination underlies a recently evolved novel trait, and highlights how coordinated expression patterns can evolve in parallel through the generation of unique regulatory linkages. The genomic content of regulatory genes such as transcription factors is surprisingly conserved between diverse animal species, raising the paradox of how new traits emerge, and are subsequently modified and lost. In this study we make a connection between the developmental basis for the formation of a fruit fly trait and the evolutionary basis for that trait’s origin, diversification, and loss. We show how the origin of a novel pigmentation trait is associated with the evolution of two regulatory sequences that control the co-expression of two key pigmentation genes. These sequences interact in unique ways with evolutionarily conserved Hox transcription factors to drive gene co-expression. Once these unique connections evolved, the alteration of this trait appears to have proceeded through changes to regulatory genes rather than regulatory sequences of the pigmentation genes. Thus, our findings support a scenario where regulatory sequence evolution provided new functions to old transcription factors, how co-expression can emerge from different utilizations of the same transcription factors, and that trait diversity was surprisingly shaped by changes in some manner to the deeply conserved regulatory genes.
Collapse
Affiliation(s)
- Eric M. Camino
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - John C. Butts
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Alison Ordway
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jordan E. Vellky
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas M. Williams
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Verhulst EC, van de Zande L. Double nexus--Doublesex is the connecting element in sex determination. Brief Funct Genomics 2015; 14:396-406. [PMID: 25797692 PMCID: PMC4652034 DOI: 10.1093/bfgp/elv005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In recent years, our knowledge of the conserved master-switch gene doublesex (dsx) and its function in regulating the development of dimorphic traits in insects has deepened considerably. Here, a comprehensive overview is given on the properties of the male- and female-specific dsx transcripts yielding DSXF and DSXM proteins in Drosophila melanogaster, and the many downstream targets that they regulate. As insects have cell-autonomous sex determination, it was assumed that dsx would be expressed in every somatic cell, but recent research showed that dsx is expressed only when a cell is required to show its sexual identity through function or morphology. This spatiotemporal regulation of dsx expression has not only been established in D. melanogaster but in all insect species studied. Gradually, it has been appreciated that dsx could no longer be viewed as the master-switch gene orchestrating sexual development and behaviour in each cell, but instead should be viewed as the interpreter for the sexual identity of the cell, expressing this identity only on request, making dsx the central nexus of insect sex determination.
Collapse
|
21
|
Heredity and self-organization: partners in the generation and evolution of phenotypes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015. [PMID: 25708463 DOI: 10.1016/bs.ircmb.2014.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In this review we examine the role of self-organization in the context of the evolution of morphogenesis. We provide examples to show that self-organized behavior is ubiquitous, and suggest it is a mechanism that can permit high levels of biodiversity without the invention of ever-increasing numbers of genes. We also examine the implications of self-organization for understanding the "internal descriptions" of organisms and the concept of a genotype-phenotype map.
Collapse
|
22
|
Kang JH, Manousaki T, Franchini P, Kneitz S, Schartl M, Meyer A. Transcriptomics of two evolutionary novelties: how to make a sperm-transfer organ out of an anal fin and a sexually selected "sword" out of a caudal fin. Ecol Evol 2015; 5:848-64. [PMID: 25750712 PMCID: PMC4338968 DOI: 10.1002/ece3.1390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/09/2023] Open
Abstract
Swords are exaggerated male ornaments of swordtail fishes that have been of great interest to evolutionary biologists ever since Darwin described them in the Descent of Man (1871). They are a novel sexually selected trait derived from modified ventral caudal fin rays and are only found in the genus Xiphophorus. Another phylogenetically more widespread and older male trait is the gonopodium, an intromittent organ found in all poeciliid fishes, that is derived from a modified anal fin. Despite many evolutionary and behavioral studies on both traits, little is known so far about the molecular mechanisms underlying their development. By investigating transcriptomic changes (utilizing a RNA-Seq approach) in response to testosterone treatment in the swordtail fish, Xiphophorus hellerii, we aimed to better understand the architecture of the gene regulatory networks underpinning the development of these two evolutionary novelties. Large numbers of genes with tissue-specific expression patterns were identified. Among the "sword genes" those involved in embryonic organ development, sexual character development and coloration were highly expressed, while in the gonopodium rather more morphogenesis-related genes were found. Interestingly, many genes and genetic pathways are shared between both developing novel traits derived from median fins: the sword and the gonopodium. Our analyses show that a larger set of gene networks was co-opted during the development and evolution of the "older" gonopodium than in the "younger," and morphologically less complex trait, the sword. We provide a catalog of candidate genes for future efforts to dissect the development of those sexually selected exaggerated male traits in swordtails.
