1
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Li M. Sex body: A nest of protein mixture. Front Cell Dev Biol 2023; 11:1165745. [PMID: 37123420 PMCID: PMC10140345 DOI: 10.3389/fcell.2023.1165745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
During the pachytene stage in mammalian meiosis, the X and Y chromosomes remain largely unsynapsed outside the pseudoautosomal region, while autosomes are fully synapsed. Then, the sex chromosomes are compartmentalized into a "sex body" in the nucleus and are subjected to meiotic sex chromosome inactivation (MSCI). For decades, the formation and functioning of the sex body and MSCI have been subjects worth exploring. Notably, a series of proteins have been reported to be located on the sex body area and inferred to play an essential role in MSCI; however, the proteins that are actually located in this area and how these proteins promote sex body formation and establish MSCI remain unclear. Collectively, the DNA damage response factors, downstream fanconi anemia proteins, and other canonical repressive histone modifications have been reported to be associated with the sex body. Here, this study reviews the factors located on the sex body area and tries to provide new insights into studying this mysterious domain.
Collapse
|
4
|
Chukrallah LG, Badrinath A, Vittor GG, Snyder EM. ADAD2 regulates heterochromatin in meiotic and post-meiotic male germ cells via translation of MDC1. J Cell Sci 2022; 135:jcs259196. [PMID: 35191498 PMCID: PMC8919335 DOI: 10.1242/jcs.259196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Male germ cells establish a unique heterochromatin domain, the XY-body, early in meiosis. How this domain is maintained through the end of meiosis and into post-meiotic germ cell differentiation is poorly understood. ADAD2 is a late meiotic male germ cell-specific RNA-binding protein, loss of which leads to post-meiotic germ cell defects. Analysis of ribosome association in Adad2 mouse mutants revealed defective translation of Mdc1, a key regulator of XY-body formation, late in meiosis. As a result, Adad2 mutants show normal establishment but failed maintenance of the XY-body. Observed XY-body defects are concurrent with abnormal autosomal heterochromatin and ultimately lead to severely perturbed post-meiotic germ cell heterochromatin and cell death. These findings highlight the requirement of ADAD2 for Mdc1 translation, the role of MDC1 in maintaining meiotic male germ cell heterochromatin and the importance of late meiotic heterochromatin for normal post-meiotic germ cell differentiation.
Collapse
Affiliation(s)
| | - Aditi Badrinath
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gabrielle G. Vittor
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
6
|
Vigodner M, Lucas B, Kemeny S, Schwartz T, Levy R. Identification of sumoylated targets in proliferating mouse spermatogonia and human testicular seminomas. Asian J Androl 2020; 22:569-577. [PMID: 32217837 PMCID: PMC7705977 DOI: 10.4103/aja.aja_11_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/17/2020] [Indexed: 11/19/2022] Open
Abstract
Spermatogenesis is regulated by a complex network of posttranslation modifications. Sumoylation (a modification by small ubiquitin-like modifiers, or SUMO proteins) was identified as an important cellular event in different cell types. SUMO proteins are highly expressed in the testis, and their role during spermatogenesis has begun to be elucidated. Given the important role of sumoylation in the regulation of mitosis and cancer progression in other tissues, the aim of the current study was to identify the targets of SUMO in proliferating mouse spermatogonia and human seminoma tissues and to initially examine the level of sumoylation in relation to the proliferative activity of the tissues. Using freshly purified spermatogonia and C18-4 spermatogonia cell line, mass spectrometry analysis identified several SUMO targets implicated into the proliferation of spermatogonia (such as heat shock protein 60 [HSP60] and prohibitin). Tissue array and western blot approaches showed that SUMO expression is a prominent feature of human seminomas and that the proliferative activity of the tumor tissues was positively correlated with the level of SUMO expression. Downregulation of sumoylation with si-RNA was not sufficient to significantly affect the proliferation of C18-4 spermatogonia; however, SUMO overexpression increased the proliferation rate of the cells. These data suggest that cells are more sensitive to an elevated level of SUMO, and that this situation may lead to an upregulated cellular proliferation and, possibly, cancer. Mass spectrometry analysis identified around a hundred SUMO targets in seminoma samples. Notably, many of the identified proteins (such as proliferating cell nuclear antigen [PCNA], DNA topoisomerase 2-alpha [Top2A], prohibitin, 14-3-3 protein, and others) were implicated in oncogenic transformation and cancer progression.
Collapse
Affiliation(s)
- Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin Lucas
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| | - Stav Kemeny
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| | - Tamar Schwartz
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| | - Rebecca Levy
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| |
Collapse
|
7
|
Sarkar S, Sujit KM, Singh V, Pandey R, Trivedi S, Singh K, Gupta G, Rajender S. Array-based DNA methylation profiling reveals peripheral blood differential methylation in male infertility. Fertil Steril 2019; 112:61-72.e1. [DOI: 10.1016/j.fertnstert.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
8
|
Hu J, Sun F, Handel MA. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod 2019; 98:102-114. [PMID: 29161344 DOI: 10.1093/biolre/iox150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic translation initiation factor 4G (EIF4G) is an important scaffold protein in the translation initiation complex. In mice, mutation of the Eif4g3 gene causes male infertility, with arrest of meiosis at the end of meiotic prophase. This study documents features of the developmental expression and subcellular localization of EIF4G3 that might contribute to its highly specific role in meiosis and spermatogenesis. Quite unexpectedly, EIF4G3 is located in the nucleus of spermatocytes, where it is highly enriched in the XY body, the chromatin domain formed by the transcriptionally inactive sex chromosomes. Moreover, many other, but not all, translation-related proteins are also localized in the XY body. These unanticipated observations implicate roles for the XY body in controlling mRNA metabolism and/or "poising" protein translation complexes before the meiotic division phase in spermatocytes.
Collapse
Affiliation(s)
| | - Fengyun Sun
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | |
Collapse
|
9
|
Josa-Prado F, Luo J, Rubin P, Henley JM, Wilkinson KA. Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum. PLoS One 2019; 14:e0212857. [PMID: 30794696 PMCID: PMC6386258 DOI: 10.1371/journal.pone.0212857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Protein SUMOylation regulates multiple processes involved in the differentiation and maturation of cells and tissues during development. Despite this, relatively little is known about the spatial and temporal regulation of proteins that mediate SUMOylation and deSUMOylation in the CNS. Here we monitor the expression of key SUMO pathway proteins and levels of substrate protein SUMOylation in the forebrain and cerebellum of Wistar rats during development. Overall, the SUMOylation machinery is more highly-expressed at E18 and decreases thereafter, as previously described. All of the proteins investigated are less abundant in adult than in embryonic brain. Furthermore, we show for first time that the profiles differ between cerebellum and cerebrum, indicating differential regional regulation of some of the proteins analysed. These data provide further basic observation that may open a new perspective of research about the role of SUMOylation in the development of different brain regions.
