1
|
Doddamani D, Carlson DF, McTeir L, Taylor L, Nandi S, Davey MG, McGrew MJ, Glover JD. PRDM14 is essential for vertebrate gastrulation and safeguards avian germ cell identity. Dev Biol 2025; 521:129-137. [PMID: 39938772 DOI: 10.1016/j.ydbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The zinc finger transcription factor PRDM14, part of the PR domain containing protein family, is critical for mammalian primordial germ cell (PGC) specification, epigenetic reprogramming and maintaining naïve pluripotency in stem cells. However, PRDM14's role in other species is not well understood. In chicken, PRDM14 is broadly expressed in the early embryo, before becoming restricted to the forming neural plate, migratory PGCs, and later, in the adult testes. To investigate the role of PRDM14 we generated two independent targeted chicken lines and bred homozygous knockout embryos. Strikingly, we found that gastrulation was disrupted in PRDM14-/- embryos, which lacked a definitive primitive streak. Transcriptomic and in situ hybridisation analyses revealed a broad loss of anterior primitive streak marker genes, coupled with downregulation of the multifunctional antagonists CHRD and CER1, and expansion of the NODAL expression domain. Further analysis of PRDM14-/- embryos revealed PGCs were still specified but significantly reduced in number, and PRDM14-/- PGCs could not be propagated in vitro. Knockdown studies in vitro confirmed that PRDM14 is essential for PGC survival and antagonises FGF-induced somatic differentiation, similar to PRDM14's role in mammalian stem cells. Taken together, our results show that in chicken, PRDM14 plays a multifunctional and essential role during embryonic development.
Collapse
Affiliation(s)
- Dadakhalandar Doddamani
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK; ICMR-Regional Medical Research Centre, Port Blair, Andaman and Nicobar Islands, India
| | | | - Lynn McTeir
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Lorna Taylor
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Sunil Nandi
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Megan G Davey
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - James D Glover
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
2
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
3
|
Shimada R, Ishiguro K. Female-specific mechanisms of meiotic initiation and progression in mammalian oocyte development. Genes Cells 2024; 29:797-807. [PMID: 39119753 PMCID: PMC11555627 DOI: 10.1111/gtc.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Meiosis is regulated in sexually dimorphic manners in mammals. In females, the commitment to and entry into meiosis are coordinated with the developmental program of oocytes. Female germ cells initiate meiosis within a short time window during the fetal period and then undergo meiotic arrest until puberty. However, the genetic mechanisms underlying the orchestration of oocyte development and meiosis to maximize the reproductive lifespan of mammalian females remain largely elusive. While meiotic initiation is regulated by a sexually common mechanism, where meiosis initiator and Stimulated by Retinoic Acid Gene 8 (STRA8) activate the meiotic genes, the female-specific mode of meiotic initiation is mediated by the interaction between retinoblastoma (RB) and STRA8. This review highlights the female-specific mechanisms of meiotic initiation and meiotic prophase progression in the context of oocyte development. Furthermore, the downstream pathway of the RB-STRA8 interaction that may regulate meiotic arrest will be discussed in the context of oocyte development, highlighting a potential genetic link between the female-specific mode of meiotic entry and meiotic arrest.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Kei‐ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
4
|
Shi DL. Interplay of RNA-binding proteins controls germ cell development in zebrafish. J Genet Genomics 2024; 51:889-899. [PMID: 38969260 DOI: 10.1016/j.jgg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants, called germ plasm, confer germline fate in the early embryo. Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development. RNA-binding proteins, acting in concert with other germ plasm components, play essential roles in the organization of the germ plasm and the specification, migration, maintenance, and differentiation of primordial germ cells. The loss of their functions impairs germ cell formation and causes sterility or sexual conversion. Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells. However, the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification. Because failure to control the developmental outcome of germ cells disrupts the formation of gametes, it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage. This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
5
|
Mikami N, Nguyen CLK, Osawa Y, Kato K, Ishida M, Tanimoto Y, Morimoto K, Murata K, Kang W, Sugiyama F, Ema M, Takahashi S, Mizuno S. Deletion of Exoc7, but not Exoc3, in male germ cells causes severe spermatogenesis failure with spermatocyte aggregation in mice. Exp Anim 2024; 73:286-292. [PMID: 38325858 PMCID: PMC11254494 DOI: 10.1538/expanim.23-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Vesicular trafficking is essential for the transport of intracellularly produced functional molecules to the plasma membrane and extracellular space. The exocyst complex, composed of eight different proteins, is an important functional machinery for "tethering" in vesicular trafficking. Functional studies have been conducted in laboratory mice to identify the mechanisms by which the deletion of each exocyst factor affect various biological phenomena. Interestingly, each exocyst factor-deficient mutant exhibits a different phenotype. This discrepancy may be due to the function of the exocyst factor beyond its role as a component of the exocyst complex. Male germline-specific conditional knockout (cKO) mice of the Exoc1 gene, which encodes one of the exocyst factors EXOC1 (SEC3), exhibit severe spermatogenesis defects; however, whether this abnormality also occurs in mutants lacking other exocyst factors remains unknown. In this study, we found that exocyst factor EXOC3 (SEC6) was not required for spermatogenesis, but depletion of EXOC7 (EXO70) led to severe spermatogenesis defects. In addition to being a component of the exocyst complex, EXOC1 has other functions. Notably, male germ cell-specific Exoc7 cKO and Exoc1 cKO mice exhibited phenotypic similarities, suggesting the importance of the exocyst complex for spermatogenesis. The results of this study will contribute to further understanding of spermatogenesis from the aspect of vesicular trafficking.
Collapse
Affiliation(s)
- Natsuki Mikami
- Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chi Lieu Kim Nguyen
- Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Osawa
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kento Morimoto
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Woojin Kang
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
6
|
Dai P, Ma C, Chen C, Liang M, Dong S, Chen H, Zhang X. Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines. Biomolecules 2024; 14:529. [PMID: 38785936 PMCID: PMC11117649 DOI: 10.3390/biom14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China; (P.D.); (C.M.); (C.C.); (M.L.); (S.D.); (H.C.)
