1
|
Yao C, Yao R, Luo H, Shuai L. Germline specification from pluripotent stem cells. Stem Cell Res Ther 2022; 13:74. [PMID: 35189957 PMCID: PMC8862564 DOI: 10.1186/s13287-022-02750-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Reproduction is a key event in life guaranteeing the propagation and evolution of a species. Infertility caused by abnormal germ cell development is a topic of extensive concern. Herein, in vitro germline specification studies provide a modeling platform to investigate gametogenesis. The differentiation of pluripotent stem cells (PSCs) into germ cells has been studied for more than 30 years, and there have been many astonishing breakthroughs in the last decade. Fertile sperm and oocytes can be obtained from mouse embryonic stem cells (ESCs) through a primordial germ cell (PGC)-based method. Moreover, human PGC-like cells (PGCLCs) can be derived with a similar strategy as that used for mouse PGCLC derivation. In this review, we describe the reconstitution of PGCs and the subsequent meiosis, as well as the signaling pathways and factors involved in these processes.
Collapse
|
2
|
Jang SW, Choi HW. Generation of Miniaturized Ovaries by In Vitro Culture from Mouse Gonads. Dev Reprod 2021; 25:173-183. [PMID: 34950820 PMCID: PMC8670777 DOI: 10.12717/dr.2020.25.3.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
The incidence of infertility among individuals of reproductive age has been
growing due to genetic and environmental factors, and considerable research
efforts are focused on solving this issue. Ovarian development is an overly
complex process in the body, involving the interaction between primordial germ
cells and gonad somatic cells. However, follicles located in the center of the
in vitro ovary are poorly formed owing to ovarian
complexity, nutrient deficiency, and signaling deficiency. In the present study,
we optimized methods for dissociating gonads and culture conditions for the
in vitro generation of miniaturized ovaries. The gonads
from embryos were dissociated into cell masses and cultured on a Transwell-COL
membrane for 3–5 weeks. Approximately 12 follicles were present per
in vitro ovary. We observed that miniaturized ovaries
successfully matured to MII oocytes in vitro from 150 to 100
µm gonad masses. This method will be useful for investigating follicle
development and oocyte production.
Collapse
Affiliation(s)
- Si Won Jang
- Dept. of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Hyun Woo Choi
- Dept. of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea.,Dept. of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
3
|
Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2021; 13:721-741. [PMID: 34731408 PMCID: PMC9233729 DOI: 10.1007/s13238-021-00884-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Collapse
|
4
|
Le Rolle M, Massa F, Siggers P, Turchi L, Loubat A, Koo BK, Clevers H, Greenfield A, Schedl A, Chaboissier MC, Chassot AA. Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proc Natl Acad Sci U S A 2021; 118:e2023376118. [PMID: 34301885 PMCID: PMC8325354 DOI: 10.1073/pnas.2023376118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Germ cells form the basis for sexual reproduction by producing gametes. In ovaries, primordial germ cells exit the cell cycle and the pluripotency-associated state, differentiate into oogonia, and initiate meiosis. Despite the importance of germ cell differentiation for sexual reproduction, signaling pathways regulating their fate remain largely unknown. Here, we show in mouse embryonic ovaries that germ cell-intrinsic β-catenin activity maintains pluripotency and that its repression is essential to allow differentiation and meiosis entry in a timely manner. Accordingly, in β-catenin loss-of-function and gain-of-function mouse models, the germ cells precociously enter meiosis or remain in the pluripotent state, respectively. We further show that interaction of β-catenin and the pluripotent-associated factor POU5F1 in the nucleus is associated with germ cell pluripotency. The exit of this complex from the nucleus correlates with germ cell differentiation, a process promoted by the up-regulation of Znrf3, a negative regulator of WNT/β-catenin signaling. Together, these data identify the molecular basis of the transition from primordial germ cells to oogonia and demonstrate that β-catenin is a central gatekeeper in ovarian differentiation and gametogenesis.
Collapse
Affiliation(s)
- Morgane Le Rolle
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Filippo Massa
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
- Inovarion, 75005 Paris, France
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, United Kingdom
| | - Laurent Turchi
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
- Délégation à la Recherche Clinique et à l'Innovation, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Agnès Loubat
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Bon-Kyoung Koo
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, United Kingdom
| | - Andreas Schedl
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Marie-Christine Chaboissier
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Anne-Amandine Chassot
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France;
| |
Collapse
|
5
|
Sararols P, Stévant I, Neirijnck Y, Rebourcet D, Darbey A, Curley MK, Kühne F, Dermitzakis E, Smith LB, Nef S. Specific Transcriptomic Signatures and Dual Regulation of Steroidogenesis Between Fetal and Adult Mouse Leydig Cells. Front Cell Dev Biol 2021; 9:695546. [PMID: 34262907 PMCID: PMC8273516 DOI: 10.3389/fcell.2021.695546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Leydig cells (LC) are the main testicular androgen-producing cells. In eutherian mammals, two types of LCs emerge successively during testicular development, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). Both display significant differences in androgen production and regulation. Using bulk RNA sequencing, we compared the transcriptomes of both LC populations to characterize their specific transcriptional and functional features. Despite similar transcriptomic profiles, a quarter of the genes show significant variations in expression between FLCs and ALCs. Non-transcriptional events, such as alternative splicing was also observed, including a high rate of intron retention in FLCs compared to ALCs. The use of single-cell RNA sequencing data also allowed the identification of nine FLC-specific genes and 50 ALC-specific genes. Expression of the corticotropin-releasing hormone 1 (Crhr1) receptor and the ACTH receptor melanocortin type 2 receptor (Mc2r) specifically in FLCs suggests a dual regulation of steroidogenesis. The androstenedione synthesis by FLCs is stimulated by luteinizing hormone (LH), corticotrophin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) whereas the testosterone synthesis by ALCs is dependent exclusively on LH. Overall, our study provides a useful database to explore LC development and functions.
Collapse
Affiliation(s)
- Pauline Sararols
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Annalucia Darbey
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael K Curley
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Françoise Kühne
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia.,Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Di Giovannantonio LG, Acampora D, Omodei D, Nigro V, Barba P, Barbieri E, Chambers I, Simeone A. Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development 2021; 148:263923. [PMID: 33999993 DOI: 10.1242/dev.199166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.