Collapse
Affiliation(s)
- Fernando Josa-Prado
- Universidad Alfonso X el Sabio, Avda, de la Universidad, Madrid, España
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| | - Jia Luo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Philip Rubin
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Jeremy M. Henley
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| |
Collapse
|
10
|
Abstract
The evolution of heteromorphic sex chromosomes has occurred independently many times in different lineages. The differentiation of sex chromosomes leads to dramatic changes in sequence composition and function and guides the evolutionary trajectory and utilization of genes in pivotal sex determination and reproduction roles. In addition, meiotic recombination and pairing mechanisms are key in orchestrating the resultant impact, retention and maintenance of heteromorphic sex chromosomes, as the resulting exposure of unpaired DNA at meiosis triggers ancient repair and checkpoint pathways. In this review, we summarize the different ways in which sex chromosome systems are organized at meiosis, how pairing is affected, and differences in unpaired DNA responses. We hypothesize that lineage specific differences in meiotic organization is not only a consequence of sex chromosome evolution, but that the establishment of epigenetic changes on sex chromosomes contributes toward their evolutionary conservation.
Collapse
Affiliation(s)
- Tasman Daish
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Frank Grützner
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Jeong J, Jin S, Choi H, Kwon JT, Kim J, Kim J, Park ZY, Cho C. Characterization of MAGEG2 with testis-specific expression in mice. Asian J Androl 2018; 19:659-665. [PMID: 27852984 PMCID: PMC5676425 DOI: 10.4103/1008-682x.192033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Male germ cell development is a well-defined process occurring in numerous seminiferous tubules of the testis. Uncovering testicular novel genes related to intrinsic regulation of spermatogenesis is essential for the understanding of spermatogenesis. In the present study, we investigated mouse Mageg2, which belongs to a group of melanoma-associated antigens (MAGEs). Mageg2 is transcribed in the testis specifically, and its expression level is increased at the pachytene spermatocyte stage, indicating that Mageg2 is expressed predominantly in germ cells. We generated an antibody against mouse MAGEG2 for further characterization at the protein level. Immunoblot analysis suggested that MAGEG2 has specific testicular expression and the expression primarily occurred in pachytene spermatocytes. Proteomic analyses demonstrated that mouse MAGEG2 binded to testicular germ cell-specific serine/threonine-protein kinase 31 (STK31) and heat shock protein 9 (HSPA9). Direct binding with both interaction partners was confirmed by co-immunoprecipitation. We found that STK31 and HSPA9 bind MAGEG2 directly but not with each other. Interestingly, MAGEG2 reduced the kinase activity of STK31. Our study suggests that mouse MAGEG2 has at least two functions, including chaperone activity related to HSPA9 and regulation of pachytene spermatocyte-specific kinase, STK31. Altogether, our results provide the first information about MAGEG2 at the transcript and protein levels and suggest its potential molecular functions.
Collapse
Affiliation(s)
- Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
12
|
Feitosa WB, Hwang K, Morris PL. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Dev Biol 2018; 434:278-291. [PMID: 29269218 PMCID: PMC5805567 DOI: 10.1016/j.ydbio.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization.
Collapse
Affiliation(s)
- Weber Beringui Feitosa
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - KeumSil Hwang
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA; The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
13
|
Hays E, Majchrzak N, Daniel V, Ferguson Z, Brown S, Hathorne K, La Salle S. Spermatogenesis associated 22 is required for DNA repair and synapsis of homologous chromosomes in mouse germ cells. Andrology 2017; 5:299-312. [PMID: 28297563 DOI: 10.1111/andr.12315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 01/09/2023]
Abstract
Analysis of the N-ethyl-N-nitrosourea (ENU)-induced repro42 mutation previously identified spermatogenesis associated 22 (Spata22) as a gene required for meiotic progression and fertility in both male and female mice, but its specific contribution to the process was unclear. Here, we report on a novel, null allele of Spata22 (Spata22Gt ) and confirm its requirement for germ cell development. Similar to repro42 mutant mice, histological and mating analyses indicate that gametogenesis is profoundly affected in Spata22Gt/Gt males and females, resulting in infertility. Cytological examination confirms that germ cells do not progress beyond zygonema and meiotic arrest is linked to impairment of both synapsis and DNA repair. Analysis of SPATA22 distribution reveals that it localizes to foci associated with meiotic chromosomes during prophase I and that the number of foci peaks at zygonema; there are also more SPATA22 foci in oocytes than in spermatocytes. Furthermore, SPATA22 co-localizes with a number of proteins involved in meiotic recombination, including RAD51, DMC1, and MLH1, and is present until mid-pachynema, suggesting a role in resolution of recombination intermediates. In fact, SPATA22 co-localizes with MLH1 in more than 20% of foci at pachynema. Analysis of Spata22Gt/Gt meiocytes confirms that SPATA22 is required for localization of MEIOB but not RPA (two proteins known to interact with SPATA22), and immunoblotting corroborates that production of MEIOB is indeed decreased in the absence of SPATA22. Together, these data suggest that SPATA22 is required for both meiotic recombination and synapsis during meiosis in mice.
Collapse
Affiliation(s)
- E Hays
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - N Majchrzak
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
| | - V Daniel
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Z Ferguson
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, IL, USA
| | - S Brown
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, IL, USA
| | - K Hathorne
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, IL, USA
| | - S La Salle
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| |
Collapse
|
14
|
Matveevsky SN, Pavlova SV, Atsaeva MM, Searle JB, Kolomiets OL. Dual mechanism of chromatin remodeling in the common shrew sex trivalent (XY 1Y 2). COMPARATIVE CYTOGENETICS 2017; 11:727-745. [PMID: 29114363 PMCID: PMC5672328 DOI: 10.3897/compcytogen.v11i4.13870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Here we focus on the XY1Y2 condition in male common shrew Sorex araneus Linnaeus, 1758, applying electron microscopy and immunocytochemistry for a comprehensive analysis of structure, synapsis and behaviour of the sex trivalent in pachytene spermatocytes. The pachytene sex trivalent consists of three distinct parts: short and long synaptic SC fragments (between the X and Y1 and between the X and Y2, respectively) and a long asynaptic region of the X in-between. Chromatin inactivation was revealed in the XY1 synaptic region, the asynaptic region of the X and a very small asynaptic part of the Y2. This inactive part of the sex trivalent, that we named the 'head', forms a typical sex body and is located at the periphery of the meiotic nucleus at mid pachytene. The second part or 'tail', a long region of synapsis between the X and Y2 chromosomes, is directed from the periphery into the nucleus. Based on the distribution patterns of four proteins involved in chromatin inactivation, we propose a model of meiotic silencing in shrew sex chromosomes. Thus, we conclude that pachytene sex chromosomes are structurally and functionally two different chromatin domains with specific nuclear topology: the peripheral inactivated 'true' sex chromosome regions (part of the X and the Y1) and more centrally located transcriptionally active autosomal segments (part of the X and the Y2).