| |
Collapse
|
7
|
Liu Q, Guo T, Yan A, Kee K. Truncated DAZL mutation reduces NANOS3 expression in primordial germ cells and leads to premature ovarian insufficiency. LIFE MEDICINE 2024; 3:lnae007. [PMID: 39872666 PMCID: PMC11749114 DOI: 10.1093/lifemedi/lnae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/08/2024] [Indexed: 01/30/2025]
Affiliation(s)
- Qingyuan Liu
- The State Key Laboratory for Complex Severe and Rare Diseases, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
| | - An Yan
- The State Key Laboratory for Complex Severe and Rare Diseases, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kehkooi Kee
- The State Key Laboratory for Complex Severe and Rare Diseases, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Mueller ML, McNabb BR, Owen JR, Hennig SL, Ledesma AV, Angove ML, Conley AJ, Ross PJ, Van Eenennaam AL. Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes. Front Genome Ed 2023; 5:1321243. [PMID: 38089499 PMCID: PMC10711618 DOI: 10.3389/fgeed.2023.1321243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
NANOS3 is expressed in migrating primordial germ cells (PGCs) to protect them from apoptosis, and it is known to be a critical factor for germline development of both sexes in several organisms. However, to date, live NANOS3 knockout (KO) cattle have not been reported, and the specific role of NANOS3 in male cattle, or bulls, remains unexplored. This study generated NANOS3 KO cattle via cytoplasmic microinjection of the CRISPR/Cas9 system in vitro produced bovine zygotes and evaluated the effect of NANOS3 elimination on bovine germline development, from fetal development through reproductive age. The co-injection of two selected guide RNA (gRNA)/Cas9 ribonucleoprotein complexes (i.e., dual gRNA approach) at 6 h post fertilization achieved a high NANOS3 KO rate in developing embryos. Subsequent embryo transfers resulted in a 31% (n = 8/26) pregnancy rate. A 75% (n = 6/8) total KO rate (i.e., 100% of alleles present contained complete loss-of-function mutations) was achieved with the dual gRNA editing approach. In NANOS3 KO fetal testes, PGCs were found to be completely eliminated by 41-day of fetal age. Importantly, despite the absence of germ cells, seminiferous tubule development was not impaired in NANOS3 KO bovine testes during fetal, perinatal, and adult stages. Moreover, a live, NANOS3 KO, germline-ablated bull was produced and at sexual maturity he exhibited normal libido, an anatomically normal reproductive tract, and intact somatic gonadal development and structure. Additionally, a live, NANOS3 KO, germline-ablated heifer was produced. However, it was evident that the absence of germ cells in NANOS3 KO cattle compromised the normalcy of ovarian development to a greater extent than it did testes development. The meat composition of NANOS3 KO cattle was unremarkable. Overall, this study demonstrated that the absence of NANOS3 in cattle leads to the specific deficiency of both male and female germ cells, suggesting the potential of NANOS3 KO cattle to act as hosts for donor-derived exogenous germ cell production in both sexes. These findings contribute to the understanding of NANOS3 function in cattle and have valuable implications for the development of novel breeding technologies using germline complementation in NANOS3 KO germline-ablated hosts.
Collapse
Affiliation(s)
- Maci L. Mueller
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Bret R. McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Joseph R. Owen
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Sadie L. Hennig
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alba V. Ledesma
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Mitchell L. Angove
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alan J. Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
9
|
Shimada R, Kato Y, Takeda N, Fujimura S, Yasunaga KI, Usuki S, Niwa H, Araki K, Ishiguro KI. STRA8-RB interaction is required for timely entry of meiosis in mouse female germ cells. Nat Commun 2023; 14:6443. [PMID: 37880249 PMCID: PMC10600341 DOI: 10.1038/s41467-023-42259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Meiosis is differently regulated in males and females. In females, germ cells initiate meiosis within a limited time period in the fetal ovary and undergo a prolonged meiotic arrest until puberty. However, how meiosis initiation is coordinated with the cell cycle to coincide with S phase remains elusive. Here, we demonstrate that STRA8 binds to RB via the LXCXE motif. Mutation of the RB-binding site of STRA8 in female mice delays meiotic entry, which consequently delays progression of meiotic prophase and leads to precocious depletion of the oocyte pool. Single-cell RNA-sequencing analysis reveals that the STRA8-RB interaction is required for S phase entry and meiotic gene activation, ensuring precise timing of meiosis initiation in oocytes. Strikingly, the results suggest STRA8 could sequester RB from E2F during pre-meiotic G1/S transition. This study highlights the gene regulatory mechanisms underlying the female-specific mode of meiotic initiation in mice.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan.
| |
Collapse
|
10
|
Li X, Chen P, Ji J, Duan Q, Cao J, Huang R, Ye SD. Rhox6 regulates the expression of distinct target genes to mediate mouse PGCLC formation and ESC self-renewal. Cell Biosci 2023; 13:145. [PMID: 37553721 PMCID: PMC10408072 DOI: 10.1186/s13578-023-01096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mouse embryonic stem cells (mESCs) not only retain the property of self-renewal but also have the ability to develop into primordial germ cell-like cells (PGCLCs). However, knowledge about the mechanisms of transcriptional regulation is still limited. Rhox6, a member of the homeobox family that is located on the X chromosome, is highly expressed within PGCLCs in vivo and in vitro. However, the detailed effects of Rhox6 on PGCLC specification and mESC maintenance remain unclear. RESULTS In this study, we found that overexpression of Rhox6 favors the formation of PGCLCs, while depletion of Rhox6 inhibits the generation of PGCLCs. Mechanistically, Rhox6 directly induces the expression of Nanos3 during the specification of PGCLCs. Subsequently, downregulation of Nanos3 expression is sufficient to decrease the ability of Rhox6 to induce PGCLC formation. Moreover, we found that depletion of Rhox6 expression facilitates the self-renewal of mESCs. High-throughput sequencing revealed that suppression of Rhox6 transcription significantly increases the expression of pluripotency genes. Functional studies further demonstrated that Rhox6 directly represses the transcription of Tbx3. Therefore, knockdown of the expression of the latter impairs the self-renewal of mESCs promoted by Rhox6 downregulation. CONCLUSIONS Our study reveals that overexpression of Rhox6 is beneficial for PGCLC generation through induction of Nanos3, while downregulation of Rhox6 contributes to mESC self-renewal by increasing Tbx3. These findings help elucidate the early development of mouse embryos.
Collapse
Affiliation(s)
- Xiaofeng Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Junxiang Ji
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Quanchao Duan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Jianjian Cao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Ru Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
11
|
Wu GMJ, Chen ACH, Yeung WSB, Lee YL. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells. Front Cell Dev Biol 2023; 11:1166351. [PMID: 37325555 PMCID: PMC10267358 DOI: 10.3389/fcell.2023.1166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.
Collapse
Affiliation(s)
- Genie Min Ju Wu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
12
|
Imai A, Matsuda K, Niimi Y, Suzuki A. Loss of Dead end1 induces testicular teratomas from primordial germ cells that failed to undergo sexual differentiation in embryonic testes. Sci Rep 2023; 13:6398. [PMID: 37076592 PMCID: PMC10115811 DOI: 10.1038/s41598-023-33706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 04/21/2023] Open
Abstract
Spontaneous testicular teratomas (STTs) are tumours comprising a diverse array of cell and tissue types, which are derived from pluripotent stem-like cells called embryonal carcinoma cells (ECCs). Although mouse ECCs originate from primordial germ cells (PGCs) in embryonic testes, the molecular basis underlying ECC development remains unclear. This study shows that the conditional deletion of mouse Dead end1 (Dnd1) from migrating PGCs leads to STT development. In Dnd1-conditional knockout (Dnd1-cKO) embryos, PGCs colonise the embryonic testes but fail to undergo sexual differentiation; subsequently, ECCs develop from a portion of the PGCs. Transcriptomic analyses reveal that PGCs not only fail to undergo sexual differentiation but are also prone to transformation into ECCs by upregulating the expression of marker genes for primed pluripotency in the testes of Dnd1-cKO embryos. Thus, our results clarify the role of Dnd1 in developing STTs and developmental process of ECC from PGC, providing novel insights into pathogenic mechanisms of STTs.