Collapse
Affiliation(s)
| | - Dario Acampora
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Daniela Omodei
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Tommaso De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania 'Luigi Vanvitelli', Via L. De Crecchio, 7, 80138 Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli (NA), Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Elisa Barbieri
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
7
|
Sheng X, Tian C, Liu L, Wang L, Ye X, Li J, Zeng M, Liu L. Characterization of oogonia stem cells in mice by Fragilis. Protein Cell 2020; 10:825-831. [PMID: 31559571 PMCID: PMC6834537 DOI: 10.1007/s13238-019-00654-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ming Zeng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Kobayashi T, Kobayashi H, Goto T, Takashima T, Oikawa M, Ikeda H, Terada R, Yoshida F, Sanbo M, Nakauchi H, Kurimoto K, Hirabayashi M. Germline development in rat revealed by visualization and deletion of Prdm14. Development 2020; 147:dev.183798. [PMID: 32001439 DOI: 10.1242/dev.183798] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
Primordial germ cells (PGCs), the founder cells of the germline, are specified in pre-gastrulating embryos in mammals, and subsequently migrate towards gonads to mature into functional gametes. Here, we investigated PGC development in rats, by genetically modifying Prdm14, a unique marker and an essential PGC transcriptional regulator. We trace PGC development in rats, for the first time, from specification until the sex determination stage in fetal gonads using Prdm14 H2BVenus knock-in rats. We uncover that the crucial role of Prdm14 in PGC specification is conserved between rat and mice, by analyzing Prdm14-deficient rat embryos. Notably, loss of Prdm14 completely abrogates the PGC program, as demonstrated by failure of the maintenance and/or activation of germ cell markers and pluripotency genes. Finally, we profile the transcriptome of the post-implantation epiblast and all PGC stages in rat to reveal enrichment of distinct gene sets at each transition point, thereby providing an accurate transcriptional timeline for rat PGC development. Thus, the novel genetically modified rats and data sets obtained in this study will advance our knowledge on conserved versus species-specific features for germline development in mammals.
Collapse
Affiliation(s)
- Toshihiro Kobayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan.,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Teppei Goto
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Tomoya Takashima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, 156-8502 Tokyo, Japan
| | - Mami Oikawa
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Reiko Terada
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Fumika Yoshida
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan .,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| |
Collapse
|
9
|
Abdyyev VK, Dashinimayev EB, Neklyudova IV, Vorotelyak EA, Vasiliev AV. Modern Technologies Deriving Human Primordial Germ Cells in vitro. BIOCHEMISTRY (MOSCOW) 2019; 84:220-231. [PMID: 31221060 DOI: 10.1134/s0006297919030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Primordial germ cells (PGCs) are a unique type of stem cells capable of giving rise to totipotent stem cells and ensuring the fertility of an organism and the transfer of its genome to the next generation. PGC research is an important perspective research field of developmental biology that handles many questions of embryogenesis and holds promise for treatments of infertility in the future. Considering ethical concerns related to human embryos, the main research approach in understanding the biology of human PGCs is in vitro studies. In this review, we consider the historical perspective of human PGC studies in vitro, the main existing models, and further outlooks and applications in medicine and science.
Collapse
Affiliation(s)
- V K Abdyyev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | - E B Dashinimayev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Pirogov Russian Research Medical University, Moscow, 117997, Russia
| | - I V Neklyudova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - E A Vorotelyak
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Pirogov Russian Research Medical University, Moscow, 117997, Russia
| | - A V Vasiliev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
10
|
Sybirna A, Wong FCK, Surani MA. Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Curr Top Dev Biol 2019; 135:35-89. [PMID: 31155363 DOI: 10.1016/bs.ctdb.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primordial germ cells (PGCs) are embryonic precursors of sperm and egg that pass on genetic and epigenetic information from one generation to the next. In mammals, they are induced from a subset of cells in peri-implantation epiblast by BMP signaling from the surrounding tissues. PGCs then initiate a unique developmental program that involves comprehensive epigenetic resetting and repression of somatic genes. This is orchestrated by a set of signaling molecules and transcription factors that promote germ cell identity. Here we review significant findings on mammalian PGC biology, in particular, the genetic basis for PGC specification in mice and human, which has revealed an evolutionary divergence between the two species. We discuss the importance and potential basis for these differences and focus on several examples to illustrate the conserved and divergent roles of critical transcription factors in mouse and human germline.
Collapse
Affiliation(s)
- Anastasiya Sybirna
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederick C K Wong
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
11
|
Tan H, Tee WW. Committing the primordial germ cell: An updated molecular perspective. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1436. [PMID: 30225862 DOI: 10.1002/wsbm.1436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
The germ line is a crucial cell lineage that is distinct from somatic cells, and solely responsible for the trans-generational transmission of hereditary information in metazoan sexual reproduction. Primordial germ cells (PGCs)-the precursors to functional germ cells-are among the first cell types to be allocated in embryonic development, and this lineage commitment is a critical event in partitioning germ line and somatic tissues. Classically, mammalian PGC development has been largely informed by investigations on mouse embryos and embryonic stem cells. Recent findings from corresponding nonrodent systems, however, have indicated that murine PGC specification may not be fully archetypal. In this review, we outline the current understanding of molecular mechanisms in PGC specification, emphasizing key transcriptional events, and focus on salient differences between early human and mouse PGC commitment. Beyond these latest findings, we also contemplate the future outlook of inquiries in this field, highlighting the importance of comprehensively understanding early fate decisions that underlie the segregation of this unique lineage. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Biological Mechanisms > Cell Fates Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Haihan Tan
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Hamer G, de Rooij DG. Mutations causing specific arrests in the development of mouse primordial germ cells and gonocytes. Biol Reprod 2018; 99:75-86. [DOI: 10.1093/biolre/ioy075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells. Proc Natl Acad Sci U S A 2017; 114:8289-8294. [PMID: 28716939 DOI: 10.1073/pnas.1620915114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primordial germ cells (PGCs), undifferentiated embryonic germ cells, are the only cells that have the ability to become gametes and to reacquire totipotency upon fertilization. It is generally understood that the development of PGCs proceeds through the expression of germ cell-specific transcription factors and characteristic epigenomic changes. However, little is known about the properties of PGCs at the metabolite and protein levels, which are directly responsible for the control of cell function. Here, we report the distinct energy metabolism of PGCs compared with that of embryonic stem cells. Specifically, we observed remarkably enhanced oxidative phosphorylation (OXPHOS) and decreased glycolysis in embryonic day 13.5 (E13.5) PGCs, a pattern that was gradually established during PGC differentiation. We also demonstrate that glycolysis and OXPHOS are important for the control of PGC reprogramming and specification of pluripotent stem cells (PSCs) into PGCs in culture. Our findings about the unique metabolic property of PGCs provide insights into our understanding of the importance of distinct facets of energy metabolism for switching PGC and PSC status.