Collapse
Affiliation(s)
- Ji Hyoun Kang
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of KonstanzUniversitätsstraβe 10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of KonstanzKonstanz, Germany
| | - Tereza Manousaki
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of KonstanzUniversitätsstraβe 10, 78457, Konstanz, Germany
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine ResearchHeraklion, Greece
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of KonstanzUniversitätsstraβe 10, 78457, Konstanz, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biozentrum, University of WürzburgAm Hubland, Würzburg, Germany
| | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of WürzburgAm Hubland, Würzburg, Germany
- Comprehensive Cancer Center, University Clinic WürzburgJosef Schneider Straβe 6, 97074, Würzburg, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of KonstanzUniversitätsstraβe 10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of KonstanzKonstanz, Germany
| |
Collapse
|
23
|
Hurtado-Gonzales JL, Gallaher W, Warner A, Polak M. Microscale Laser Surgery Demonstrates the Grasping Function of the Male Sex Combs inDrosophila melanogaster and Drosophila bipectinata. Ethology 2014. [DOI: 10.1111/eth.12316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Wesley Gallaher
- Department of Biological Sciences; University of Cincinnati; Cincinnati OH USA
| | - Alexandra Warner
- Department of Biological Sciences; University of Cincinnati; Cincinnati OH USA
| | - Michal Polak
- Department of Biological Sciences; University of Cincinnati; Cincinnati OH USA
| |
Collapse
|
24
|
Abstract
Abstract
Sexual dimorphism is often derived from sexual selection. In sexually dimorphic Drosophila species, exaggerated male structures are used for specific behaviors in male-to-male competition or courtship toward females. In Drosophila prolongata, a member of the melanogaster species group, males have enlarged forelegs whereas females do not. However, the adaptive role of the enlarged forelegs is unclear because little is known about the behavior of D. prolongata. In this study, the courtship behavior of D. prolongata was investigated in comparison with closely related species. Males of D. prolongata use their forelegs in a specific behavior, “leg vibration”, in which the male vigorously vibrates the female’s abdomen by extending his forelegs from in front of her. Leg vibration was observed immediately before “attempting copulation”, indicating that it has an adaptive role in the mating process. In contrast, leg vibration was not observed in closely related species. Because the large forelegs are necessary to accomplish leg vibration, it was suggested that the sexual dimorphism of D. prolongata forelegs is currently under the influence of sexual selection in courtship behavior.
Collapse
|
25
|
Male- and female-specific variants of doublesex gene products have different roles to play towards regulation of Sex combs reduced expression and sex comb morphogenesis in Drosophila. J Biosci 2014; 38:455-60. [PMID: 23938378 DOI: 10.1007/s12038-013-9348-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sexually dimorphic characters have two-fold complexities in pattern formation as they have to get input from both somatic sex determination as well as the positional determining regulators. Sex comb development in Drosophila requires functions of the somatic sex-determining gene doublesex and the homeotic gene Sex combs reduced. Attempts have not been made to decipher the role of dsx in imparting sexually dimorphic expression of SCR and the differential function of sex-specific variants of dsx products in sex comb development. Our results in this study indicate that male-like pattern of SCR expression is independent of dsx function, and dsx F must be responsible for bringing about dimorphism in SCR expression, whereas dsx M function is required with Scr for the morphogenesis of sex comb.