Collapse
Affiliation(s)
- Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Kazuya Matsuda
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
- Research & Development Group, Center for Exploratory Research, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
13
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
14
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
15
|
Ogonuki N, Kyogoku H, Hino T, Osawa Y, Fujiwara Y, Inoue K, Kunieda T, Mizuno S, Tateno H, Sugiyama F, Kitajima TS, Ogura A. Birth of mice from meiotically arrested spermatocytes following biparental meiosis in halved oocytes. EMBO Rep 2022; 23:e54992. [DOI: 10.15252/embr.202254992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Narumi Ogonuki
- Bioresource Engineering Division RIKEN BioResource Research Center Ibaraki Japan
| | - Hirohisa Kyogoku
- Laboratory for Chromosome Segregation RIKEN Center for Biosystems Dynamics Research Kobe Japan
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Toshiaki Hino
- Department of Biological Sciences Asahikawa Medical University Asahikawa Japan
| | - Yuki Osawa
- Graduate School of Comprehensive Human Sciences University of Tsukuba Tsukuba Japan
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development Institute for Quantitative Biosciences The University of Tokyo Tokyo Japan
| | - Kimiko Inoue
- Bioresource Engineering Division RIKEN BioResource Research Center Ibaraki Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medicine Okayama University of Science Imabari Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans‐border Medical Research Center Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Hiroyuki Tateno
- Department of Biological Sciences Asahikawa Medical University Asahikawa Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans‐border Medical Research Center Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Atsuo Ogura
- Bioresource Engineering Division RIKEN BioResource Research Center Ibaraki Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
- RIKEN Cluster for Pioneering Research Wako Japan
| |
Collapse
|
16
|
Inoue H, Sakurai T, Hasegawa K, Suzuki A, Saga Y. NANOS3 suppresses premature spermatogonial differentiation to expand progenitors and fine-tunes spermatogenesis in mice. Biol Open 2022; 11:274984. [PMID: 35394008 PMCID: PMC9002807 DOI: 10.1242/bio.059146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
In the mouse testis, sperm originate from spermatogonial stem cells (SSCs). SSCs give rise to spermatogonial progenitors, which expand their population until entering the differentiation process that is precisely regulated by a fixed time-scaled program called the seminiferous cycle. Although this expansion process of progenitors is highly important, its regulatory mechanisms remain unclear. NANOS3 is an RNA-binding protein expressed in the progenitor population. We demonstrated that the conditional deletion of Nanos3 at a later embryonic stage results in the reduction of spermatogonial progenitors in the postnatal testis. This reduction was associated with the premature differentiation of progenitors. Furthermore, this premature differentiation caused seminiferous stage disagreement between adjacent spermatogenic cells, which influenced spermatogenic epithelial cycles, leading to disruption of the later differentiation pathway. Our study suggests that NANOS3 plays an important role in timing progenitor expansion to adjust to the proper differentiation timing by blocking the retinoic acid (RA) signaling pathway.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan
| | - Takayuki Sakurai
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Kazuteru Hasegawa
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, 240-8501Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan.,Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
17
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
18
|
Lrh1 can help reprogram sexual cell fate and is required for Sertoli cell development and spermatogenesis in the mouse testis. PLoS Genet 2022; 18:e1010088. [PMID: 35192609 PMCID: PMC8896720 DOI: 10.1371/journal.pgen.1010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/04/2022] [Accepted: 02/09/2022] [Indexed: 01/16/2023] Open
Abstract
The mammalian nuclear hormone receptors LRH1 (NR5A2) and SF1 (NR5A1) are close paralogs that can bind the same DNA motif and play crucial roles in gonadal development and function. Lrh1 is essential for follicle development in the ovary and has been proposed to regulate steroidogenesis in the testis. Lrh1 expression in the testis is highly elevated by loss of the sex regulator Dmrt1, which triggers male-to-female transdifferentiation of Sertoli cells. While Sf1 has a well-defined and crucial role in testis development, no function for Lrh1 in the male gonad has been reported. Here we use conditional genetics to examine Lrh1 requirements both in gonadal cell fate reprogramming and in normal development of the three major cell lineages of the mouse testis. We find that loss of Lrh1 suppresses sexual transdifferentiation, confirming that Lrh1 can act as a key driver in reprogramming sexual cell fate. In otherwise wild-type testes, we find that Lrh1 is dispensable in Leydig cells but is required in Sertoli cells for their proliferation, for seminiferous tubule morphogenesis, for maintenance of the blood-testis barrier, for feedback regulation of androgen production, and for support of spermatogenesis. Expression profiling identified misexpressed genes likely underlying most aspects of the Sertoli cell phenotype. In the germ line we found that Lrh1 is required for maintenance of functional spermatogonia, and hence mutants progressively lose spermatogenesis. Reduced expression of the RNA binding factor Nxf2 likely contributes to the SSC defect. Unexpectedly, however, over time the Lrh1 mutant germ line recovered abundant spermatogenesis and fertility. This finding indicates that severe germ line depletion triggers a response allowing mutant spermatogonia to recover the ability to undergo complete spermatogenesis. Our results demonstrate that Lrh1, like Sf1, is an essential regulator of testis development and function but has a very distinct repertoire of functions.
Collapse
|
19
|
Overexpression of bmp4, dazl, nanos3 and sycp2 in Hu Sheep Leydig Cells Using CRISPR/dcas9 System Promoted Male Germ Cell Related Gene Expression. BIOLOGY 2022; 11:biology11020289. [PMID: 35205154 PMCID: PMC8869737 DOI: 10.3390/biology11020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Male germ cell development plays a crucial role in male reproduction, and gene expression also presents an essential regulatory role in its development. Many studies have been devoted to the induction and differentiation of pluripotent stem cells into germ cells in vitro. However, the culture system for pluripotent stem cells from domestic animals is not stable, especially in sheep. Our study attempted to transdifferentiate sheep somatic cells into germ cells in vitro by the overexpression of key germ cell related genes, with the aim of perfecting the construction of germ cell research models in vitro. Therefore, we explored the expression pattern of four crucial genes, bmp4, dazl, nanos3 and sycp2, in Hu sheep testicular development, and investigated the potential efficiency of overexpression of the four candidate genes using the CRISPR/dcas9 system in Leydig cells. We revealed that the overexpression of bmp4, dazl, nanos3 and sycp2 can promote the expression of male germ cell related genes. To the best of our knowledge, this is the first study to construct an overexpression induction system using CRISPR/dcas9 technology, and to induce sheep somatic cells into germ cells in vitro. Abstract Male germ cells directly affect the reproduction of males; however, their accurate isolation and culture in vitro is extremely challenging, hindering the study of germ cell development and function. CRISPR/dcas9, as an efficient gene reprogramming system, has been verified to promote the transdifferentiation of pluripotent stem cells into male germ cells by editing target genes. In our research, we explored the expression pattern of the germ cell related genes bmp4, dazl,nanos3 and sycp2 in Hu sheep testicular development and constructed the overexpression model using the CRISPR/dcas9 system. The results indicated that four genes showed more expression in testis tissue than in other tissues, and that bmp4, dazl and sycp2 present higher expression levels in nine-month-old sheep testes than in three-month-olds, while nanos3 expressed the opposite trend (p < 0.05). In addition, the expression of four potential genes in spermatogenic cells was slightly different, but they were all expressed in sheep Leydig cells. To verify the potential roles of the four genes in the process of inducing differentiation of male germ cells, we performed cell transfection in vitro. We found that the expression of the germ cell related genes Prdm1, Prdm14, Mvh and Sox17 were significantly increased after the overexpression of the four genes in Leydig cells, and the co-transfection effect was the most significant (p < 0.05). Our results illustrate the crucial functions of bmp4, dazl, nanos3 and sycp2 in Hu sheep testis development and verified the effectiveness of the overexpression model that was constructed using the CRISPR/dcas9 system, which provided a basis for further male germ cell differentiation in vitro.