Collapse
|
14
|
Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment. Sci Rep 2016; 6:32932. [PMID: 27608931 PMCID: PMC5016969 DOI: 10.1038/srep32932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs.
Collapse
|
15
|
De Felici M. The Formation and Migration of Primordial Germ Cells in Mouse and Man. Results Probl Cell Differ 2016; 58:23-46. [DOI: 10.1007/978-3-319-31973-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Park E, Lee B, Clurman BE, Lee K. NUP50 is necessary for the survival of primordial germ cells in mouse embryos. Reproduction 2016; 151:51-8. [DOI: 10.1530/rep-14-0649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/29/2015] [Indexed: 11/08/2022]
Abstract
Nucleoporin 50 kDa (NUP50), a component of the nuclear pore complex, is highly expressed in male germ cells, but its role in germ cells is largely unknown. In this study, we analyzed the expression and function of NUP50 during the embryonic development of germ cells using NUP50-deficient mice. NUP50 was expressed in germ cells of both sexes at embryonic day 15.5 (E15.5), E13.5, and E12.5. In addition, NUP50 expression was also detected in primordial germ cells (PGCs) migrating into the genital ridges at E9.5. The gonads of Nup50−/− embryos of both sexes contained few PGCs at both E11.5 and E12.5 and no developing germ cells at E15.5. The migratory PGCs in Nup50−/− embryos at E9.5 showed increased apoptosis but a normal rate of proliferation, resulting in the progressive loss of germ cells at later stages. Taken together, these results suggest that NUP50 plays an essential role in the survival of PGCs during embryonic development.
Collapse
|
17
|
Yamashiro C, Hirota T, Kurimoto K, Nakamura T, Yabuta Y, Nagaoka SI, Ohta H, Yamamoto T, Saitou M. Persistent Requirement and Alteration of the Key Targets of PRDM1 During Primordial Germ Cell Development in Mice. Biol Reprod 2015; 94:7. [PMID: 26586842 DOI: 10.1095/biolreprod.115.133256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Primordial germ cells (PGCs) are the foundation of totipotency and vital for reproduction and heredity. PGCs in mice arise from the epiblast around Embryonic Day (E) 7.0, migrate through the hindgut endoderm, and colonize and proliferate in the embryonic gonads until around E13.5 prior to their differentiation either into prospermatogonia or oogonia. PRDM1, a transcriptional repressor, plays an essential role in PGC specification that includes robustly repressing a somatic mesodermal program. Using an inducible conditional knockout system, we show here that PRDM1 is critically required throughout PGC development. When Prdm1 was deleted in migrating PGCs at E9.5 or E10.5, or in male gonadal PGCs at E11.5, PGCs were eliminated by apoptosis from around E10.5, E11.5, or E13.5, respectively. When Prdm1 was deleted in female gonadal PGCs at E11.5, PGCs progressed into the first meiotic prophase in an apparently normal fashion, but the oogonia exhibited an aberrant pachytene phenotype, undergoing abrupt apoptosis from around E16.5. The escape of a fraction of PGCs (∼10%) from the Prdm1 deletion was sufficient to recover fairly normal germ cell pools, both in male and female adults. The key targets of PRDM1 in migrating and/or gonadal PGCs, including genes for development, apoptosis, and prospermatogonial differentiation, showed only a modest overlap with those upon PGC specification, and were enriched with histone H3 lysine 27 trimethylation (H3K27me3). Our findings provide critical insight into the mechanism for maintaining the transcriptional integrity of PGCs.
Collapse
Affiliation(s)
- Chika Yamashiro
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Takayuki Hirota
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - So I Nagaoka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan JST, Agency for Medical Research and Development (AMED) - Core Research for Evolutional Science and Technology (CREST), Saitama, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Yamaguchi YL, Tanaka SS, Kumagai M, Fujimoto Y, Terabayashi T, Matsui Y, Nishinakamura R. Sall4 is essential for mouse primordial germ cell specification by suppressing somatic cell program genes. Stem Cells 2015; 33:289-300. [PMID: 25263278 DOI: 10.1002/stem.1853] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/29/2014] [Indexed: 01/03/2023]
Abstract
The Spalt-like 4 (Sall4) zinc finger protein is a critical transcription factor for pluripotency in embryonic stem cells (ESCs). It is also involved in the formation of a variety of organs, in mice, and humans. We report the essential roles of Sall4 in mouse primordial germ cell (PGC) specification. PGC specification is accompanied by the activation of the stem cell program and repression of the somatic cell program in progenitor cells. Conditional inactivation of Sall4 during PGC specification led to a reduction in the number of PGCs in embryonic gonads. Sall4(del/del) PGCs failed to translocate from the mesoderm to the endoderm and underwent apoptosis. In Sall4(del/del) PGC progenitors, somatic cell program genes (Hoxa1 and Hoxb1) were derepressed, while activation of the stem cell program was not impaired. We demonstrated that in differentiated ESCs, Sall4 bound to these somatic cell program gene loci, which are reportedly occupied by Prdm1 in embryonic carcinoma cells. Given that Sall4 and Prdm1 are known to associate with the histone deacetylase repressor complex, our findings suggest that Sall4 suppresses the somatic cell program possibly by recruiting the repressor complex in conjunction with Prdm1; therefore, it is essential for PGC specification.
Collapse
Affiliation(s)
- Yasuka L Yamaguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Integrative Analysis of the Acquisition of Pluripotency in PGCs Reveals the Mutually Exclusive Roles of Blimp-1 and AKT Signaling. Stem Cell Reports 2015; 5:111-24. [PMID: 26050930 PMCID: PMC4618250 DOI: 10.1016/j.stemcr.2015.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
Primordial germ cells (PGCs) are lineage-restricted unipotent cells that can dedifferentiate into pluripotent embryonic germ cells (EGCs). Here we performed whole-transcriptome analysis during the conversion of PGCs into EGCs, a process by which cells acquire pluripotency. To examine the molecular mechanism underlying this conversion, we focused on Blimp-1 and Akt, which are involved in PGC specification and dedifferentiation, respectively. Blimp-1 overexpression in embryonic stem cells suppressed the expression of downstream targets of the pluripotency network. Conversely, Blimp-1 deletion in PGCs accelerated their dedifferentiation into pluripotent EGCs, illustrating that Blimp-1 is a pluripotency gatekeeper protein in PGCs. AKT signaling showed a synergistic effect with basic fibroblast growth factor plus 2i+A83 treatment on EGC formation. AKT played a major role in suppressing genes regulated by MBD3. From these results, we defined the distinct functions of Blimp-1 and Akt and provided mechanistic insights into the acquisition of pluripotency in PGCs.