Collapse
|
26
|
Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A. The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc Biol Sci 2014; 281:20132840. [PMID: 24573846 DOI: 10.1098/rspb.2013.2840] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary innovation can allow a species access to a new ecological niche, potentially reducing competition with closely related species. While the vast majority of Drosophila flies feed on rotting fruit and other decaying matter, and are harmless to human activity, Drosophila suzukii, which has a morphologically modified ovipositor, is capable of colonizing live fruit that is still in the process of ripening, causing massive agricultural damage. Here, we conducted the first comparative analysis of this species and its close relatives, analysing both ovipositor structure and fruit susceptibility. We found that the ovipositor of the species most closely related to D. suzukii, Drosophila subpulchrella, has a similar number of enlarged, evolutionarily derived bristles, but a notably different overall shape. Like D. suzukii, D. subpulchrella flies are capable of puncturing the skin of raspberries and cherries, but we found no evidence that they could penetrate the thicker skin of two varieties of grapes. More distantly related species, one of which has previously been mistaken for D. suzukii, have blunt ovipositors with small bristles. While they did not penetrate fruit skin in any of the assays, they readily colonized fruit interiors where the skin was broken. Our results suggest that considering evolutionary context may be beneficial to the management of invasive species.
Collapse
Affiliation(s)
- Joel Atallah
- Department of Evolution and Ecology, University of California, , One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Atallah J, Vurens G, Mavong S, Mutti A, Hoang D, Kopp A. Sex-specific repression of dachshund is required for Drosophila sex comb development. Dev Biol 2014; 386:440-7. [DOI: 10.1016/j.ydbio.2013.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023]
|
28
|
Inherited human sex reversal due to impaired nucleocytoplasmic trafficking of SRY defines a male transcriptional threshold. Proc Natl Acad Sci U S A 2013; 110:E3567-76. [PMID: 24003159 DOI: 10.1073/pnas.1300828110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human testis determination is initiated by SRY (sex determining region on Y chromosome). Mutations in SRY cause gonadal dysgenesis with female somatic phenotype. Two subtle variants (V60L and I90M in the high-mobility group box) define inherited alleles shared by an XY sterile daughter and fertile father. Whereas specific DNA binding and bending are unaffected in a rat embryonic pre-Sertoli cell line, the variants exhibited selective defects in nucleocytoplasmic shuttling due to impaired nuclear import (V60L; mediated by Exportin-4) or export (I90M; mediated by chromosome region maintenance 1). Decreased shuttling limits nuclear accumulation of phosphorylated (activated) SRY, in turn reducing occupancy of DNA sites regulating Sertoli-cell differentiation [the testis-specific SRY-box 9 (Sox9) enhancer]. Despite distinct patterns of biochemical and cell-biological perturbations, V60L and I90M each attenuated Sox9 expression in transient transfection assays by twofold. Such attenuation was also observed in studies of V60A, a clinical variant associated with ovotestes and hence ambiguity between divergent cell fates. This shared twofold threshold is reminiscent of autosomal syndromes of transcription-factor haploinsufficiency, including XY sex reversal associated with mutations in SOX9. Our results demonstrate that nucleocytoplasmic shuttling of SRY is necessary for robust initiation of testicular development. Although also characteristic of ungulate orthologs, such shuttling is not conserved among rodents wherein impaired nuclear export of the high-mobility group box and import-dependent phosphorylation are compensated by a microsatellite-associated transcriptional activation domain. Human sex reversal due to subtle defects in the nucleocytoplasmic shuttling of SRY suggests that its transcriptional activity lies near the edge of developmental ambiguity.
Collapse
|
29
|
Snook RR, Gidaszewski NA, Chapman T, Simmons LW. Sexual selection and the evolution of secondary sexual traits: sex comb evolution in Drosophila. J Evol Biol 2013; 26:912-8. [PMID: 23496332 DOI: 10.1111/jeb.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 11/28/2022]
Abstract
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.