Collapse
|
20
|
Induction of Rosette-to-Lumen stage embryoids using reprogramming paradigms in ESCs. Nat Commun 2021; 12:7322. [PMID: 34916498 PMCID: PMC8677818 DOI: 10.1038/s41467-021-27586-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.
Collapse
|
21
|
Karimi H, Boroujeni PB, Sabbaghian M, Meybodi AM. Gene Alterations and Expression Spectrum of NANOS3 in Nonobstructive Azoospermia. Reprod Sci 2021; 29:92-99. [PMID: 34417763 DOI: 10.1007/s43032-021-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Nanos3, a zinc finger RNA-binding protein, suppresses the apoptosis in primordial germ cells (PGCs) during migration to gonads and maintains the PGC population. The genetic variations and expression of NANOS3 in patients with non-obstructive azoospermia (NOA) were evaluated in this study. The study included 100 idiopathic infertile men with NOA and 100 fertile men as the as the case and control groups, respectively. NANOS3 gene variations were analyzed using the standard polymerase chain reaction (PCR) and sequencing. For mRNA and protein expression analysis, testicular biopsy specimens from 27 patients including 9 obstructive azoospermia (OA), 9 maturation arrest (MA), and 9 Sertoli cell-only syndromes (SCOS) were collected and evaluated using the real-time PCR technique and immunohistochemistry. Although the evaluation of the 5`UTR regulatory region has shown the significant difference in the numbers of TG repeats in rs11182456 between groups, the odd ratio was not strong enough to consider that as a certain risk factor lead to azoospermia and infertility. Meanwhile, NANOS3 expression at mRNA level had a significant difference among OA, SCOS, and MA groups.
Collapse
Affiliation(s)
- Hamideh Karimi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. .,Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, 12 Hafez St, Banihashem St, Resalat St, PO Box 19395-4644, Tehran, Iran.
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. .,Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, 12 Hafez St, Banihashem St, Resalat St, PO Box 19395-4644, Tehran, Iran. .,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada. .,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
22
|
Yang C, Yao C, Ji Z, Zhao L, Chen H, Li P, Tian R, Zhi E, Huang Y, Han X, Hong Y, Zhou Z, Li Z. RNA-binding protein ELAVL2 plays post-transcriptional roles in the regulation of spermatogonia proliferation and apoptosis. Cell Prolif 2021; 54:e13098. [PMID: 34296486 PMCID: PMC8450129 DOI: 10.1111/cpr.13098] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives RNA‐binding proteins (RBPs) play essential post‐transcriptional roles in regulating spermatogonial stem cells (SSCs) maintenance and differentiation. We identified a conserved and SSCs‐enriched RBP ELAVL2 from our single‐cell sequencing data, but its function and mechanism in SSCs were unclear. Materials and methods Expressions of ELAVL2 during human and mouse testis development were validated. Stable C18‐4 and TCam‐2 cell lines with overexpression and knockdown of ELAVL2 were established, which were applied to proliferation and apoptosis analysis. RNA immunoprecipitation and sequencing were used to identify ELAVL2 targets, and regulatory functions of ELAVL2 on target mRNAs were studied. Proteins interacting with ELAVL2 in human and mouse testes were identified using immunoprecipitation and mass spectrometric, which were validated by in vivo and in vitro experiments. Results ELAVL2 was testis‐enriched and preferentially expressed in human and mouse SSCs. ELAVL2 was down‐regulated in NOA patients. ELAVL2 promoted proliferation and inhibited apoptosis of C18‐4 and TCam‐2 cell lines via activating ERK and AKT pathways. ELAVL2 associated with mRNAs encoding essential regulators of SSCs proliferation and survival, and promoted their protein expression at post‐transcriptional level. ELAVL2 interacted with DAZL in vivo and in vitro in both human and mouse testes. Conclusions Taken together, these results indicate that ELAVL2 is a conserved SSCs‐enriched RBP that down‐regulated in NOA, which regulates spermatogonia proliferation and apoptosis by promoting protein expression of targets.
Collapse
Affiliation(s)
- Chao Yang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Yao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyong Ji
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liangyu Zhao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huixing Chen
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhui Tian
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erlei Zhi
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Han
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Hong
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zheng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. Int J Mol Sci 2021; 22:ijms22115982. [PMID: 34205983 PMCID: PMC8199495 DOI: 10.3390/ijms22115982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the human embryo, the genetic program that orchestrates germ cell specification involves the activation of epigenetic and transcriptional mechanisms that make the germline a unique cell population continuously poised between germness and pluripotency. Germ cell tumors, neoplasias originating from fetal or neonatal germ cells, maintain such dichotomy and can adopt either pluripotent features (embryonal carcinomas) or germness features (seminomas) with a wide range of phenotypes in between these histotypes. Here, we review the basic concepts of cell specification, migration and gonadal colonization of human primordial germ cells (hPGCs) highlighting the analogies of transcriptional/epigenetic programs between these two cell types.
Collapse
|
24
|
Torres-Fernández LA, Emich J, Port Y, Mitschka S, Wöste M, Schneider S, Fietz D, Oud MS, Di Persio S, Neuhaus N, Kliesch S, Hölzel M, Schorle H, Friedrich C, Tüttelmann F, Kolanus W. TRIM71 Deficiency Causes Germ Cell Loss During Mouse Embryogenesis and Is Associated With Human Male Infertility. Front Cell Dev Biol 2021; 9:658966. [PMID: 34055789 PMCID: PMC8155544 DOI: 10.3389/fcell.2021.658966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.
Collapse
Affiliation(s)
| | - Jana Emich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Yasmine Port
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Sibylle Mitschka
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Simon Schneider
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Gießen, Gießen, Germany
- Hessian Centre of Reproductive Medicine (HZRM), Justus Liebig University Gießen, Gießen, Germany
| | - Manon S. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Osawa Y, Murata K, Usui M, Kuba Y, Le HT, Mikami N, Nakagawa T, Daitoku Y, Kato K, Shawki HH, Ikeda Y, Kuno A, Morimoto K, Tanimoto Y, Dinh TTH, Yagami KI, Ema M, Yoshida S, Takahashi S, Mizuno S, Sugiyama F. EXOC1 plays an integral role in spermatogonia pseudopod elongation and spermatocyte stable syncytium formation in mice. eLife 2021; 10:59759. [PMID: 33973520 PMCID: PMC8112867 DOI: 10.7554/elife.59759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The male germ cells must adopt the correct morphology at each differentiation stage for proper spermatogenesis. The spermatogonia regulates its differentiation state by its own migration. The male germ cells differentiate and mature with the formation of syncytia, failure of forming the appropriate syncytia results in the arrest at the spermatocyte stage. However, the detailed molecular mechanisms of male germ cell morphological regulation are unknown. Here, we found that EXOC1, a member of the Exocyst complex, is important for the pseudopod formation of spermatogonia and spermatocyte syncytia in mice. EXOC1 contributes to the pseudopod formation of spermatogonia by inactivating the Rho family small GTPase Rac1 and also functions in the spermatocyte syncytia with the SNARE proteins STX2 and SNAP23. Since EXOC1 is known to bind to several cell morphogenesis factors, this study is expected to be the starting point for the discovery of many morphological regulators of male germ cells.