Collapse
|
20
|
Scaldaferri ML, Klinger FG, Farini D, Di Carlo A, Carsetti R, Giorda E, De Felici M. Hematopoietic activity in putative mouse primordial germ cell populations. Mech Dev 2015; 136:53-63. [PMID: 25684074 DOI: 10.1016/j.mod.2015.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/19/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
In the present paper, starting from the observation of heterogeneous expression of the GOF-18ΔPE-GFP Pou5f1 (Oct3/4) transgene in putative mouse PGC populations settled in the aorta-gonad-mesonephros (AGM) region, we identified various OCT3/4 positive populations showing distinct expression of PGC markers (BLIMP-1, AP, TG-1, STELLA) and co-expressing several proteins (CD-34, CD-41, FLK-1) and genes (Brachyury, Hox-B4, Scl/Tal-1 and Gata-2) of hematopoietic precursors. Moreover, we found that Oct3/4-GFP(weak) CD-34(weak/high) cells possess robust hematopoietic colony forming activity (CFU) in vitro. These data indicate that the cell population usually considered PGCs moving toward the gonadal ridges encompasses a subset of cells co-expressing several germ cell and hematopoietic markers and possessing hematopoietic activity. These results are discussed within of the current model of germline segregation.
Collapse
Affiliation(s)
- Maria Lucia Scaldaferri
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Di Carlo
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Rita Carsetti
- Research Center Ospedale Pediatrico Bambino Gesù, IRCSS, Laboratory of Flow-Cytometry and B Cell Development, Rome, Italy
| | - Ezio Giorda
- Research Center Ospedale Pediatrico Bambino Gesù, IRCSS, Laboratory of Flow-Cytometry and B Cell Development, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
21
|
Matsui Y, Takehara A, Tokitake Y, Ikeda M, Obara Y, Morita-Fujimura Y, Kimura T, Nakano T. The majority of early primordial germ cells acquire pluripotency by AKT activation. Development 2014; 141:4457-67. [PMID: 25359722 DOI: 10.1242/dev.113779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primordial germ cells (PGCs) are undifferentiated germ cells in embryos, the fate of which is to become gametes; however, mouse PGCs can easily be reprogrammed into pluripotent embryonic germ cells (EGCs) in culture in the presence of particular extracellular factors, such as combinations of Steel factor (KITL), LIF and bFGF (FGF2). Early PGCs form EGCs more readily than do later PGCs, and PGCs lose the ability to form EGCs by embryonic day (E) 15.5. Here, we examined the effects of activation of the serine/threonine kinase AKT in PGCs during EGC formation; notably, AKT activation, in combination with LIF and bFGF, enhanced EGC formation and caused ∼60% of E10.5 PGCs to become EGCs. The results indicate that the majority of PGCs at E10.5 could acquire pluripotency with an activated AKT signaling pathway. Importantly, AKT activation did not fully substitute for bFGF and LIF, and AKT activation without both LIF and bFGF did not result in EGC formation. These findings indicate that AKT signal enhances and/or collaborates with signaling pathways of bFGF and of LIF in PGCs for the acquisition of pluripotency.
Collapse
Affiliation(s)
- Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan CREST, JST, Kawaguchi, Saitama 332-0012, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yuko Tokitake
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan CREST, JST, Kawaguchi, Saitama 332-0012, Japan
| | - Makiko Ikeda
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yuka Obara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yuiko Morita-Fujimura
- Frontier Research Institute of Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tohru Kimura
- School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Toru Nakano
- CREST, JST, Kawaguchi, Saitama 332-0012, Japan Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Irie N, Tang WWC, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol 2014; 13:203-215. [PMID: 25298745 PMCID: PMC4182624 DOI: 10.1007/s12522-014-0184-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022] Open
Abstract
Germ cells are unique cell types that generate a totipotent zygote upon fertilization, giving rise to the next generation in mammals and many other multicellular organisms. How germ cells acquire this ability has been of considerable interest. In mammals, primordial germ cells (PGCs), the precursors of sperm and oocytes, are specified around the time of gastrulation. PGCs are induced by signals from the surrounding extra-embryonic tissues to the equipotent epiblast cells that give rise to all cell types. Currently, the mechanism of PGC specification in mammals is best understood from studies in mice. Following implantation, the epiblast cells develop as an egg cylinder while the extra-embryonic ectoderm cells which are the source of important signals for PGC specification are located over the egg cylinder. However, in most cases, including humans, the epiblast cells develop as a planar disc, which alters the organization and the source of the signaling for cell fates. This, in turn, might have an effect on the precise mechanism of PGC specification in vivo as well as in vitro using pluripotent embryonic stem cells. Here, we discuss how the key early embryonic differences between rodents and other mammals may affect the establishment of the pluripotency network in vivo and in vitro, and consequently the basis for PGC specification, particularly from pluripotent embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - Walfred W. C. Tang
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| |
Collapse
|
23
|
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, Rossi P, Jannini EA, Dolci S. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 2014; 31:1408-21. [PMID: 23553930 DOI: 10.1002/stem.1392] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Abstract
Sox2 is a pluripotency-conferring gene expressed in primordial germ cells (PGCs) and postnatal oocytes, but the role it plays during germ cell development and early embryogenesis is unknown. Since Sox2 ablation causes early embryonic lethality shortly after blastocyst implantation, we generated mice bearing Sox2-conditional deletion in germ cells at different stages of their development through the Cre/loxP recombination system. Embryos lacking Sox2 in PGCs show a dramatic decrease of germ cell numbers at the time of their specification. At later stages, we found that Sox2 is strictly required for PGC proliferation. On the contrary, Sox2 deletion in meiotic oocytes does not impair postnatal oogenesis and early embryogenesis, indicating that it is not essential for oocyte maturation or for zygotic development. We also show that Sox2 regulates Kit expression in PGCs and binds to discrete transcriptional regulatory sequences of this gene, which is known to be important for PGCs survival and proliferation. Sox2 also stimulates the expression of Zfp148, which is required for normal development of fetal germ cells, and Rif1, a potential regulator of PGC pluripotency.