Collapse
Affiliation(s)
- Rhonda R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | |
Collapse
|
30
|
Abstract
The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb-a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between Hox and sex determination genes. Activity of the sex determination pathway was brought under the control of the Hox code to become segment-specific, while Hox gene expression became sexually dimorphic. At the same time, both Hox and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of Hox and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell-differentiation programs have diverged between species, and in some lineages, similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher order taxa.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
31
|
Devi TR, Amruthavalli C, Shyamala B. Evolution of sex comb from the primitive bristle pattern indrosophilais associated with modification in the developmental regulatory protein dachshund. Genesis 2013. [DOI: 10.1002/dvg.22361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Atallah J, Watabe H, Kopp A. Many ways to make a novel structure: a new mode of sex comb development in Drosophilidae. Evol Dev 2012; 14:476-83. [DOI: 10.1111/ede.12001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Joel Atallah
- Department of Evolution and Ecology; University of California, Davis; CA; 95616; USA
| | - Hideaki Watabe
- Biological Laboratory; Sapporo Campus Hokkaido University of Education, Ainosato 5-3-1; Sapporo; 002-8075; Japan
| | - Artyom Kopp
- Department of Evolution and Ecology; University of California, Davis; CA; 95616; USA
| |
Collapse
|
33
|
Genetic basis of a violation of Dollo's Law: re-evolution of rotating sex combs in Drosophila bipectinata. Genetics 2012; 192:1465-75. [PMID: 23086218 DOI: 10.1534/genetics.112.145524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phylogenetic analyses suggest that violations of "Dollo's law"--that is, re-evolution of lost complex structures--do occur, albeit infrequently. However, the genetic basis of such reversals has not been examined. Here, we address this question using the Drosophila sex comb, a recently evolved, male-specific morphological structure composed of modified bristles. In some species, sex comb development involves only the modification of individual bristles, while other species have more complex "rotated" sex combs that are shaped by coordinated migration of epithelial tissues. Rotated sex combs were lost in the ananassae species subgroup and subsequently re-evolved, ∼12 million years later, in Drosophila bipectinata and its sibling species. We examine the genetic basis of the differences in sex comb morphology between D. bipectinata and D. malerkotliana, a closely related species with a much simpler sex comb representing the ancestral condition. QTL mapping reveals that >50% of this difference is controlled by one chromosomal inversion that covers ∼5% of the genome. Several other, larger inversions do not contribute appreciably to the phenotype. This genetic architecture suggests that rotating sex combs may have re-evolved through changes in relatively few genes. We discuss potential developmental mechanisms that may allow lost complex structures to be regained.
Collapse
|
34
|
Wang W, Yoder JH. Hox-mediated regulation of doublesex sculpts sex-specific abdomen morphology in Drosophila. Dev Dyn 2012; 241:1076-90. [PMID: 22488883 DOI: 10.1002/dvdy.23791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Hox transcription factors are deeply conserved proteins that guide development through regulation of diverse target genes. Furthermore, alteration in Hox target cis-regulation has been proposed as a major mechanism of animal morphological evolution. Crucial to understanding how homeotic genes sculpt the developing body and contribute to the evolution of form is identification and characterization of regulatory targets. Because target specificity is achieved through physical or genetic interactions with cofactors or co-regulators, characterizing interactions between homeotic genes and regulatory partners is also critical. In Drosophila melanogaster, sexually dimorphic abdominal morphology results from sex-specific gene regulation mediated by the Hox protein Abdominal-B (Abd-B) and products of the sex-determination gene doublesex (dsx). Together these transcription factors regulate numerous sex-specific characters, including pigmentation, cuticle morphology, and abdominal segment number. RESULTS We show Dsx expression in the developing D. melanogaster pupal abdomen is spatiotemporally dynamic, correlating with segments that undergo sexually dimorphic morphogenesis. Furthermore, our genetic analyses show Dsx expression is Abd-B dependent. CONCLUSIONS Doublesex and Abd-B are not only requisite co-regulators of sexually dimorphic abdominal morphology. We propose that dsx is itself a transcriptional target of Abd-B. These data present a testable hypothesis about the evolution of sexually dimorphic segment number in Diptera.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | | |
Collapse
|
35
|
Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 2012; 28:175-84. [PMID: 22425532 DOI: 10.1016/j.tig.2012.02.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
Most animals are sexually dimorphic, but different taxa have different sex-specific traits. Despite major differences in the genetic control of sexual development among animal lineages, the doublesex/mab-3 related (Dmrt) family of transcription factors has been shown to be involved in sex-specific differentiation in all animals that have been studied. In recent years the functions of Dmrt genes have been characterized in many animal groups, opening the way to a broad comparative perspective. This review focuses on the similarities and differences in the functions of Dmrt genes across the animal kingdom. I highlight a number of common themes in the sexual development of different taxa, discuss how Dmrt genes have acquired new roles during animal evolution, and show how they have contributed to the origin of novel sex-specific traits.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616 USA.