Collapse
Affiliation(s)
- Sergey N. Matveevsky
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin str. 3, Moscow 119991, Russia
| | - Svetlana V. Pavlova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Maret M. Atsaeva
- Chechen State University, A. Sheripov str. 32, Grozny 364051, Chechen Republic, Russia
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853, USA
| | - Oxana L. Kolomiets
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin str. 3, Moscow 119991, Russia
| |
Collapse
|
15
|
Xiao Y, Lucas B, Molcho E, Vigodner M. Cross-talk between sumoylation and phosphorylation in mouse spermatocytes. Biochem Biophys Res Commun 2017; 487:640-645. [PMID: 28435066 DOI: 10.1016/j.bbrc.2017.04.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
The meiotic G2/M1 transition is mostly regulated by posttranslational modifications, however, the cross-talk between different posttranslational modifications is not well-understood, especially in spermatocytes. Sumoylation has emerged as a critical regulatory event in several developmental processes, including reproduction. In mouse oocytes, inhibition of sumoylation caused various meiotic defects and led to aneuploidy. However, the role of sumoylation in male reproduction has only begun to be elucidated. Given the important role of several SUMO targets (including kinases) in meiosis, in this study, the role of sumoylation was addressed by monitoring the G2/M1 transition in pachytene spermatocytes in vitro upon inhibition of sumoylation. Furthermore, to better understand the cross-talk between sumoylation and phosphorylation, the activity of several kinases implicated in meiotic progression was also assessed upon down-regulation of sumoylation. The results of the analysis demonstrate that inhibition of sumoylation with ginkgolic acid (GA) arrests the G2/M1 transition in mouse spermatocytes preventing chromosome condensation and disassembling of the synaptonemal complex. Our results revealed that the activity of PLK1 and the Aurora kinases increased during the G2/M1 meiotic transition, but was negatively regulated by the inhibition of sumoylation. In the same experiment, the activity of c-Abl, the ERKs, and AKT were not affected or increased after GA treatment. Both the AURKs and PLK1 appear to be "at the right place, at the right time" to at least, in part, explain the meiotic arrest obtained in the spermatocyte culture.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA
| | - Benjamin Lucas
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA
| | - Elana Molcho
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA
| | - Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
16
|
Rao HBDP, Qiao H, Bhatt SK, Bailey LRJ, Tran HD, Bourne SL, Qiu W, Deshpande A, Sharma AN, Beebout CJ, Pezza RJ, Hunter N. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 2017; 355:403-407. [PMID: 28059716 PMCID: PMC5569317 DOI: 10.1126/science.aaf6407] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/12/2016] [Accepted: 12/14/2016] [Indexed: 01/12/2023]
Abstract
Meiosis produces haploid gametes through a succession of chromosomal events, including pairing, synapsis, and recombination. Mechanisms that orchestrate these events remain poorly understood. We found that the SUMO (small ubiquitin-like modifier)-modification and ubiquitin-proteasome systems regulate the major events of meiotic prophase in mouse. Interdependent localization of SUMO, ubiquitin, and proteasomes along chromosome axes was mediated largely by RNF212 and HEI10, two E3 ligases that are also essential for crossover recombination. RNF212-dependent SUMO conjugation effected a checkpointlike process that stalls recombination by rendering the turnover of a subset of recombination factors dependent on HEI10-mediated ubiquitylation. We propose that SUMO conjugation establishes a precondition for designating crossover sites via selective protein stabilization. Thus, meiotic chromosome axes are hubs for regulated proteolysis via SUMO-dependent control of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- H B D Prasada Rao
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Huanyu Qiao
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Shubhang K Bhatt
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Logan R J Bailey
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Hung D Tran
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Sarah L Bourne
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Wendy Qiu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Anusha Deshpande
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Ajay N Sharma
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Connor J Beebout
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Sumoylation in Development and Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:197-214. [DOI: 10.1007/978-3-319-50044-7_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Wrestling with Chromosomes: The Roles of SUMO During Meiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:185-196. [PMID: 28197913 DOI: 10.1007/978-3-319-50044-7_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.
Collapse
|
19
|
Xiao Y, Pollack D, Andrusier M, Levy A, Callaway M, Nieves E, Reddi P, Vigodner M. Identification of cell-specific targets of sumoylation during mouse spermatogenesis. Reproduction 2016; 151:149-66. [PMID: 26701181 DOI: 10.1530/rep-15-0239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings suggest diverse and potentially multiple roles of small ubiquitin-like modifier (SUMO) in testicular function and spermatogenesis. However, SUMO targets remain uncharacterized in the testis due to the complex multicellular nature of testicular tissue, the inability to maintain and manipulate spermatogenesis in vitro, and the technical challenges involved in identifying low-abundance endogenous SUMO targets. In this study, we performed cell-specific identification of sumoylated proteins using concentrated cell lysates prepared with de-sumoylation inhibitors from freshly purified spermatocytes and spermatids. One-hundred and twenty proteins were uniquely identified in the spermatocyte and/or spermatid fractions. The identified proteins are involved in the regulation of transcription, stress response, microRNA biogenesis, regulation of major enzymatic pathways, nuclear-cytoplasmic transport, cell-cycle control, acrosome biogenesis, and other processes. Several proteins with important roles during spermatogenesis were chosen for further characterization by co-immunoprecipitation, co-localization, and in vitro sumoylation studies. GPS-SUMO Software was used to identify consensus and non-consensus sumoylation sites within the amino acid sequences of the proteins. The analyses confirmed the cell-specific sumoylation and/or SUMO interaction of several novel, previously uncharacterized SUMO targets such as CDK1, RNAP II, CDC5, MILI, DDX4, TDP-43, and STK31. Furthermore, several proteins that were previously identified as SUMO targets in somatic cells (KAP1 and MDC1) were identified as SUMO targets in germ cells. Many of these proteins have a unique role in spermatogenesis and during meiotic progression. This research opens a novel avenue for further studies of SUMO at the level of individual targets.
Collapse
Affiliation(s)
| | | | | | | | - Myrasol Callaway
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Edward Nieves
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Prabhakara Reddi
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Margarita Vigodner
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Matveevsky S, Bakloushinskaya I, Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci Rep 2016; 6:29949. [PMID: 27425629 PMCID: PMC4947958 DOI: 10.1038/srep29949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023] Open
Abstract
Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Cytogenetics Laboratory, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina Bakloushinskaya
- Evolutionary and Developmental Genetics Laboratory, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oxana Kolomiets
- Cytogenetics Laboratory, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
21
|
Lu LY, Yu X. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase. Cell Cycle 2015; 14:516-25. [PMID: 25565522 DOI: 10.1080/15384101.2014.998070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.