Collapse
Affiliation(s)
- Yuki Osawa
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Miho Usui
- School of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yumeno Kuba
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hoai Thu Le
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natsuki Mikami
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hossam Hassan Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihisa Ikeda
- Doctoral program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kento Morimoto
- Doctoral program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
26
|
Suzuki S, McCarrey JR, Hermann BP. Differential RA responsiveness among subsets of mouse late progenitor spermatogonia. Reproduction 2021; 161:645-655. [PMID: 33835049 PMCID: PMC8105290 DOI: 10.1530/rep-21-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023]
Abstract
Initiation of spermatogonial differentiation in the mouse testis begins with the response to retinoic acid (RA) characterized by activation of KIT and STRA8 expression. In the adult, spermatogonial differentiation is spatiotemporally coordinated by a pulse of RA every 8.6 days that is localized to stages VII-VIII of the seminiferous epithelial cycle. Dogmatically, progenitor spermatogonia that express retinoic acid receptor gamma (RARG) at these stages will differentiate in response to RA, but this has yet to be tested functionally. Previous single-cell RNA-seq data identified phenotypically and functionally distinct subsets of spermatogonial stem cells (SSCs) and progenitor spermatogonia, where late progenitor spermatogonia were defined by expression of RARG and Dppa3. Here, we found late progenitor spermatogonia (RARGhigh KIT-) were further divisible into two subpopulations based on Dppa3 reporter expression (Dppa3-ECFP or Dppa3-EGFP) and were observed across all stages of the seminiferous epithelial cycle. However, nearly all Dppa3+ spermatogonia were differentiating (KIT+) late in the seminiferous epithelial cycle (stages X-XII), while Dppa3- late progenitors remained abundant, suggesting that Dppa3+ and Dppa3- late progenitors differentially responded to RA. Following acute RA treatment (2-4 h), significantly more Dppa3+ late progenitors induced KIT, including at the midpoint of the cycle (stages VI-IX), than Dppa3- late progenitors. Subsequently, single-cell analyses indicated a subset of Dppa3+ late progenitors expressed higher levels of Rxra, which we confirmed by RXRA whole-mount immunostaining. Together, these results indicate RARG alone is insufficient to initiate a spermatogonial response to RA in the adult mouse testis and suggest differential RXRA expression may discriminate responding cells.
Collapse
Affiliation(s)
- Shinnosuke Suzuki
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Brian P. Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249 USA
| |
Collapse
|
27
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
28
|
Nakamura Y, Jörg DJ, Kon Y, Simons BD, Yoshida S. Transient suppression of transplanted spermatogonial stem cell differentiation restores fertility in mice. Cell Stem Cell 2021; 28:1443-1456.e7. [PMID: 33848470 PMCID: PMC8351876 DOI: 10.1016/j.stem.2021.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 01/11/2023]
Abstract
A remarkable feature of tissue stem cells is their ability to regenerate the structure and function of host tissue following transplantation. However, the dynamics of donor stem cells during regeneration remains largely unknown. Here we conducted quantitative clonal fate studies of transplanted mouse spermatogonial stem cells in host seminiferous tubules. We found that, after a large population of donor spermatogonia settle in host testes, through stochastic fate choice, only a small fraction persist and regenerate over the long term, and the rest are lost through differentiation and cell death. Further, based on these insights, we showed how repopulation efficiency can be increased to a level where the fertility of infertile hosts is restored by transiently suppressing differentiation using a chemical inhibitor of retinoic acid synthesis. These findings unlock a range of potential applications of spermatogonial transplantation, from fertility restoration in individuals with cancer to conservation of biological diversity.
Collapse
Affiliation(s)
- Yoshiaki Nakamura
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan; Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - David J Jörg
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Yayoi Kon
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Benjamin D Simons
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8787, Japan.
| |
Collapse
|
29
|
Wright D, Kiso M, Saga Y. Genetic and structural analysis of the in vivo functional redundancy between murine NANOS2 and NANOS3. Development 2021; 148:dev191916. [PMID: 33199444 DOI: 10.1242/dev.191916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 01/26/2023]
Abstract
NANOS2 and NANOS3 are evolutionarily conserved RNA-binding proteins involved in murine germ cell development. NANOS3 is required for protection from apoptosis during migration and gonadal colonization in both sexes, whereas NANOS2 is male-specific and required for the male-type differentiation of germ cells. Ectopic NANOS2 rescues the functions of NANOS3, but NANOS3 cannot rescue NANOS2 function, even though its expression is upregulated in Nanos2-null conditions. It is unknown why NANOS3 cannot rescue NANOS2 function and it is unclear whether NANOS3 plays any role in male germ cell differentiation. To address these questions, we made conditional Nanos3/Nanos2 knockout mice and chimeric mice expressing chimeric NANOS proteins. Conditional double knockout of Nanos2 and Nanos3 led to the rapid loss of germ cells, and in vivo and in vitro experiments revealed that DND1 and NANOS2 binding is dependent on the specific NANOS2 zinc-finger structure. Moreover, murine NANOS3 failed to bind CNOT1, an interactor of NANOS2 at its N-terminal. Collectively, our study suggests that the inability of NANOS3 to rescue NANOS2 function is due to poor DND1 recruitment and CNOT1 binding.
Collapse
Affiliation(s)
- Danelle Wright
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| | - Makoto Kiso
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yumiko Saga
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Abstract
The diagnosis of primary ovarian insufficiency (POI) has untold effects on women and a better understanding alongside potential treatments are paramount to improve quality of life of these women. Various causes have been linked to the development of POI with genetics playing a key role. A better understanding of the genetics of POI could lead to earlier diagnosis and broaden fertility options. This chapter discusses previously known and more recently discovered genes that have been implicated in the development of POI. It explores the varying phenotypic expressions of some genes in different populations and areas for further research in the genetics of POI.
Collapse
|
31
|
Zhao J, Yang H, Deng M, Ma J, Wang Z, Meng F, Wang F, Zhang YL. Expression pattern and potential role of Nanos3 in regulating testosterone biosynthesis in Leydig cells of sheep. Theriogenology 2020; 154:31-42. [DOI: 10.1016/j.theriogenology.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
32
|
Single-Cell RNA Sequencing of the Cynomolgus Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis. Dev Cell 2020; 54:548-566.e7. [PMID: 32795394 DOI: 10.1016/j.devcel.2020.07.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Spermatogenesis is highly orchestrated and involves the differentiation of diploid spermatogonia into haploid sperm. The process is driven by spermatogonial stem cells (SSCs). SSCs undergo mitotic self-renewal, whereas sub-populations undergo differentiation and later gain competence to initiate meiosis. Here, we describe a high-resolution single-cell RNA-seq atlas of cells derived from Cynomolgus macaque testis. We identify gene signatures that define spermatogonial populations and explore self-renewal versus differentiation dynamics. We detail transcriptional changes occurring over the entire process of spermatogenesis and highlight the concerted activity of DNA damage response (DDR) pathway genes, which have dual roles in maintaining genomic integrity and effecting meiotic sex chromosome inactivation (MSCI). We show remarkable similarities and differences in gene expression during spermatogenesis with two other eutherian mammals, i.e., mouse and humans. Sex chromosome expression in the male germline in all three species demonstrates conserved features of MSCI but divergent multicopy and ampliconic gene content.