| |
Collapse
|
36
|
Sobrinho IS, de Brito RA. Positive and purifying selection influence the evolution of doublesex in the Anastrepha fraterculus species group. PLoS One 2012; 7:e33446. [PMID: 22428050 PMCID: PMC3302808 DOI: 10.1371/journal.pone.0033446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/09/2012] [Indexed: 11/19/2022] Open
Abstract
The gene doublesex (dsx) is considered to be under strong selective constraint along its evolutionary history because of its central role in somatic sex differentiation in insects. However, previous studies of dsx used global estimates of evolutionary rates to investigate its molecular evolution, which potentially miss signals of adaptive changes in generally conserved genes. In this work, we investigated the molecular evolution of dsx in the Anastrepha fraterculus species group (Diptera, Tephritidae), and test the hypothesis that this gene evolved solely by purifying selection using divergence-based and population-based methods. In the first approach, we compared sequences from Anastrepha and other Tephritidae with other Muscomorpha species, analyzed variation in nonsynonymous to synonymous rate ratios (dN/dS) in the Tephritidae, and investigated radical and conservative changes in amino acid physicochemical properties. We show a general selective constraint on dsx, but with signs of positive selection mainly in the common region. Such changes were localized in alpha-helices previously reported to be involved in dimer formation in the OD2 domain and near the C-terminal of the OD1 domain. In the population-based approach, we amplified a region of 540 bp that spanned almost all of the region common to both sexes from 32 different sites in Brazil. We investigated patterns of selection using neutrality tests based on the frequency spectrum and locations of synonymous and nonsynonymous mutations in a haplotype network. As in the divergence-based approach, these analyses showed that dsx has evolved under an overall selective constraint, but with some events of positive selection. In contrast to previous studies, our analyses indicate that even though dsx has indeed evolved as a conserved gene, the common region of dsx has also experienced bouts of positive selection, perhaps driven by sexual selection, during its evolution.
Collapse
Affiliation(s)
- Iderval S Sobrinho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| | | |
Collapse
|
37
|
Wasik BR, Moczek AP. Pangolin expression influences the development of a morphological novelty: beetle horns. Genesis 2011; 50:404-14. [PMID: 21998033 DOI: 10.1002/dvg.20814] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/28/2011] [Accepted: 10/06/2011] [Indexed: 01/29/2023]
Abstract
Morphological diversity arises during development through the actions and interactions of diverse developmental pathways. Among those, the Wnt pathway is known to contribute to diverse developmental processes such as segmentation and the morphogenesis of appendages. Here, we characterize a transcription factor in the Wnt pathway, pangolin (pan), to investigate the role of Wnt signaling in the development of evolutionarily novel body structures: the horns of beetles. Beetle horns are highly diverse in size, shape, and number and develop principally from two major body regions: the head and prothorax. We investigate horns in two species of the genus Onthophagus using comparative in situ hybridization, larval RNA interference, and allometric measurements to analyze whether horn formation is regulated by pan and by extension the Wnt pathway. Our results illustrate that pan expression affects beetle horn growth in a species-, sex-, and location-specific manner in two morphologically distinct, yet closely-related, Onthophagus species.
Collapse
Affiliation(s)
- Bethany R Wasik
- Department of Biology, Indiana University, Bloomington, Indiana, USA.