Collapse
Affiliation(s)
- Federica Campolo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Torvergata, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Leitch HG, Tang WWC, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 2014; 104:149-87. [PMID: 23587241 DOI: 10.1016/b978-0-12-416027-9.00005-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
Collapse
Affiliation(s)
- Harry G Leitch
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
25
|
Jorgensen JS. Defining the neighborhoods that escort the oocyte through its early life events and into a functional follicle. Mol Reprod Dev 2013; 80:960-76. [PMID: 24105719 PMCID: PMC3980676 DOI: 10.1002/mrd.22232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 01/19/2023]
Abstract
The ovary functions to chaperone the most precious cargo for female individuals, the oocyte, thereby allowing the passage of genetic material to subsequent generations. Within the ovary, single oocytes are surrounded by a legion of granulosa cells inside each follicle. These two cell types depend upon one another to support follicle formation and oocyte survival. The infrastructure and events that work together to ultimately form these functional follicles within the ovary are unprecedented, given that the oocyte originates as a cell like all other neighboring cells within the embryo prior to gastrulation. This review discusses the journey of the germ cell in the context of the developing female mouse embryo, with a focus on specific signaling events and cell-cell interactions that escort the primordial germ cell as it is specified into the germ cell fate, migrates through the hindgut into the gonad, differentiates into an oocyte, and culminates upon formation of the primordial and then primary follicle.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
26
|
Dunlop CE, Telfer EE, Anderson RA. Ovarian stem cells--potential roles in infertility treatment and fertility preservation. Maturitas 2013; 76:279-283. [PMID: 23693139 DOI: 10.1016/j.maturitas.2013.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/22/2022]
Abstract
One of the principal beliefs in reproductive biology is that women have a finite ovarian reserve, which is fixed from the time they are born. This theory has been questioned recently by the discovery of ovarian stem cells which are purported to have the ability to form new oocytes under specific conditions post-natally. Almost a decade after their discovery, ovarian, or oogonial, stem cells (OSCs) have been isolated in mice and humans but remain the subject of much debate. Studies in mice have shown that these cells can be cultured to a mature oocyte stage in vitro, and when injected into germ-cell depleted ovary they can form follicles and have resulted in the birth of healthy offspring. There are few data from human OSCs but this finding would open the door to novel fertility preservation strategies for women with both age-related and premature ovarian insufficiency (POI). As the number of girls and young women surviving cancer increases worldwide, POI secondary to gonadotoxic treatments, such as chemotherapy, is becoming more common. The ideal fertility preservation approach would prevent delays in commencing life-saving treatment and avoid transplanting malignant cells back into a woman after treatment: OSCs may offer one route to achieving this. This review summarises our current understanding of OSCs and discusses their potential clinical application in infertility treatment and fertility preservation.
Collapse
Affiliation(s)
- Cheryl E Dunlop
- MRC Centre for Reproductive Health, University of Edinburgh, Queens Medical Research Institute, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
27
|
Matsui Y, Mochizuki K. A current view of the epigenome in mouse primordial germ cells. Mol Reprod Dev 2013; 81:160-70. [DOI: 10.1002/mrd.22214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer; Tohoku University; Sendai Miyagi Japan
| | - Kentaro Mochizuki
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer; Tohoku University; Sendai Miyagi Japan
| |
Collapse
|
28
|
Abstract
DNA methylation is among the best studied epigenetic modifications and is essential to mammalian development. Although the methylation status of most CpG dinucleotides in the genome is stably propagated through mitosis, improvements to methods for measuring methylation have identified numerous regions in which it is dynamically regulated. In this Review, we discuss key concepts in the function of DNA methylation in mammals, stemming from more than two decades of research, including many recent studies that have elucidated when and where DNA methylation has a regulatory role in the genome. We include insights from early development, embryonic stem cells and adult lineages, particularly haematopoiesis, to highlight the general features of this modification as it participates in both global and localized epigenetic regulation.
Collapse
|
29
|
Alberio R, Perez AR. Recent advances in stem and germ cell research: implications for the derivation of pig pluripotent cells. Reprod Domest Anim 2013; 47 Suppl 4:98-106. [PMID: 22827357 DOI: 10.1111/j.1439-0531.2012.02062.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pluripotent stem cells have the unique capacity to contribute to all the tissues of an adult animal after transfer into a host embryo. How pluripotency is acquired during early development and how it is maintained in stem cells have attracted the interest of many scientists for over three decades. Much progress in our understanding of how stem cells arise in culture and the signals required for homoeostasis has enabled the derivation of pluripotent cells in multiple species. Here, we discuss recent developments in stem cell biology that will impact the generation of pluripotent cells from different embryonic origins and will contribute to increase our capacity for generating transgenic animals.
Collapse
Affiliation(s)
- R Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.
| | | |
Collapse
|
30
|
Abstract
Germ cell development creates totipotency through genetic as well as epigenetic regulation of the genome function. Primordial germ cells (PGCs) are the first germ cell population established during development and are immediate precursors for both the oocytes and spermatogonia. We here summarize recent findings regarding the mechanism of PGC development in mice. We focus on the transcriptional and signaling mechanism for PGC specification, potential pluripotency, and epigenetic reprogramming in PGCs and strategies for the reconstitution of germ cell development using pluripotent stem cells in culture. Continued studies on germ cell development may lead to the generation of totipotency in vitro, which should have a profound influence on biological science as well as on medicine.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Japan.
| | | |
Collapse
|
31
|
Abstract
The germ line represents a continuous cellular link between generations and between species, but the germ cells themselves develop in a specialized, organism-specific context. The model organisms Caenorhabditis elegans, Drosophila melanogaster and the mouse display striking similarities, as well as major differences, in the means by which they control germ cell development. Recent developments in genetic technologies allow a more detailed comparison of the germ cells of these three organisms than has previously been possible, shedding light not only on universal aspects of germline regulation, but also on the control of the pluripotent state in vivo and on the earliest steps of embryogenesis. Here, we highlight themes from the comparison of these three alternative strategies for navigating the fundamental cycle of sexual reproduction.