Collapse
Affiliation(s)
- Lin-Yu Lu
- a Women's Hospital ; School of Medicine ; Zhejiang University ; Hangzhou , Zhejiang , China
| | | |
Collapse
|
22
|
Regulation of germ cell function by SUMOylation. Cell Tissue Res 2015; 363:47-55. [PMID: 26374733 DOI: 10.1007/s00441-015-2286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/11/2015] [Indexed: 01/30/2023]
Abstract
Oogenesis and spermatogenesis are tightly regulated complex processes that are critical for fertility. Germ cells undergo meiosis to generate haploid cells necessary for reproduction. Errors in meiosis, including the generation of chromosomal abnormalities, can result in reproductive defects and infertility. Meiotic proteins are regulated by post-translational modifications including SUMOylation, the covalent attachment of small ubiquitin-like modifier (SUMO) proteins. Here, we review the role of SUMO proteins in controlling germ cell development and maturation based on recent findings from mouse models. Several studies have characterized the localization of SUMO proteins in male and female germ cells. However, a deeper understanding of how SUMOylation regulates proteins with essential roles in oogenesis and spermatogenesis will provide useful insight into the underlying mechanisms of germ cell development and fertility.
Collapse
|
23
|
Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet 2015; 11:e1004954. [PMID: 25634095 PMCID: PMC4310598 DOI: 10.1371/journal.pgen.1004954] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically expressed in germ cells, including spermatogonia, spermatocytes, and round spermatids. SCML2 associates with phosphorylated H2AX and localizes to the XY body in spermatocytes. Loss of SCML2 in mice causes defective spermatogenesis, resulting in sharply reduced sperm production. SCML2 interacts with and recruits a deubiquitinase, USP7, to the XY body in spermatocytes. In the absence of SCML2, USP7 fails to accumulate on the XY body, whereas H2A monoubiquitination is dramatically augmented in the XY chromatin. Our results demonstrate that the SCML2/USP7 complex constitutes a novel molecular pathway in modulating the epigenetic state of sex chromosomes during male meiosis.
Collapse
|
24
|
SUMOylation is developmentally regulated and required for cell pairing during conjugation in Tetrahymena thermophila. EUKARYOTIC CELL 2014; 14:170-81. [PMID: 25527524 DOI: 10.1128/ec.00252-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual reproduction of this organism includes cell pairing, micronuclear meiosis, and the formation of a new somatic macronucleus. We identified the Tetrahymena thermophila SMT3 (SUMO) and UBA2 (SUMO-activating enzyme) genes and demonstrated that the corresponding green fluorescent protein (GFP) tagged gene products are found predominantly in the somatic macronucleus during vegetative growth. Use of an anti-Smt3p antibody to perform immunoblot assays with whole-cell lysates during conjugation revealed a large increase in SUMOylation that peaked during formation of the new macronucleus. Immunofluorescence using the same antibody showed that the increase was localized primarily within the new macronucleus. To initiate functional analysis of the SUMO pathway, we created germ line knockout cell lines for both the SMT3 and UBA2 genes and found both are essential for cell viability. Conditional Smt3p and Uba2p cell lines were constructed by incorporation of the cadmium-inducible metallothionein promoter. Withdrawal of cadmium resulted in reduced cell growth and increased sensitivity to DNA-damaging agents. Interestingly, Smt3p and Uba2p conditional cell lines were unable to pair during sexual reproduction in the absence of cadmium, consistent with a function early in conjugation. Our studies are consistent with multiple roles for SUMOylation in Tetrahymena, including a dynamic regulation associated with the sexual life cycle.
Collapse
|
25
|
Zhang T, Murphy MW, Gearhart MD, Bardwell VJ, Zarkower D. The mammalian Doublesex homolog DMRT6 coordinates the transition between mitotic and meiotic developmental programs during spermatogenesis. Development 2014; 141:3662-71. [PMID: 25249458 DOI: 10.1242/dev.113936] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In mammals, a key transition in spermatogenesis is the exit from spermatogonial differentiation and mitotic proliferation and the entry into spermatocyte differentiation and meiosis. Although several genes that regulate this transition have been identified, how it is controlled and coordinated remains poorly understood. Here, we examine the role in male gametogenesis of the Doublesex-related gene Dmrt6 (Dmrtb1) in mice and find that Dmrt6 plays a crucial role in directing germ cells through the mitotic-to-meiotic germ cell transition. DMRT6 protein is expressed in late mitotic spermatogonia. In mice of the C57BL/6J strain, a null mutation in Dmrt6 disrupts spermatogonial differentiation, causing inappropriate expression of spermatogonial differentiation factors, including SOHLH1, SOHLH2 and DMRT1 as well as the meiotic initiation factor STRA8, and causing most late spermatogonia to undergo apoptosis. In mice of the 129Sv background, most Dmrt6 mutant germ cells can complete spermatogonial differentiation and enter meiosis, but they show defects in meiotic chromosome pairing, establishment of the XY body and processing of recombination foci, and they mainly arrest in mid-pachynema. mRNA profiling of Dmrt6 mutant testes together with DMRT6 chromatin immunoprecipitation sequencing suggest that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. Our results indicate that Dmrt6 plays a key role in coordinating the transition in gametogenic programs from spermatogonial differentiation and mitosis to spermatocyte development and meiosis.
Collapse
Affiliation(s)
- Teng Zhang
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark W Murphy
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vivian J Bardwell
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - David Zarkower
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Marchiani S, Tamburrino L, Ricci B, Nosi D, Cambi M, Piomboni P, Belmonte G, Forti G, Muratori M, Baldi E. SUMO1 in human sperm: new targets, role in motility and morphology and relationship with DNA damage. Reproduction 2014; 148:453-67. [PMID: 25118297 DOI: 10.1530/rep-14-0173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In studies carried out previously, we demonstrated that small ubiquitin-like modifier 1 (SUMO1) is associated with poor sperm motility when evaluated with a protocol that reveals mostly SUMO1-ylated live sperm. Recently, with another protocol, it has been demonstrated that SUMO is expressed in most sperm and is related to poor morphology and motility, suggesting that sumoylation may have multiple roles depending on its localisation and targets. We show herein, by confocal microscopy and co-immunoprecipitation, that dynamin-related protein 1 (DRP1), Ran GTPase-activating protein 1 (RanGAP1) and Topoisomerase IIα, SUMO1 targets in somatic and/or germ cells, are SUMO1-ylated in mature human spermatozoa. DRP1 co-localises with SUMO1 in the mid-piece, whereas RanGAP1 and Topoisomerase IIα in the post-acrosomal region of the head. Both SUMO1 expression and co-localisation with the three proteins were significantly higher in morphologically abnormal sperm, suggesting that sumoylation represents a marker of defective sperm. DRP1 sumoylation at the mid-piece level was higher in the sperm of asthenospermic men. As in somatic cells, DRP1 sumoylation is associated with mitochondrial alterations, this protein may represent the link between SUMO and poor motility. As SUMO pathways are involved in responses to DNA damage, another aim of our study was to investigate the relationship between sumoylation and sperm DNA fragmentation (SDF). By flow cytometry, we demonstrated that SUMO1-ylation and SDF are correlated (r=0.4, P<0.02, n=37) and most sumoylated sperm shows DNA damage in co-localisation analysis. When SDF was induced by stressful conditions (freezing and thawing and oxidative stress), SUMO1-ylation increased. Following freezing and thawing, SUMO1-Topoisomerase IIα co-localisation and co-immunoprecipitation increased, suggesting an involvement in the formation/repair of DNA breakage.