| | | |
Collapse
|
38
|
Masly JP, Dalton JE, Srivastava S, Chen L, Arbeitman MN. The genetic basis of rapidly evolving male genital morphology in Drosophila. Genetics 2011; 189:357-74. [PMID: 21750260 PMCID: PMC3176115 DOI: 10.1534/genetics.111.130815] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/22/2011] [Indexed: 01/22/2023] Open
Abstract
The external genitalia are some of the most rapidly evolving morphological structures in insects. The posterior lobe of the male genital arch shows striking differences in both size and shape among closely related species of the Drosophila melanogaster species subgroup. Here, we dissect the genetic basis of posterior lobe morphology between D. mauritiana and D. sechellia, two island endemic species that last shared a common ancestor ∼300,000 years ago. We test a large collection of genome-wide homozygous D. mauritiana genetic introgressions, which collectively cover ∼50% of the genome, for their morphological effects when placed in a D. sechellia genetic background. We find several introgressions that have large effects on posterior lobe morphology and that posterior lobe size and posterior lobe shape can be separated genetically for some of the loci that specify morphology. Using next generation sequencing technology, we perform whole transcriptome gene expression analyses of the larval genital imaginal disc of D. mauritiana, D. sechellia, and two D. mauritiana-D. sechellia hybrid introgression genotypes that each have large effects on either posterior lobe size or posterior lobe shape. Many of the genes we identify as differentially expressed are expressed at levels similar to D. mauritiana in one introgression hybrid, but are expressed at levels similar to D. sechellia in the other introgression hybrid. However, we also find that both introgression hybrids express some of the same genes at levels similar to D. mauritiana, and notably, that both introgression hybrids possess genes in the insulin receptor signaling pathway, which are expressed at D. mauritiana expression levels. These results suggest the possibility that the insulin signaling pathway might integrate size and shape genetic inputs to establish differences in overall posterior lobe morphology between D. mauritiana and D. sechellia.
Collapse
Affiliation(s)
- John P Masly
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.
| | | | | | | | | |
Collapse
|
39
|
Tanaka K, Barmina O, Sanders LE, Arbeitman MN, Kopp A. Evolution of sex-specific traits through changes in HOX-dependent doublesex expression. PLoS Biol 2011; 9:e1001131. [PMID: 21886483 PMCID: PMC3160335 DOI: 10.1371/journal.pbio.1001131] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Almost every animal lineage is characterized by unique sex-specific traits, implying that such traits are gained and lost frequently in evolution. However, the genetic mechanisms responsible for these changes are not understood. In Drosophila, the activity of the sex determination pathway is restricted to sexually dimorphic tissues, suggesting that spatial regulation of this pathway may contribute to the evolution of sex-specific traits. We examine the regulation and function of doublesex (dsx), the main transcriptional effector of the sex determination pathway, in the development and evolution of Drosophila sex combs. Sex combs are a recent evolutionary innovation and show dramatic diversity in the relatively few Drosophila species that have them. We show that dsx expression in the presumptive sex comb region is activated by the HOX gene Sex combs reduced (Scr), and that the male isoform of dsx up-regulates Scr so that both genes become expressed at high levels in this region in males but not in females. Precise spatial regulation of dsx is essential for defining sex comb position and morphology. Comparative analysis of Scr and dsx expression reveals a tight correlation between sex comb morphology and the expression patterns of both genes. In species that primitively lack sex combs, no dsx expression is observed in the homologous region, suggesting that the origin and diversification of this structure were linked to the gain of a new dsx expression domain. Two other, distantly related fly lineages that independently evolved novel male-specific structures show evolutionary gains of dsx expression in the corresponding tissues, where dsx may also be controlled by Scr. These findings suggest that changes in the spatial regulation of sex-determining genes are a key mechanism that enables the evolution of new sex-specific traits, contributing to some of the most dramatic examples of phenotypic diversification in nature.
Collapse
Affiliation(s)
- Kohtaro Tanaka
- Department of Evolution and Ecology, University of California–Davis, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California–Davis, Davis, California, United States of America
| | - Laura E. Sanders
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Michelle N. Arbeitman
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California–Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Wasik BR, Moczek AP. Decapentaplegic (dpp) regulates the growth of a morphological novelty, beetle horns. Dev Genes Evol 2011; 221:17-27. [PMID: 21399983 DOI: 10.1007/s00427-011-0355-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/17/2011] [Indexed: 12/13/2022]
Abstract
Studies focusing on the development of morphological novelties suggest that patterning genes underlying traditional appendage development (i.e. mouthparts, legs, and wings) also play important roles in patterning novel morphological structures. In this study, we examine whether the expression and function of a member of the TGF-β signaling pathway, decapentaplegic (dpp), promotes development of a morphologically novel structure: beetle horns. Beetle horns are complex secondary sexual structures that develop in the head and/or prothorax, lack obvious homology to other insect outgrowths, and vary remarkably between species and sexes. We studied dpp expression through in situ hybridization, performed functional analyses with RNA interference, and gathered allometric measurements to determine the role of dpp during both pronotal and head horn development in both sexes of two morphologically dissimilar species in the Onthophagus genus, Onthophagus binodis and Onthophagus sagittarius. Our findings show that in addition to affecting growth and patterning of traditional appendages, dpp regulates beetle horn growth and remodeling.