Collapse
|
32
|
Implication of DNA demethylation and bivalent histone modification for selective gene regulation in mouse primordial germ cells. PLoS One 2012; 7:e46036. [PMID: 23029374 PMCID: PMC3461056 DOI: 10.1371/journal.pone.0046036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/28/2012] [Indexed: 01/15/2023] Open
Abstract
Primordial germ cells (PGCs) sequentially induce specific genes required for their development. We focused on epigenetic changes that regulate PGC-specific gene expression. mil-1, Blimp1, and Stella are preferentially expressed in PGCs, and their expression is upregulated during PGC differentiation. Here, we first determined DNA methylation status of mil-1, Blimp1, and Stella regulatory regions in epiblast and in PGCs, and found that they were hypomethylated in differentiating PGCs after E9.0, in which those genes were highly expressed. We used siRNA to inhibit a maintenance DNA methyltransferase, Dnmt1, in embryonic stem (ES) cells and found that the flanking regions of all three genes became hypomethylated and that expression of each gene increased 1.5- to 3-fold. In addition, we also found 1.5- to 5-fold increase of the PGC genes in the PGCLCs (PGC-like cells) induced form ES cells by knockdown of Dnmt1. We also obtained evidence showing that methylation of the regulatory region of mil-1 resulted in 2.5-fold decrease in expression in a reporter assay. Together, these results suggested that DNA demethylation does not play a major role on initial activation of the PGC genes in the nascent PGCs but contributed to enhancement of their expression in PGCs after E9.0. However, we also found that repression of representative somatic genes, Hoxa1 and Hoxb1, and a tissue-specific gene, Gfap, in PGCs was not dependent on DNA methylation; their flanking regions were hypomethylated, but their expression was not observed in PGCs at E13.5. Their promoter regions showed the bivalent histone modification in PGCs, that may be involved in repression of their expression. Our results indicated that epigenetic status of PGC genes and of somatic genes in PGCs were distinct, and suggested contribution of epigenetic mechanisms in regulation of the expression of a specific gene set in PGCs.
Collapse
|
33
|
Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci U S A 2012; 109:12580-5. [PMID: 22778414 DOI: 10.1073/pnas.1206600109] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.
Collapse
|
34
|
Imamura M, Lin ZYC, Okano H. Cell-intrinsic reprogramming capability: gain or loss of pluripotency in germ cells. Reprod Med Biol 2012; 12:1-14. [PMID: 29699125 DOI: 10.1007/s12522-012-0131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022] Open
Abstract
In multicellular organisms, germ cells are an extremely specialized cell type with the vital function of transmitting genetic information across generations. In this respect, they are responsible for the perpetuity of species, and are separated from somatic lineages at each generation. Interestingly, in the past two decades research has shown that germ cells have the potential to proceed along two distinct pathways: gametogenesis or pluripotency. Unequivocally, the primary role of germ cells is to produce gametes, the sperm or oocyte, to produce offspring. However, under specific conditions germ cells can become pluripotent, as shown by teratoma formation in vivo or cell culture-induced reprogramming in vitro. This phenomenon seems to be a general propensity of germ cells, irrespective of developmental phase. Recent attempts at cellular reprogramming have resulted in the generation of induced pluripotent stem cells (iPSCs). In iPSCs, the intracellular molecular networks instructing pluripotency have been activated and override the exclusively somatic cell programs that existed. Because the generation of iPSCs is highly artificial and depends on gene transduction, whether the resulting machinery reflects any physiological cell-intrinsic programs is open to question. In contrast, germ cells can spontaneously shift their fate to pluripotency during in-vitro culture. Here, we review the two fates of germ cells, i.e., differentiation and reprogramming. Understanding the molecular mechanisms regulating differentiation versus reprogramming would provide invaluable insight into understanding the mechanisms of cellular reprogramming that generate iPSCs.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| |
Collapse
|
35
|
Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, Yu J, Yeh RF, Hebrok M, Ramalho-Santos M. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet 2012; 21:2054-67. [PMID: 22286172 DOI: 10.1093/hmg/dds023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are derived from culture of early embryos or the germline and can be induced by reprogramming of somatic cells. Barriers to reprogramming that stabilize the differentiated state and have tumor suppression functions are expected to exist. However, we have a limited understanding of what such barriers might be. To find novel barriers to reprogramming to pluripotency, we compared the transcriptional profiles of the mouse germline with pluripotent and somatic cells, in vivo and in vitro. There is a remarkable global expression of the transcriptional program for pluripotency in primordial germ cells (PGCs). We identify parallels between PGC reprogramming to pluripotency and human germ cell tumorigenesis, including the loss of LATS2, a tumor suppressor kinase of the Hippo pathway. We show that knockdown of LATS2 increases the efficiency of induction of pluripotency in human cells. LATS2 RNAi, unlike p53 RNAi, specifically enhances the generation of fully reprogrammed iPS cells without accelerating cell proliferation. We further show that LATS2 represses reprogramming in human cells by post-transcriptionally antagonizing TAZ but not YAP, two downstream effectors of the Hippo pathway. These results reveal transcriptional parallels between germ cell transformation and the generation of iPS cells and indicate that the Hippo pathway constitutes a barrier to cellular reprogramming.
Collapse
Affiliation(s)
- Han Qin
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Diabetes Center, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cools M, Wolffenbuttel KP, Drop SLS, Oosterhuis JW, Looijenga LHJ. Gonadal development and tumor formation at the crossroads of male and female sex determination. Sex Dev 2011; 5:167-80. [PMID: 21791949 DOI: 10.1159/000329477] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 01/19/2023] Open
Abstract
Malignant germ cell tumor (GCT) formation is a well-known complication in the management of patients with a disorder of sex development (DSD). DSDs are defined as congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. DSD patients in whom the karyotype - at least at the gonadal level - contains (a part of) the Y chromosome are at increased risk for neoplastic transformation of germ cells, leading to the development of the so-called 'type II germ cell tumors'. However, tumor risk in the various forms of DSD varies considerably between the different diagnostic groups. This contribution integrates our actual knowledge on the pathophysiology of tumor development in DSDs, recent findings on gonadal (mal)development in DSD patients, and possible correlations between the patient's phenotype and his/her risk for germ cell tumor development.