Collapse
Affiliation(s)
- S Marchiani
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - L Tamburrino
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - B Ricci
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - D Nosi
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - M Cambi
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - P Piomboni
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - G Belmonte
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - G Forti
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - M Muratori
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - E Baldi
- Department of BiomedicalExperimental and Clinical Sciences, Center of Excellence DeNotheDepartment of Experimental and Clinical MedicineUniversity of Florence, Viale Pieraccini 6, I-50139 Florence, ItalyDepartments of Molecular and Developmental MedicineMedicalSurgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
27
|
Evidence Implicating CCNB1IP1, a RING Domain-Containing Protein Required for Meiotic Crossing Over in Mice, as an E3 SUMO Ligase. Genes (Basel) 2014; 1:440-51. [PMID: 21779533 PMCID: PMC3139512 DOI: 10.3390/genes1030440] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The RING domain-containing protein CCNB1IP1 (Cyclin B1 Interacting Protein 1) is a putative ubiquitin E3 ligase that is essential for chiasmata formation, and hence fertility, in mice. Previous studies in cultured cells indicated that CCNB1IP1 targets Cyclin B for degradation, thus playing a role in cell cycle regulation. Mice homozygous for a mutant allele (mei4) of Ccnb1ip1 display no detectable phenotype other than meiotic failure from an absence of chiasmata. CCNB1IP1 is not conserved in key model organisms such as yeast and Drosophila, and there are no features of the protein that implicate clear mechanisms for a role in recombination. To gain insight into CCNB1IP1’s function in meiotic cells, we raised a specific antibody and determined that the protein appears in pachynema. This indicates that CCNB1IP1 is involved with crossover intermediate maturation, rather than early (leptotene) specification of a subset of SPO11-induced double strand breaks towards the crossover pathway. Additionally, a yeast 2-hybrid (Y2H) screen revealed that CCNB1IP1 interacts with SUMO2 and a set of proteins enriched for consensus sumoylation sites. The Y2H studies, combined with scrutiny of CCNB1IP1 domains, implicate this protein as an E3 ligase of the sumoylation cascade. We hypothesize CCNB1IP1 represents a novel meiosis-specific SUMO E3 ligase critical to resolution of recombination intermediates into mature chiasmata.
Collapse
|
28
|
Sumoylation differentially regulates Sp1 to control cell differentiation. Proc Natl Acad Sci U S A 2014; 111:5574-9. [PMID: 24706897 DOI: 10.1073/pnas.1315034111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian small ubiquitin-like modifiers (SUMOs) are actively involved in regulating differentiation of different cell types. However, the functional differences between SUMO isoforms and their mechanisms of action remain largely unknown. Using the ocular lens as a model system, we demonstrate that different SUMOs display distinct functions in regulating differentiation of epithelial cells into fiber cells. During lens differentiation, SUMO1 and SUMO2/3 displayed different expression, localization, and targets, suggesting differential functions. Indeed, overexpression of SUMO2/3, but not SUMO1, inhibited basic (b) FGF-induced cell differentiation. In contrast, knockdown of SUMO1, but not SUMO2/3, also inhibited bFGF action. Mechanistically, specificity protein 1 (Sp1), a major transcription factor that controls expression of lens-specific genes such as β-crystallins, was positively regulated by SUMO1 but negatively regulated by SUMO2. SUMO2 was found to inhibit Sp1 functions through several mechanisms: sumoylating it at K683 to attenuate DNA binding, and at K16 to increase its turnover. SUMO2 also interfered with the interaction between Sp1 and the coactivator, p300, and recruited a repressor, Sp3 to β-crystallin gene promoters, to negatively regulate their expression. Thus, stable SUMO1, but diminishing SUMO2/3, during lens development is necessary for normal lens differentiation. In support of this conclusion, SUMO1 and Sp1 formed complexes during early and later stages of lens development. In contrast, an interaction between SUMO2/3 and Sp1 was detected only during the initial lens vesicle stage. Together, our results establish distinct roles of different SUMO isoforms and demonstrate for the first time, to our knowledge, that Sp1 acts as a major transcription factor target for SUMO control of cell differentiation.
Collapse
|
29
|
Lu LY, Xiong Y, Kuang H, Korakavi G, Yu X. Regulation of the DNA damage response on male meiotic sex chromosomes. Nat Commun 2013; 4:2105. [PMID: 23812044 PMCID: PMC3759350 DOI: 10.1038/ncomms3105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 06/04/2013] [Indexed: 12/13/2022] Open
Abstract
During meiotic prophase in males, the sex chromosomes partially synapse to form the XY body. This is a unique structure that recruits proteins involved in the DNA damage response, which is believed to be important for silencing of the sex chromosomes. It remains elusive how the DNA damage response in the XY body is regulated. H2AX-MDC1-RNF8 signaling, which is well characterized in somatic cells, is dispensable for the recruitment of proteins to the unsynapsed axes in the XY body. However, the DNA damage response that spreads over the sex chromosomes is largely similar to that in somatic cells. Here we show that accumulation of some components of the DNA damage response pathway on the XY body occurs upstream of H2AX-MDC1-RNF8 signalling, and downstream from this cascade of events for others. This analysis shows that there are important differences between the regulation of the DNA damage response at the XY body and at DNA damage sites in somatic cells.