Collapse
Affiliation(s)
- Bethany R Wasik
- Department of Biology, Indiana University, Bloomington, IN 47405-7107, USA.
| | | |
Collapse
|
41
|
|
42
|
Chenoweth SF, McGuigan K. The Genetic Basis of Sexually Selected Variation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2010. [DOI: 10.1146/annurev-ecolsys-102209-144657] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexually selected traits contribute greatly to phenotypic diversity, yet we have historically understood little about their genetic basis and how that basis may affect their evolution. Recent work in developmental and quantitative genetics has provided both mechanistic and statistical descriptions of genotype-phenotype maps for sexually selected traits. These studies expose generally complex genetic architectures; genotype-phenotype maps are polygenic with allelic effects that are pleiotropic and highly context-dependent. At the same time, developments in quantitative genetics have provided new insights into the microevolutionary potential of standing variation and indicate genetic constraints on the contemporary evolution of male sexually selected characters, mate preferences, and also male mating success itself. Understanding the extent to which these constraints are a function of genetic architecture will require a tighter integration of developmental, molecular, and quantitative genetic approaches in a variety of model systems. Emerging genomic technologies offer an unprecedented opportunity to deepen our understanding of sexual selection as an evolutionary process.
Collapse
Affiliation(s)
- Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
43
|
Kalis AK, Murphy MW, Zarkower D. EGL-5/ABD-B plays an instructive role in male cell fate determination in the C. elegans somatic gonad. Dev Biol 2010; 344:827-35. [PMID: 20553900 PMCID: PMC2921588 DOI: 10.1016/j.ydbio.2010.05.516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 01/15/2023]
Abstract
Hox genes of the Abdominal-B (Abd-B) class regulate gonadal development in diverse metazoans. Here we have investigated the role of the Abd-B homolog egl-5 in C. elegans gonadal development. Previous work showed that egl-5 is required male-specifically in the gonad and that mutant gonads are highly dysgenic and possibly feminized. We have used sex-specific gonadal reporter genes to confirm that the gonads of egl-5 males are extensively feminized. Sex-specific expression of egl-5 requires the global sex determination gene tra-1 and the gonadal masculinizing gene fkh-6, but mutagenesis of a short male gonadal enhancer element in egl-5 suggested that this regulation is indirect. Ectopic expression of EGL-5 in hermaphrodites is sufficient to induce male gonadal gene expression, indicating that EGL-5 plays an instructive role in male gonadal fate determination. EGL-5 acts in parallel with a Wnt/beta-catenin pathway to regulate male gonadal fates and can physically interact with the Wnt pathway transcription factor POP-1 and modulate activity of a POP-1 dependent reporter gene. We propose that EGL-5 imparts sex-specific function on POP-1 by recruiting it to male-specific gonadal target genes.
Collapse
Affiliation(s)
- Andrea K. Kalis
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Mark W. Murphy
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
44
|
Wasik BR, Rose DJ, Moczek AP. Beetle horns are regulated by the Hox gene, Sex combs reduced, in a species- and sex-specific manner. Evol Dev 2010; 12:353-62. [DOI: 10.1111/j.1525-142x.2010.00422.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Williams TM, Carroll SB. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet 2009; 10:797-804. [PMID: 19834484 DOI: 10.1038/nrg2687] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual dimorphism is common throughout the animal kingdom. However, a molecular understanding of how sex-specific traits develop and evolve has been elusive. Recently, substantial progress has been made in elucidating how diverse sex-determination systems are integrated into developmental gene networks. One common theme from these studies is that sex-limited traits and gene expression are produced by the combined action of transcriptional effectors of sex-determination pathways and other transcription factors on target gene cis-regulatory elements. Sex-specific traits evolve by the gain, loss or modification of linkages in the genetic networks regulated by sex-determination transcription factors.