Collapse
Affiliation(s)
- M Cools
- Division of Pediatric Endocrinology, Department of Pediatrics, University Hospital Ghent and Ghent University, Belgium. martine.cools @ ugent.be
| | | | | | | | | |
Collapse
|
37
|
Sustáčková G, Legartová S, Kozubek S, Stixová L, Pacherník J, Bártová E. Differentiation-independent fluctuation of pluripotency-related transcription factors and other epigenetic markers in embryonic stem cell colonies. Stem Cells Dev 2011; 21:710-20. [PMID: 21609209 DOI: 10.1089/scd.2011.0085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Embryonic stem cells (ESCs) maintain their pluripotency through high expression of pluripotency-related genes. Here, we show that differing levels of Oct4, Nanog, and c-myc proteins among the individual cells of mouse ESC (mESC) colonies and fluctuations in these levels do not disturb mESC pluripotency. Cells with strong expression of Oct4 had low levels of Nanog and c-myc proteins and vice versa. In addition, cells with high levels of Nanog tended to occupy interior regions of mESC colonies. In contrast, peripherally positioned cells within colonies had dense H3K27-trimethylation, especially at the nuclear periphery. We also observed distinct levels of endogenous and exogenous Oct4 in particular cell cycle phases. The highest levels of Oct4 occurred in G2 phase, which correlated with the pKi-67 nuclear pattern. Moreover, the Oct4 protein resided on mitotic chromosomes. We suggest that there must be an endogenous mechanism that prevents the induction of spontaneous differentiation, despite fluctuations in protein levels within an mESC colony. Based on the results presented here, it is likely that cells within a colony support each other in the maintenance of pluripotency.
Collapse
Affiliation(s)
- Gabriela Sustáčková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
38
|
Cheong CY, Lon Ng PM, Ponnampalam R, Tsai HH, Bourque G, Lufkin T. In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Res Ther 2011; 2:26. [PMID: 21569470 PMCID: PMC3218817 DOI: 10.1186/scrt67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Octamer-binding transcription factor 4 (Oct4) is a master regulator of early mammalian development. Its expression begins from the oocyte stage, becomes restricted to the inner cell mass of the blastocyst and eventually remains only in primordial germ cells. Unearthing the interactions of Oct4 would provide insight into how this transcription factor is central to cell fate and stem cell pluripotency. METHODS In the present study, affinity-tagged endogenous Oct4 cell lines were established via homologous recombination gene targeting in embryonic stem (ES) cells to express tagged Oct4. This allows tagged Oct4 to be expressed without altering the total Oct4 levels from their physiological levels. RESULTS Modified ES cells remained pluripotent. However, when modified ES cells were tested for their functionality, cells with a large tag failed to produce viable homozygous mice. Use of a smaller tag resulted in mice with normal development, viability and fertility. This indicated that the choice of tags can affect the performance of Oct4. Also, different tags produce a different repertoire of Oct4 interactors. CONCLUSIONS Using a total of four different tags, we found 33 potential Oct4 interactors, of which 30 are novel. In addition to transcriptional regulation, the molecular function associated with these Oct4-associated proteins includes various other catalytic activities, suggesting that, aside from chromosome remodeling and transcriptional regulation, Oct4 function extends more widely to other essential cellular mechanisms. Our findings show that multiple purification approaches are needed to uncover a comprehensive Oct4 protein interaction network.
Collapse
Affiliation(s)
- Clara Yujing Cheong
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | | | | | | | | | | |
Collapse
|
39
|
Hyldig SMW, Croxall N, Contreras DA, Thomsen PD, Alberio R. Epigenetic reprogramming in the porcine germ line. BMC DEVELOPMENTAL BIOLOGY 2011; 11:11. [PMID: 21352525 PMCID: PMC3051914 DOI: 10.1186/1471-213x-11-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 02/25/2011] [Indexed: 11/16/2022]
Abstract
Background Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. Results Our results show loss of DNA methylation in PGC colonizing the genital ridges. Analysis of IGF2-H19 regulatory region showed a gradual demethylation between E22-E42. In contrast, DMR2 of IGF2R was already demethylated in male PGC by E22. In females, IGF2R demethylation was delayed until E29-31, and was de novo methylated by E42. DNA repeats were gradually demethylated from E25 to E29-31, and became de novo methylated by E42. Analysis of histone marks showed strong H3K27me3 staining in migratory PGC between E15 and E21. In contrast, H3K9me2 signal was low in PGC by E15 and completely erased by E21. Cell cycle analysis of gonadal PGC (E22-31) showed a typical pattern of cycling cells, however, migrating PGC (E17) showed an increased proportion of cells in G2. Conclusions Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding of the sequential reprogramming of PGC in the pig will facilitate the derivation of embryonic germ cells in this species.
Collapse
Affiliation(s)
- Sara M W Hyldig
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | | | | | | | | |
Collapse
|
40
|
Switching stem cell state through programmed germ cell reprogramming. Differentiation 2011; 81:281-91. [PMID: 21330045 DOI: 10.1016/j.diff.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/29/2010] [Accepted: 01/11/2011] [Indexed: 01/27/2023]
Abstract
Depending on their origin, embryo-derived stem cells have distinct properties that largely correspond to their counterpart in vivo. Mouse epiblast stem cells derived from post-implantation embryos differ from embryonic stem cells derived from blastocysts in their transcriptional and epigenetic profile, their morphology and culture requirements. When maintained in appropriate conditions, the cells keep self-renewing and do not adopt a different state. Recent studies, however, show that it is possible to convert between stem cell states. Here we review recent advances to induce stem cell state changes and we consider the potential of germ cell-mediated reprogramming for the conversion. Since the properties of mouse epiblast stem cells are similar to human embryonic stem cells, we discuss the significance of stem cell conversion and germ cell-mediated reprogramming in humans.