Collapse
Affiliation(s)
- Lin-Yu Lu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 5560 MSRB II, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
30
|
Chihara M, Otsuka S, Ichii O, Kon Y. Vitamin A deprivation affects the progression of the spermatogenic wave and initial formation of the blood-testis barrier, resulting in irreversible testicular degeneration in mice. J Reprod Dev 2013; 59:525-35. [PMID: 23934320 PMCID: PMC3934156 DOI: 10.1262/jrd.2013-058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood testis-barrier (BTB) is essential for maintaining homeostasis in the
seminiferous epithelium. Although many studies have reported that vitamin A (VA) is
required for the maintenance of spermatogenesis, the relationships between the BTB,
spermatogenesis and VA have not been elucidated. In this study, we analyzed BTB
assembly and spermatogenesis in the testes of mice fed the VA-deficient (VAD) diet
from the prepubertal period to adulthood. During the prepubertal period, no changes
were observed in the initiation and progression of the first spermatogenic wave in
mice fed the VAD diet. However, the numbers of preleptotene/leptotene spermatocytes
derived from the second spermatogenic wave onwards were decreased, and initial BTB
formation was also delayed, as evidenced by the decreased expression of mRNAs
encoding BTB components and VA signaling molecules. From 60 days postpartum, mice fed
the VAD diet exhibited apoptosis of germ cells, arrest of meiosis, disruption of the
BTB, and dramatically decreased testis size. Furthermore, vacuolization and
calcification were observed in the seminiferous epithelium of adult mice fed the VAD
diet. Re-initiation of spermatogenesis by VA replenishment in adult mice fed the VAD
diet rescued BTB assembly after when the second spermatogenic wave initiated from the
arrested spermatogonia reached the preleptotene/leptotene spermatocytes. These
results suggested that BTB integrity was regulated by VA metabolism with meiotic
progression and that the impermeable BTB was required for persistent spermatogenesis
rather than meiotic initiation. In conclusion, consumption of the VAD diet led to
critical defects in spermatogenesis progression and altered the dynamics of BTB
assembly.
Collapse
Affiliation(s)
- Masataka Chihara
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
31
|
Billings T, Parvanov ED, Baker CL, Walker M, Paigen K, Petkov PM. DNA binding specificities of the long zinc-finger recombination protein PRDM9. Genome Biol 2013; 14:R35. [PMID: 23618393 PMCID: PMC4053984 DOI: 10.1186/gb-2013-14-4-r35] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/24/2013] [Indexed: 12/13/2022] Open
Abstract
Background Meiotic recombination ensures proper segregation of homologous chromosomes and creates genetic variation. In many organisms, recombination occurs at limited sites, termed 'hotspots', whose positions in mammals are determined by PR domain member 9 (PRDM9), a long-array zinc-finger and chromatin-modifier protein. Determining the rules governing the DNA binding of PRDM9 is a major issue in understanding how it functions. Results Mouse PRDM9 protein variants bind to hotspot DNA sequences in a manner that is specific for both PRDM9 and DNA haplotypes, and that in vitro binding parallels its in vivo biological activity. Examining four hotspots, three activated by Prdm9Cst and one activated by Prdm9Dom2, we found that all binding sites required the full array of 11 or 12 contiguous fingers, depending on the allele, and that there was little sequence similarity between the binding sites of the three Prdm9Cst activated hotspots. The binding specificity of each position in the Hlx1 binding site, activated by Prdm9Cst, was tested by mutating each nucleotide to its three alternatives. The 31 positions along the binding site varied considerably in the ability of alternative bases to support binding, which also implicates a role for additional binding to the DNA phosphate backbone. Conclusions These results, which provide the first detailed mapping of PRDM9 binding to DNA and, to our knowledge, the most detailed analysis yet of DNA binding by a long zinc-finger array, make clear that the binding specificities of PRDM9, and possibly other long-array zinc-finger proteins, are unusually complex.
Collapse
|
32
|
Hu Q, Chen S. Cloning, genomic structure and expression analysis of ubc9 in the course of development in the half-smooth tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:181-8. [PMID: 23507627 DOI: 10.1016/j.cbpb.2013.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 01/20/2023]
Abstract
The small ubiquitin-like modifier (SUMO) pathway is an essential biological process in eukaryote, and Ubc9 is an important E2 conjugating enzyme (UBE2) for SUMO pathway and plays a critical role in cellular differentiation, development and sex modification in various species. However, the relationship between Ubc9 and sex modification and development in fish remains elusive. To elucidate the impact of Ubc9 on sex modification and development, the full length of the cDNA and genomic sequence was cloned from half-smooth tongue sole, Cynoglossus semilaevis. Real-time quantitative RT-PCR demonstrated that ubc9 was ubiquitously expressed in different tissues, and the expression levels varied in the different stages of embryonic and gonadal development. In addition, the expression level was significantly higher in the temperature-treated females than the normal females and males. Moreover, the PET-32-Ubc9 plasmid was constructed and the recombinant protein was expressed in Escherichia coli. Follistatin gene expression was initially up-regulated and FSE genes (cyp19a1a, ctnnb1, foxl2) were initially down-regulated after the injection of Ubc9 protein, prior to 96 h eventually recovered to normal levels. Taken together, the results show that Ubc9 is involved in embryogenesis, gametogenesis and sex modification, and exerts an effect on gene expression.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | |
Collapse
|
33
|
Abstract
A major challenge in nuclear organization is the packaging of DNA into dynamic chromatin structures that can respond to changes in the transcriptional requirements of the cell. Posttranslational protein modifications, of histones and other chromatin-associated factors, are essential regulators of chromatin dynamics. In this Review, we summarize studies demonstrating that posttranslational modification of proteins by small ubiquitin-related modifiers (SUMOs) regulates chromatin structure and function at multiple levels and through a variety of mechanisms to influence gene expression and maintain genome integrity.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Stanton PG, Sluka P, Foo CFH, Stephens AN, Smith AI, McLachlan RI, O'Donnell L. Proteomic changes in rat spermatogenesis in response to in vivo androgen manipulation; impact on meiotic cells. PLoS One 2012; 7:e41718. [PMID: 22860010 PMCID: PMC3408499 DOI: 10.1371/journal.pone.0041718] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/26/2012] [Indexed: 01/11/2023] Open
Abstract
The production of mature sperm is reliant on androgen action within the testis, and it is well established that androgens act on receptors within the somatic Sertoli cells to stimulate male germ cell development. Mice lacking Sertoli cell androgen receptors (AR) show late meiotic germ cell arrest, suggesting Sertoli cells transduce the androgenic stimulus co-ordinating this essential step in spermatogenesis. This study aimed to identify germ cell proteins responsive to changes in testicular androgen levels and thereby elucidate mechanisms by which androgens regulate meiosis. Testicular androgen levels were suppressed for 9 weeks using testosterone and estradiol-filled silastic implants, followed by a short period of either further androgen suppression (via an AR antagonist) or the restoration of intratesticular testosterone levels. Comparative proteomics were performed on protein extracts from enriched meiotic cell preparations from adult rats undergoing androgen deprivation and replacement in vivo. Loss of androgenic stimulus caused changes in proteins with known roles in meiosis (including Nasp and Hsp70–2), apoptosis (including Diablo), cell signalling (including 14-3-3 isoforms), oxidative stress, DNA repair, and RNA processing. Immunostaining for oxidised DNA adducts confirmed spermatocytes undergo oxidative stress-induced DNA damage during androgen suppression. An increase in PCNA and an associated ubiquitin-conjugating enzyme (Ubc13) suggested a role for PCNA-mediated regulation of DNA repair pathways in spermatocytes. Changes in cytoplasmic SUMO1 localisation in spermatocytes were paralleled by changes in the levels of free SUMO1 and of a subunit of its activating complex, suggesting sumoylation in spermatocytes is modified by androgen action on Sertoli cells. We conclude that Sertoli cells, in response to androgens, modulate protein translation and post-translational events in spermatocytes that impact on their metabolism, survival, and completion of meiosis.