Collapse
|
33
|
Senoo M, Hozoji H, Ishikawa-Yamauchi Y, Takijiri T, Ohta S, Ukai T, Kabata M, Yamamoto T, Yamada Y, Ikawa M, Ozawa M. RNA-binding protein Ptbp1 regulates alternative splicing and transcriptome in spermatogonia and maintains spermatogenesis in concert with Nanos3. J Reprod Dev 2020; 66:459-467. [PMID: 32624547 PMCID: PMC7593632 DOI: 10.1262/jrd.2020-060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PTBP1, a well-conserved RNA-binding protein, regulates cellular development by tuning posttranscriptional mRNA modification such as alternative splicing (AS)
or mRNA stabilization. We previously revealed that the loss of Ptbp1 in spermatogonia causes the dysregulation of spermatogenesis, but the
molecular mechanisms by which PTBP1 regulates spermatogonium homeostasis are unclear. In this study, changes of AS or transcriptome in
Ptbp1-knockout (KO) germline stem cells (GSC), an in vitro model of proliferating spermatogonia, was determined by next
generation sequencing. We identified more than 200 differentially expressed genes, as well as 85 genes with altered AS due to the loss of PTBP1. Surprisingly,
no differentially expressed genes overlapped with different AS genes in Ptbp1-KO GSC. In addition, we observed that the mRNA expression of
Nanos3, an essential gene for normal spermatogenesis, was significantly decreased in Ptbp1-KO spermatogonia. We also
revealed that PTBP1 protein binds to Nanos3 mRNA in spermatogonia. Furthermore,
Nanos3+/−;Ptbp1+/− mice exhibited abnormal spermatogenesis, which resembled the effects of germ
cell-specific Ptbp1 KO, whereas no significant abnormality was observed in mice heterozygous for either gene alone. These data implied that
PTBP1 regulates alternative splicing and transcriptome in spermatogonia under different molecular pathways, and contributes spermatogenesis, at least in part,
in concert with NANOS3.
Collapse
Affiliation(s)
- Manami Senoo
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Hozoji
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu Ishikawa-Yamauchi
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Takijiri
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan.,AMED-CREST, Tokyo 100-0004, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Masahito Ikawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
34
|
Imai A, Hagiwara Y, Niimi Y, Tokumoto T, Saga Y, Suzuki A. Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. PLoS One 2020; 15:e0232047. [PMID: 32339196 PMCID: PMC7185693 DOI: 10.1371/journal.pone.0232047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Spontaneous testicular teratomas (STTs) derived from primordial germ cells (PGCs) in the mouse embryonic testes predominantly develop in the 129 family inbred strain. Ter (spontaneous mutation) is a single nucleotide polymorphism that generates a premature stop codon of Dead end1 (Dnd1) and increases the incidence of STTs in the 129 genetic background. We previously found that DND1 interacts with NANOS2 or NANOS3 and that these complexes play a vital role in male embryonic germ cells and adult spermatogonia. However, the following are unclear: (a) whether DND1 works with NANOS2 or NANOS3 to regulate teratoma incidence, and (b) whether Ter simply causes Dnd1 loss or produces a short mutant DND1 protein. In the current study, we newly established a conventional Dnd1-knockout mouse line and found that these mice showed phenotypes similar to those of Ter mutant mice in spermatogenesis, oogenesis, and teratoma incidence, with a slight difference in spermiogenesis. In addition, we found that the amount of DND1 in Dnd1+/Ter embryos decreased to half of that in wild-type embryos, while the expression of the short mutant DND1 was not detected. We also found that double mutants for Dnd1 and Nanos2 or Nanos3 showed synergistic increase in the incidence of STTs. These data support the idea that Ter causes Dnd1 loss, leading to an increase in STT incidence, and that DND1 acts with NANOS2 and NANOS3 to regulate the development of teratoma from PGCs in the 129 genetic background. Thus, our results clarify the role of Dnd1 in the development of STTs and provide a novel insight into its pathogenic mechanism.
Collapse
Affiliation(s)
- Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yoshihiko Hagiwara
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Toshinobu Tokumoto
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Suruga, Shizuoka, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
35
|
Ma HT, Niu CM, Xia J, Shen XY, Xia MM, Hu YQ, Zheng Y. Stimulated by retinoic acid gene 8 (Stra8) plays important roles in many stages of spermatogenesis. Asian J Androl 2019; 20:479-487. [PMID: 29848833 PMCID: PMC6116687 DOI: 10.4103/aja.aja_26_18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To clarify the functions and mechanism of stimulated by retinoic acid gene 8 (Stra8) in spermatogenesis, we analyzed the testes from Stra8 knockout and wild-type mice during the first wave of spermatogenesis. Comparisons showed no significant differences in morphology and number of germ cells at 11 days postpartum, while 21 differentially expressed genes (DEGs) associated with spermatogenesis were identified. We speculate that Stra8 performs many functions in different phases of spermatogenesis, such as establishment of spermatogonial stem cells, spermatogonial proliferation and self-renewal, spermatogonial differentiation and meiosis, through direct or indirect regulation of these DEGs. We therefore established a preliminary regulatory network of Stra8 during spermatogenesis. These results will provide a theoretical basis for further research on the mechanism underlying the role of Stra8 in spermatogenesis.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Chang-Min Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Jing Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Xue-Yi Shen
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Meng-Meng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Yan-Qiu Hu
- Clinicial Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| |
Collapse
|
36
|
Abdyyev VK, Dashinimayev EB, Neklyudova IV, Vorotelyak EA, Vasiliev AV. Modern Technologies Deriving Human Primordial Germ Cells in vitro. BIOCHEMISTRY (MOSCOW) 2019; 84:220-231. [PMID: 31221060 DOI: 10.1134/s0006297919030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Primordial germ cells (PGCs) are a unique type of stem cells capable of giving rise to totipotent stem cells and ensuring the fertility of an organism and the transfer of its genome to the next generation. PGC research is an important perspective research field of developmental biology that handles many questions of embryogenesis and holds promise for treatments of infertility in the future. Considering ethical concerns related to human embryos, the main research approach in understanding the biology of human PGCs is in vitro studies. In this review, we consider the historical perspective of human PGC studies in vitro, the main existing models, and further outlooks and applications in medicine and science.
Collapse
Affiliation(s)
- V K Abdyyev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | - E B Dashinimayev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Pirogov Russian Research Medical University, Moscow, 117997, Russia
| | - I V Neklyudova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - E A Vorotelyak
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Pirogov Russian Research Medical University, Moscow, 117997, Russia
| | - A V Vasiliev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
37
|
Ando Y, Okeyo KO, Adachi T. Modulation of adhesion microenvironment using mesh substrates triggers self-organization and primordial germ cell-like differentiation in mouse ES cells. APL Bioeng 2019; 3:016102. [PMID: 31069335 PMCID: PMC6481735 DOI: 10.1063/1.5072761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The cell adhesion microenvironment plays contributory roles in the induction of self-organized tissue formation and differentiation of pluripotent stem cells (PSCs). However, physical factors emanating from the adhesion microenvironment have been less investigated largely in part due to overreliance on biochemical approaches utilizing cytokines to drive in vitro developmental processes. Here, we report that a mesh culture technique can potentially induce mouse embryonic stem cells (mESCs) to self-organize and differentiate into cells expressing key signatures of primordial germ cells (PGCs) even with pluripotency maintained in the culture medium. Intriguingly, mESCs cultured on mesh substrates consisting of thin (5 μm-wide) strands and considerably large (200 μm-wide) openings which were set suspended in order to minimize the cell-substrate adhesion area, self-organized into cell sheets relying solely on cell-cell interactions to fill the large mesh openings by Day 2, and further into dome-shaped features around Day 6. Characterization using microarray analysis and immunofluorescence microscopy revealed that sheet-forming cells exhibited differential gene expressions related to PGCs as early as Day 2, but not other lineages such as epiblast, primitive endoderm, and trophectoderm, implying that the initial interaction with the mesh microenvironment and subsequent self-organization into cells sheets might have triggered PGC-like differentiation to occur differently from the previously reported pathway via epiblast-like differentiation. Overall, considering that the observed differentiation occurred without addition of known biochemical inducers, this study highlights that bioengineering techniques for modulating the adhesion microenvironment alone can be harnessed to coax PSCs to self-organize and differentiate, in this case, to a PGC-like state.