Collapse
|
41
|
Marikawa Y, Tamashiro DAA, Fujita TC, Alarcon VB. Dual roles of Oct4 in the maintenance of mouse P19 embryonal carcinoma cells: as negative regulator of Wnt/β-catenin signaling and competence provider for Brachyury induction. Stem Cells Dev 2011; 20:621-33. [PMID: 21083502 DOI: 10.1089/scd.2010.0209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transcription factor Oct4 is expressed in pluripotent cell lineages during mouse development, namely, in inner cell mass (ICM), primitive ectoderm, and primordial germ cells. Functional studies have revealed that Oct4 is essential for the maintenance of pluripotency in inner cell mass and for the survival of primordial germ cells. However, the function of Oct4 in the primitive ectoderm has not been fully explored. In this study, we investigated the role of Oct4 in mouse P19 embryonal carcinoma (EC) cells, which exhibit molecular and developmental properties similar to the primitive ectoderm, as an in vitro model. Knockdown of Oct4 in P19 EC cells upregulated several early mesoderm-specific genes, such as Wnt3, Sp5, and Fgf8, by activating Wnt/β-catenin signaling. Overexpression of Oct4 was sufficient to suppress Wnt/β-catenin signaling through its action as a transcriptional activator. However, Brachyury, a key regulator of early mesoderm development and a known direct target of Wnt/β-catenin signaling, was unable to be upregulated in the absence of Oct4, even with additional activation of Wnt/β-catenin signaling. Microarray analysis revealed that Oct4 positively regulated the expression of Tdgf1, a critical component of Nodal signaling, which was required for the upregulation of Brachyury in response to Wnt/β-catenin signaling in P19 EC cells. We propose a model that Oct4 maintains pluripotency of P19 EC cells through 2 counteracting actions: one is to suppress mesoderm-inducing Wnt/β-catenin signaling, and the other is to provide competence to Brachyury gene to respond to Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| | | | | | | |
Collapse
|
42
|
Fukunaga N, Teramura T, Onodera Y, Takehara T, Fukuda K, Hosoi Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram 2010; 12:369-76. [PMID: 20698776 DOI: 10.1089/cell.2009.0097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, several research groups have shown that germ cells can be produced in vitro from pluripotent embryonic stem cells (ESCs). In the mouse, live births of offspring using germ cells induced from ESCs in vitro have been reported. Furthermore, some efficient methods for inducing the useful number of germ cells from ESCs have also been developed. On the other hand, in primates, despite the appearances of germ cell-like cells including meiotic cells were observed by spontaneous differentiation or introducing transgenes, it has not been determined whether fully functional germ cells can be derived from ESCs. To elucidate the property for the germ cells induced from primate ESCs, specification of the promoting factors for the germ cell development and improving the efficiency of germ cell derivation are essential. Leukemia inhibitory factor (LIF) has been reported as one of the important factors for mouse primordial germ cell (PGC) survival in vitro. However, the effects of LIF on germ cell formation from pluripotent cells of primates have not been examined. The aim of this study is to determine whether LIF addition can improve in vitro germ cell production from cynomolgus monkey ESCs (cyESCs). After 8 days of differentiation, LIF added culture induced dome-shaped germ cell colonies as indicated by the intense expression of alkaline phosphatase activity (ALP). These cells also demonstrate high-level expression of the germ cell-marker VASA, OCT-4, and BLIMP-1, and show SSEA-1 expression that supports their early stage germ cell identity. Finally, we observed that adding LIF to differentiating cultures inhibited meiotic gene expressions and increased the percentage of ALP-positive cells, and demonstrate that the addition of LIF to differentiation media increases differentiation of early germ cells from the cyESCs.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Department of Biology Oriented Science and Technology, Kinki University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Mochizuki K, Matsui Y. Epigenetic profiles in primordial germ cells: global modulation and fine tuning of the epigenome for acquisition of totipotency. Dev Growth Differ 2010; 52:517-25. [PMID: 20646024 DOI: 10.1111/j.1440-169x.2010.01190.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Germ cells, after fate determination as primordial germ cells (PGCs) in early embryos, undergo various unique changes in epigenetic status during their development, and these changes differ from the epigenetic changes occurring in any other somatic cells. For example, PGCs undergo demethylation of DNA and change histone modification states on a genome-wide scale. Although the full physiological significance of these epigenetic alterations is still unclear, we can now discuss some of their mechanisms due to recent experimental evidence demonstrating the expression of candidate molecules involved in the processes of epigenetic change. On the other hand, DNA demethylation associated with PGC-specific gene expression, reprogramming of imprinted genes and regulation of retrotransposons in PGCs differentially occur from the genome-wide DNA demethylation. The tendency of epigenetic changes to appear on the whole genome, as well as more precise changes in the epigenetic status of particular parts of the genome, may play important roles in establishing the properties of PGCs required for acquiring totipotency.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | | |
Collapse
|
44
|
Abstract
Primordial germ cells (PGCs) are embryonic progenitors for the gametes. In the gastrulating mouse embryo, a small group of cells begin expressing a unique set of genes and so commit to the germline. Over the next 3-5 days, these PGCs migrate anteriorly and increase rapidly in number via mitotic division before colonizing the newly formed gonads. PGCs then express a different set of unique genes, their inherited epigenetic imprint is erased and an individual methylation imprint is established, and for female PGCs, the silent X chromosome is reactivated. At this point, germ cells (GCs) commit to either a female or male sexual lineage, denoted by meiosis entry and mitotic arrest, respectively. This developmental program is determined by cues emanating from the somatic environment.
Collapse
Affiliation(s)
- Katherine A Ewen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
45
|
Saitou M, Yamaji M. Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences. Reproduction 2010; 139:931-42. [DOI: 10.1530/rep-10-0043] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The specification of germ cell fate in development initiates mechanisms essential for the perpetuation of genetic information across the generations. Recent studies in mice have shown that germ cell specification requires at least three key molecular/cellular events: repression of the somatic program, re-acquisition of potential pluripotency, and an ensuing genome-wide epigenetic reprogramming. Moreover, a signaling and transcriptional principle governing these processes has been identified, raising the possibility of inducing the germ cell fate precisely from pluripotent stem cells in culture. These advances will in turn serve as a basis to explore the mechanism of germ cell specification in other mammals, including humans. The recapitulation of germ cell development in humans in culture will provide unprecedented opportunities to understand the basis of the propagation of our genome, both under normal and diseased conditions.
Collapse
|
46
|
Maeda I, Matsui Y. In vitro assay system for primordial germ cell development. Cell Res 2009; 19:1125-6. [PMID: 19798090 DOI: 10.1038/cr.2009.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ikuma Maeda
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| | | |
Collapse
|
47
|
Matsui Y, Tokitake Y. Primordial germ cells contain subpopulations that have greater ability to develop into pluripotential stem cells. Dev Growth Differ 2009; 51:657-67. [DOI: 10.1111/j.1440-169x.2009.01125.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Saitou M. Germ cell specification in mice. Curr Opin Genet Dev 2009; 19:386-95. [DOI: 10.1016/j.gde.2009.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 01/16/2023]
|