Collapse
Affiliation(s)
- Peter G Stanton
- Prince Henry's Institute, Monash Medical Centre, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Qiao H, Chen JK, Reynolds A, Höög C, Paddy M, Hunter N. Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLoS Genet 2012; 8:e1002790. [PMID: 22761591 PMCID: PMC3386176 DOI: 10.1371/journal.pgen.1002790] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/10/2012] [Indexed: 11/24/2022] Open
Abstract
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function. Gamete cells, such as sperm and eggs, form via the specialized cell division called meiosis. Essential and interdependent features of meiosis include the pairing, recombination, and segregation of maternal and paternal chromosomes. Chromosome pairing culminates with formation of synaptonemal complexes (SCs), zipper-like structures that connect the structural cores or axes of homologous chromosomes. Although SC is known to be important for crossover recombination, details of its function remain enigmatic. In this study, we analyze mouse spermatocytes to investigate the interplay between SC, recombination, and centromeres (the structures that direct chromosome segregation). We show that SC prevents unregulated interactions between chromosome axes. This function appears to be especially important at chromosome ends and at crossover sites where DNA exchange must be coordinated with structural exchange of chromosome axes. We also show that centromeres remain associated by short fragments of SC after general chromosome desynapsis has occurred. Furthermore, we detect a distinct type of inter-centromeric connection that persists even after centromeres desynapse. Such connections may facilitate the segregation of chromosomes that have failed to crossover. Together, our data provide new insights into the functions of SC and raise the possibility of a back-up chromosome segregation system in mammals analogous to those described in fruit flies and budding yeast.
Collapse
Affiliation(s)
- Huanyu Qiao
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - Jefferson K. Chen
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - April Reynolds
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Paddy
- Microscopy and Imaging Facility, Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wu Y, Guo Z, Wu H, Wang X, Yang L, Shi X, Du J, Tang B, Li W, Yang L, Zhang Y. SUMOylation represses Nanog expression via modulating transcription factors Oct4 and Sox2. PLoS One 2012; 7:e39606. [PMID: 22745796 PMCID: PMC3382131 DOI: 10.1371/journal.pone.0039606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/23/2012] [Indexed: 01/01/2023] Open
Abstract
Nanog is a pivotal transcription factor in embryonic stem (ES) cells and is essential for maintaining the pluripotency and self-renewal of ES cells. SUMOylation has been proved to regulate several stem cell markers' function, such as Oct4 and Sox2. Nanog is strictly regulated by Oct4/Sox2 heterodimer. However, the direct effects of SUMOylation on Nanog expression remain unclear. In this study, we reported that SUMOylation repressed Nanog expression. Depletion of Sumo1 or its conjugating enzyme Ubc9 increased the expression of Nanog, while high SUMOylation reduced its expression. Interestingly, we found that SUMOylation of Oct4 and Sox2 regulated Nanog in an opposing manner. SUMOylation of Oct4 enhanced Nanog expression, while SUMOylated Sox2 inhibited its expression. Moreover, SUMOylation of Oct4 by Pias2 or Sox2 by Pias3 impaired the interaction between Oct4 and Sox2. Taken together, these results indicate that SUMOylation has a negative effect on Nanog expression and provides new insights into the mechanism of SUMO modification involved in ES cells regulation.
Collapse
Affiliation(s)
- Yongyan Wu
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zekun Guo
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Wu
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohai Wang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixia Yang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Shi
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Du
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Tang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenzhong Li
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Liping Yang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
37
|
Expression characteristics of the SUMOylation genes SUMO-1 and Ubc9 in the developing testis and ovary of Chinese mitten crab, Eriocheir sinensis. Gene 2012; 501:135-43. [DOI: 10.1016/j.gene.2012.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/19/2012] [Accepted: 04/05/2012] [Indexed: 11/30/2022]
|
38
|
Dai Y, Han K, Zou Z, Yan S, Wang Y, Zhang Z. SUMO-1 of mud crab (Scylla paramamosain) in gametogenesis. Gene 2012; 503:260-8. [PMID: 22579467 DOI: 10.1016/j.gene.2012.04.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/07/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022]
Abstract
The small ubiquitin-related modifier-1 (SUMO-1) is a member of a family of ubiquitin-related proteins. SUMO pathway, which is involved in gene expression in eukaryotic posttranslational processing, plays important roles in gene expression, genomic stability and the occurrence of cells, development and other biological processes. Scylla paramamosain is one of the important economic breeding crabs in the southeast coast of China. To date, little is known about the distinct roles of SUMO in crustacean, especially in crabs. In the present study, we report the identification and characterization of mud crab, S. paramamosain SUMO-1 (SpSUMO-1) gene using an approach which combines expressed sequence tag (EST) and rapid amplification cDNA end (RACE). The full length cDNA of SpSUMO-1 gene (GenBank: HM581660) is of 732 bp, including a 282 bp open reading frame which encodes a protein of 93 amino acids. Tissue distribution analysis showed that SpSUMO-1 was expressed more abundantly in the ovary than in other tissues (P<0.01). And the expression profiles of SpSUMO-1 in the different gonad developing stages revealed that the highest expression of SpSUMO-1 occurred at proliferation stage, and then decreased gradually as the ovarian development progressed, while in the testis, the expression level of SpSUMO-1 was relatively stable at different stages of testis development. The distribution of SpSUMO-1 mRNA and its protein was observed in the crab gametogenesis by in situ hybridization and immunocytochemical method respectively. In oogenesis, SpSUMO-1 transcripts presented at the cytoplasm and nucleus of oocytes from proliferation stage to primary vitellogenesis stage, but only appeared in the nucleus of oocytes in secondary and tertiary vitellogenesis stages. Meanwhile, SpSUMO-1 protein was localized in the cytoplasm of oogonia and different developing oocytes. On the other hand, the SpSUMO-1 transcript was detected throughout the spermatogenesis, with the strong positive signals of SpSUMO-1 presented at the nuclei of primary and secondary spermatocytes, spermatids and spermatozoa. Interestingly, the positive signals of acrosomal tubules of spermatozoa were also detected. SpSUMO-1 protein was localized in spermatogonium, primary spermatocyte, secondary spermatocyte and spermatid, but the positive signal was only detected in the nucleus of spermatozoa. All these results suggested that SUMO-1 may play essential roles in the gametogenesis of the crustacea.