Collapse
|
38
|
Abstract
Germ cells are the stem cells of the species. Thus, it is critical that we have a good understanding of how they are specified, how the somatic cells instruct and support them, how they commit to one or other sex, and how they ultimately develop into functional gametes. Here, we focus on specifics of how sexual fate is determined during fetal life. Because the majority of relevant experimental work has been done using the mouse model, we focus on that species. We review evidence regarding the identity of instructive signals from the somatic cells, and the molecular responses that occur in germ cells in response to those extrinsic signals. In this way we aim to clarify progress to date regarding the mechanisms underlying the mitotic to meiosis switch in germ cells of the fetal ovary, and those involved in adopting and securing male fate in germ cells of the fetal testis.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
39
|
Niimi Y, Imai A, Nishimura H, Yui K, Kikuchi A, Koike H, Saga Y, Suzuki A. Essential role of mouse Dead end1 in the maintenance of spermatogonia. Dev Biol 2018; 445:103-112. [PMID: 30439356 DOI: 10.1016/j.ydbio.2018.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/11/2023]
Abstract
Dead end is a vertebrate-specific RNA-binding protein implicated in germ cell development. We have previously shown that mouse Dead end1 (DND1) is expressed in male embryonic germ cells and directly interacts with NANOS2 to cooperatively promote sexual differentiation of fetal germ cells. In addition, we have also reported that NANOS2 is expressed in self-renewing spermatogonial stem cells and is required for the maintenance of the stem cell state. However, it remains to be determined whether DND1 works with NANOS2 in the spermatogonia. Here, we show that DND1 is expressed in a subpopulation of differentiating spermatogonia and undifferentiated spermatogonia, including NANOS2-positive spermatogonia. Conditional disruption of DND1 depleted both differentiating and undifferentiated spermatogonia; however, the numbers of Asingle and Apaired spermatogonia were preferentially decreased as compared with those of Aaligned spermatogonia. Finally, we found that postnatal DND1 associates with NANOS2 in vivo, independently of RNA, and interacts with some of NANOS2-target mRNAs. These data not only suggest that DND1 is a partner of NANOS2 in undifferentiated spermatogonia as well as in male embryonic germ cells, but also show that DND1 plays an essential role in the survival of differentiating spermatogonia.
Collapse
Affiliation(s)
- Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hitomi Nishimura
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Kenya Yui
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Ai Kikuchi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hiroko Koike
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan; Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.
| |
Collapse
|
40
|
Bejarano I, Rodríguez AB, Pariente JA. Apoptosis Is a Demanding Selective Tool During the Development of Fetal Male Germ Cells. Front Cell Dev Biol 2018; 6:65. [PMID: 30003081 PMCID: PMC6031705 DOI: 10.3389/fcell.2018.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is widely known to play a major role on diseases related to male infertility. Diseases of the male genital tract as defective spermatogenesis, decreased sperm motility, sperm DNA fragmentation, testicular torsion, varicocele and immunological infertility are strongly related to apoptotic cell death. Apoptosis must not be considered only as a fail on germ cell physiology or a secondary effect of certain pathologies and exogenous hazardous agents. Apoptosis orchestrates correct function and development of the male germ cell from the early embryonic stages of gonadal differentiation to the fertilization. In this review we have tried to address a reading frame of the main knowledge about apoptosis in male germ cell development. Focussing on mechanisms concerning cellular apoptosis, which are independent of exogenous stimuli, we aimed to highlight that apoptosis is a selective instrument that guarantees the delivery of genetic message to offspring.
Collapse
Affiliation(s)
| | | | - José A. Pariente
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
41
|
Pui HP, Saga Y. NANOS2 acts as an intrinsic regulator of gonocytes-to-spermatogonia transition in the murine testes. Mech Dev 2018; 149:27-40. [DOI: 10.1016/j.mod.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
42
|
Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1013-1022. [DOI: 10.1016/j.bbadis.2017.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/28/2016] [Accepted: 01/28/2017] [Indexed: 12/26/2022]
|
43
|
Esfandiari F, Ashtiani MK, Sharifi‐Tabar M, Saber M, Daemi H, Ghanian MH, Shahverdi A, Baharvand H. Microparticle‐Mediated Delivery of BMP4 for Generation of Meiosis‐Competent Germ Cells from Embryonic Stem Cells. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/17/2016] [Indexed: 01/13/2023]
Abstract
Producing meiosis‐competent germ cells (GCs) from embryonic stem cells (ESCs) is essential for developing advanced therapies for infertility. Here, a novel approach is presented for generation of GCs from ESCs. In this regard, microparticles (MPs) have been developed from alginate sulfate loaded with bone morphogenetic protein 4 (BMP4). The results here show that BMP4 release from alginate sulfate MPs is significantly retarded by the sulfated groups compared to neat alginate. Then, BMP4‐laden MPs are incorporated within the aggregates during differentiation of GCs from ESCs. It is observed that BMP4‐laden MPs increase GC differentiation from ESCs at least twofold compared to the conventional soluble delivery method. Interestingly, following meiosis induction,Dazl, an intrinsic factor that enables GCs to enter meiosis, and two essential meiosis genes (Stra8andSmc1b) are upregulated significantly in MP‐induced aggregates compared to aggregates, which are formed by the conventional method. Together, these data show that controlled delivery of BMP4 during ESC differentiation into GC establish meiosis‐competent GCs which can serve as an attractive GC source for reproductive medicine.image
Collapse
Affiliation(s)
- Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
- Department of Developmental Biology University of Science and Culture Tehran 1461968151 Iran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Mehdi Sharifi‐Tabar
- Department of Molecular Systems Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Hamed Daemi
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Mohammad Hossein Ghanian
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Abdolhossein Shahverdi
- Department of Embryology Reproductive Biomedicine Research Center Royan Institute for Reproductive Biomedicine ACECR Tehran 1665659911 Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
- Department of Developmental Biology University of Science and Culture Tehran 1461968151 Iran
| |
Collapse
|
44
|
Tokue M, Ikami K, Mizuno S, Takagi C, Miyagi A, Takada R, Noda C, Kitadate Y, Hara K, Mizuguchi H, Sato T, Taketo MM, Sugiyama F, Ogawa T, Kobayashi S, Ueno N, Takahashi S, Takada S, Yoshida S. SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells. Stem Cell Reports 2017; 8:561-575. [PMID: 28196692 PMCID: PMC5355566 DOI: 10.1016/j.stemcr.2017.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/15/2023] Open
Abstract
In the seminiferous tubules of mouse testes, a population of glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1)-positive spermatogonia harbors the stem cell functionality and supports continual spermatogenesis, likely independent of asymmetric division or definitive niche control. Here, we show that activation of Wnt/β-catenin signaling promotes spermatogonial differentiation and reduces the GFRα1+ cell pool. We further discovered that SHISA6 is a cell-autonomous Wnt inhibitor that is expressed in a restricted subset of GFRα1+ cells and confers resistance to the Wnt/β-catenin signaling. Shisa6+ cells appear to show stem cell-related characteristics, conjectured from the morphology and long-term fates of T (Brachyury)+ cells that are found largely overlapped with Shisa6+ cells. This study proposes a generic mechanism of stem cell regulation in a facultative (or open) niche environment, with which different levels of a cell-autonomous inhibitor (SHISA6, in this case) generates heterogeneous resistance to widely distributed differentiation-promoting extracellular signaling, such as WNTs. Wnt/β-catenin signaling promotes the differentiation of GFRα1+ spermatogonia SHISA6 is a cell-autonomous Wnt inhibitor expressed in subset GFRα1+ cells SHISA6 confers resistance to differentiation induction by Wnt/β-catenin signaling SHISA6+ spermatogonia show stem cell-related properties
Collapse
Affiliation(s)
- Moe Tokue
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Kanako Ikami
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Seiya Mizuno
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Asuka Miyagi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ritsuko Takada
- Division of Molecular and Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Chiyo Noda
- Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Yu Kitadate
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Kenshiro Hara
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hiroko Mizuguchi
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Takuya Sato
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Fumihiro Sugiyama
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takehiko Ogawa
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Satoru Kobayashi
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Naoto Ueno
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Satoru Takahashi
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shinji Takada
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Division of Molecular and Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan.