Collapse
Affiliation(s)
- Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio 45469, USA
| | | |
Collapse
|
46
|
Germann C, Pollet M, Tanner S, Backeljau T, Bernasconi MV. Legs of deception: disagreement between molecular markers and morphology of long-legged flies (Diptera, Dolichopodidae). J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2009.00549.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Contrasting patterns of sequence evolution at the functionally redundant bric à brac paralogs in Drosophila melanogaster. J Mol Evol 2009; 69:194-202. [PMID: 19639236 PMCID: PMC2722720 DOI: 10.1007/s00239-009-9265-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 05/13/2009] [Accepted: 07/09/2009] [Indexed: 11/30/2022]
Abstract
Genes with overlapping expression and function may gradually diverge despite retaining some common functions. To test whether such genes show distinct patterns of molecular evolution within species, we examined sequence variation at the bric à brac (bab) locus of Drosophila melanogaster. This locus is composed of two anciently duplicated paralogs, bab1 and bab2, which are involved in patterning the adult abdomen, legs, and ovaries. We have sequenced the 148 kb genomic region spanning the bab1 and bab2 genes from 94 inbred lines of D. melanogaster sampled from a single location. Two non-coding regions, one in each paralog, appear to be under selection. The strongest evidence of directional selection is found in a region of bab2 that has no known functional role. The other region is located in the bab1 paralog and is known to contain a cis-regulatory element that controls sex-specific abdominal pigmentation. The coding region of bab1 appears to be under stronger functional constraint than the bab2 coding sequences. Thus, the two paralogs are evolving under different selective regimes in the same natural population, illuminating the different evolutionary trajectories of partially redundant duplicate genes.
Collapse
|
48
|
Kopp A. Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways. Evolution 2009; 63:2771-89. [PMID: 19545263 DOI: 10.1111/j.1558-5646.2009.00761.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular genetic analysis of phenotypic variation has revealed many examples of evolutionary change in the developmental pathways that control plant and animal morphology. A major challenge is to integrate the information from diverse organisms and traits to understand the general patterns of developmental evolution. This integration can be facilitated by evolutionary metamodels-traits that have undergone multiple independent changes in different species and whose development is controlled by well-studied regulatory pathways. The metamodel approach provides the comparative equivalent of experimental replication, allowing us to test whether the evolution of each developmental pathway follows a consistent pattern, and whether different pathways are predisposed to different modes of evolution by their intrinsic organization. A review of several metamodels suggests that the structure of developmental pathways may bias the genetic basis of phenotypic evolution, and highlights phylogenetic replication as a value-added approach that produces deeper insights into the mechanisms of evolution than single-species analyses.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, California 95616, USA.
| |
Collapse
|
49
|
Polak M, Simmons LW. Secondary sexual trait size reveals competitive fertilization success in Drosophila bipectinata Duda. Behav Ecol 2009. [DOI: 10.1093/beheco/arp056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
50
|
Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. Proc Natl Acad Sci U S A 2009; 106:4764-9. [PMID: 19255422 DOI: 10.1073/pnas.0807875106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Similar selective pressures can lead to independent origin of similar morphological structures in multiple evolutionary lineages. Developmental mechanisms underlying convergent evolution remain poorly understood. In this report, we show that similar sex comb morphology in closely related Drosophila species is produced by different cellular mechanisms. The sex comb is a recently evolved, male-specific array of modified bristles derived from transverse bristle rows found on the first thoracic legs in both sexes. "Longitudinal" sex combs oriented along the proximo-distal leg axis evolved independently in several Drosophila lineages. We show that in some of these lineages, sex combs originate as one or several transverse bristle rows that subsequently rotate 90 degrees and align to form a single longitudinal row. In other species, bristle cells that make up the sex combs arise in their final longitudinal orientation. Thus, sex combs can develop through either sex-specific patterning of bristle precursor cells or male-specific morphogenesis of sexually monomorphic precursors. Surprisingly, the two mechanisms produce nearly identical morphology in some species. Phylogenetic analysis shows that each of these mechanisms has probably evolved repeatedly in different Drosophila lineages, suggesting that selection can recruit different cellular processes to produce similar functional solutions.
Collapse
|