| |
Collapse
|
45
|
Sousa BLA, Nishi MY, Santos MG, Brito VN, Domenice S, Mendonca BB. Mutation analysis of NANOS3 in Brazilian women with primary ovarian failure. Clinics (Sao Paulo) 2016; 71:695-698. [PMID: 28076512 PMCID: PMC5175295 DOI: 10.6061/clinics/2016(12)03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES: Primary ovarian failure is a rare disorder, and approximately 90% of cases are of unknown etiology. The aim of this study was to search for mutations in NANOS3, a gene that was recently related to the etiology of primary ovarian failure, in a group of Brazilian women. METHODS: We screened for NANOS3 DNA variants in 30 consecutive women who were previously diagnosed with primary ovarian failure, of unknown etiology and compared the results with those from 185 women with normal fertility. The NANOS3 gene was amplified by polymerase chain reaction using pairs of specific primers and then sequenced. The resulting sequences were compared with control sequences available in the National Center for Biotechnology and Information database. RESULTS: No mutations in NANOS3 were found in primary ovarian failure patients, but four previously described polymorphisms were identified at a similar frequency in the control and primary ovarian failure groups. CONCLUSIONS: Mutations in NANOS3 were not associated with primary ovarian failure in the present cohort.
Collapse
Affiliation(s)
- Braian Lucas A Sousa
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Disciplina de Endocrinologia, Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, São Paulo/SP, Brazil
| | - Mirian Yumie Nishi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Disciplina de Endocrinologia, Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, São Paulo/SP, Brazil
| | - Mariza Gerdulo Santos
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Disciplina de Endocrinologia, Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, São Paulo/SP, Brazil
| | - Vinicius Nahime Brito
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Disciplina de Endocrinologia, Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, São Paulo/SP, Brazil
| | - Sorahia Domenice
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Disciplina de Endocrinologia, Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, São Paulo/SP, Brazil
| | - Berenice B Mendonca
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Disciplina de Endocrinologia, Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, São Paulo/SP, Brazil
- E-mail:
| |
Collapse
|
46
|
Panula S, Reda A, Stukenborg JB, Ramathal C, Sukhwani M, Albalushi H, Edsgärd D, Nakamura M, Söder O, Orwig KE, Yamanaka S, Reijo Pera RA, Hovatta O. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS One 2016; 11:e0165268. [PMID: 27768780 PMCID: PMC5074499 DOI: 10.1371/journal.pone.0165268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/05/2022] Open
Abstract
The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarita Panula
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
| | - Ahmed Reda
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Cyril Ramathal
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Meena Sukhwani
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Halima Albalushi
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Daniel Edsgärd
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michiko Nakamura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Olle Söder
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Kyle E. Orwig
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, United States of America
| | - Renee A. Reijo Pera
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
- Department of Cell Biology and Neurosciences and Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, United States of America
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
47
|
Inaba Y, Shinohara K, Botilde Y, Nabeshima R, Takaoka K, Ajima R, Lamri L, Takeda H, Saga Y, Nakamura T, Hamada H. Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes Cells 2016; 21:728-39. [PMID: 27353389 DOI: 10.1111/gtc.12380] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 11/30/2022]
Abstract
Lrrc6 encodes a cytoplasmic protein that is expressed specifically in cells with motile cilia including the node, trachea and testes of the mice. A mutation of Lrrc6 has been identified in human patients with primary ciliary dyskinesia (PCD). Mutant mice lacking Lrrc6 show typical PCD defects such as hydrocephalus and laterality defects. We found that in the absence of Lrrc6, the morphology of motile cilia remained normal, but their motility was completely lost. The 9 + 2 arrangement of microtubules remained normal in Lrrc6(-/-) mice, but the outer dynein arms (ODAs), the structures essential for the ciliary beating, were absent from the cilia. In the absence of Lrrc6, ODA proteins such as DNAH5, DNAH9 and IC2, which are assembled in the cytoplasm and transported to the ciliary axoneme, remained in the cytoplasm and were not transported to the ciliary axoneme. The IC2-IC1 interaction, which is the first step of ODA assembly, was normal in Lrrc6(-/-) mice testes. Our results suggest that ODA proteins may be transported from the cytoplasm to the cilia by an Lrrc6-dependent mechanism.
Collapse
Affiliation(s)
- Yasuko Inaba
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kyosuke Shinohara
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yanick Botilde
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ryo Nabeshima
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Rieko Ajima
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Lynda Lamri
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
48
|
Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features. Sci Rep 2016; 6:24956. [PMID: 27112843 PMCID: PMC4844986 DOI: 10.1038/srep24956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans.
Collapse
|
49
|
Qi H. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective. ACTA ACUST UNITED AC 2016; 5:1. [PMID: 26839690 PMCID: PMC4736624 DOI: 10.1186/s13619-015-0022-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022]
Abstract
Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.
Collapse
Affiliation(s)
- Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| |
Collapse
|
50
|
Park E, Lee B, Clurman BE, Lee K. NUP50 is necessary for the survival of primordial germ cells in mouse embryos. Reproduction 2016; 151:51-8. [DOI: 10.1530/rep-14-0649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/29/2015] [Indexed: 11/08/2022]
Abstract
Nucleoporin 50 kDa (NUP50), a component of the nuclear pore complex, is highly expressed in male germ cells, but its role in germ cells is largely unknown. In this study, we analyzed the expression and function of NUP50 during the embryonic development of germ cells using NUP50-deficient mice. NUP50 was expressed in germ cells of both sexes at embryonic day 15.5 (E15.5), E13.5, and E12.5. In addition, NUP50 expression was also detected in primordial germ cells (PGCs) migrating into the genital ridges at E9.5. The gonads of Nup50−/− embryos of both sexes contained few PGCs at both E11.5 and E12.5 and no developing germ cells at E15.5. The migratory PGCs in Nup50−/− embryos at E9.5 showed increased apoptosis but a normal rate of proliferation, resulting in the progressive loss of germ cells at later stages. Taken together, these results suggest that NUP50 plays an essential role in the survival of PGCs during embryonic development.
Collapse
|