Collapse
Affiliation(s)
- Yanbin Dai
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | | | | | | | | | | |
Collapse
|
39
|
Loriol C, Parisot J, Poupon G, Gwizdek C, Martin S. Developmental regulation and spatiotemporal redistribution of the sumoylation machinery in the rat central nervous system. PLoS One 2012; 7:e33757. [PMID: 22438991 PMCID: PMC3306303 DOI: 10.1371/journal.pone.0033757] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/21/2012] [Indexed: 01/14/2023] Open
Abstract
Background Small Ubiquitin-like MOdifier protein (SUMO) is a key regulator of nuclear functions but little is known regarding the role of the post-translational modification sumoylation outside of the nucleus, particularly in the Central Nervous System (CNS). Methodology/Principal Findings Here, we report that the expression levels of SUMO-modified substrates as well as the components of the sumoylation machinery are temporally and spatially regulated in the developing rat brain. Interestingly, while the overall sumoylation is decreasing during brain development, there are progressively more SUMO substrates localized at synapses. This increase is correlated with a differential redistribution of the sumoylation machinery into dendritic spines during neuronal maturation. Conclusions/Significance Overall, our data clearly demonstrate that the sumoylation process is developmentally regulated in the brain with high levels of nuclear sumoylation early in the development suggesting a role for this post-translational modification during the synaptogenesis period and a redistribution of the SUMO system towards dendritic spines at a later developmental stage to modulate synaptic protein function.
Collapse
Affiliation(s)
- Céline Loriol
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
| | | | - Gwénola Poupon
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
| | - Carole Gwizdek
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
| | - Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
- * E-mail:
| |
Collapse
|
40
|
Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. Cell Mol Life Sci 2012; 69:2559-72. [PMID: 22382926 DOI: 10.1007/s00018-012-0941-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR pathway recognizing DNA replication stress in the S phase. Additionally, it is likely to be distinct from the DDR pathway that recognizes meiosis-specific double-strand breaks. This review article extensively discusses the underlying mechanism of sex chromosome inactivation.
Collapse
|
41
|
La Salle S, Palmer K, O'Brien M, Schimenti JC, Eppig J, Handel MA. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol Reprod 2012; 86:45. [PMID: 22011390 DOI: 10.1095/biolreprod.111.095752] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-ethyl-N-nitrosourea-induced repro42 mutation, identified by a forward genetics strategy, causes both male and female infertility, with no other apparent phenotypes. Positional cloning led to the discovery of a nonsense mutation in Spata22, a hitherto uncharacterized gene conserved among bony vertebrates. Expression of both transcript and protein is restricted predominantly to germ cells of both sexes. Germ cells of repro42 mutant mice express Spata22 transcript, but not SPATA22 protein. Gametogenesis is profoundly affected by the mutation, and germ cells in repro42 mutant mice do not progress beyond early meiotic prophase, with subsequent germ cell loss in both males and females. The Spata22 gene is essential for one or more key events of early meiotic prophase, as homologous chromosomes of mutant germ cells do not achieve normal synapsis or repair meiotic DNA double-strand breaks. The repro42 mutation thus identifies a novel mammalian germ cell-specific gene required for meiotic progression.
Collapse
|
42
|
Genetics of Meiosis and Recombination in Mice. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 298 2012; 298:179-227. [DOI: 10.1016/b978-0-12-394309-5.00005-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Lomelí H, Vázquez M. Emerging roles of the SUMO pathway in development. Cell Mol Life Sci 2011; 68:4045-64. [PMID: 21892772 PMCID: PMC11115048 DOI: 10.1007/s00018-011-0792-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/01/2023]
Abstract
Sumoylation is a reversible post-translational modification that targets a variety of proteins mainly within the nucleus, but also in the plasma membrane and cytoplasm of the cell. It controls diverse cellular mechanisms such as subcellular localization, protein-protein interactions, or transcription factor activity. In recent years, the use of several developmental model systems has unraveled many critical functions for the sumoylation system in the early life of diverse species. In particular, detailed analyses of mutant organisms in both the components of the SUMO pathway and their targets have established the importance of the SUMO system in early developmental processes, such as cell division, cell lineage commitment, specification, and/or differentiation. In addition, an increasing number of developmental proteins, including transcription factors and epigenetic regulators, have been identified as sumoylation substrates. Sumoylation acts on these targets through various mechanisms. For example, this modification has been involved in converting a transcription factor from an activator to a repressor or in regulating the localization and/or stability of numerous transcription factors. This review will summarize current information on the function of sumoylation in embryonic development in different species from yeast to mammals.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | |
Collapse
|
44
|
Bolcun-Filas E, Bannister LA, Barash A, Schimenti KJ, Hartford SA, Eppig JJ, Handel MA, Shen L, Schimenti JC. A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development 2011; 138:3319-30. [PMID: 21750041 DOI: 10.1242/dev.067645] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional regulation of mammalian meiosis is poorly characterized, owing to few genetic and ex vivo models. From a genetic screen, we identify the transcription factor MYBL1 as a male-specific master regulator of several crucial meiotic processes. Spermatocytes bearing a novel separation-of-function allele (Mybl1(repro9)) had subtle defects in autosome synapsis in pachynema, a high incidence of unsynapsed sex chromosomes, incomplete double-strand break repair on synapsed pachytene chromosomes and a lack of crossing over. MYBL1 protein appears in pachynema, and its mutation caused specific alterations in expression of diverse genes, including some translated postmeiotically. These data, coupled with chromatin immunoprecipitation (ChIP-chip) experiments and bioinformatic analysis of promoters, identified direct targets of MYBL1 regulation. The results reveal that MYBL1 is a master regulator of meiotic genes that are involved in multiple processes in spermatocytes, particularly those required for cell cycle progression through pachynema.
Collapse
Affiliation(s)
- Ewelina Bolcun-Filas
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Center for Vertebrate Genomics, Ithaca, NY 14850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang ZB, Ou XH, Tong JS, Li S, Wei L, Ouyang YC, Hou Y, Schatten H, Sun QY. The SUMO pathway functions in mouse oocyte maturation. Cell Cycle 2011; 9:2640-6. [PMID: 20543581 DOI: 10.4161/cc.9.13.12120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sumoylation is an important post-translational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through over-expression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Over-expression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Watts FZ, Hoffmann E. SUMO meets meiosis: an encounter at the synaptonemal complex: SUMO chains and sumoylated proteins suggest that heterogeneous and complex interactions lie at the centre of the synaptonemal complex. Bioessays 2011; 33:529-37. [PMID: 21590786 DOI: 10.1002/bies.201100002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent discoveries have identified the small ubiquitin-like modifier (SUMO) as the potential 'missing link' that could explain how the synaptonemal complex (SC) is formed during meiosis. The SC is important for a variety of chromosome interactions during meiosis and appears ladder-like. It is formed when 'axes' of the two homologous chromosomes become connected by the deposition of transverse filaments, forming the steps of the ladder. Although several components of axial and transverse elements have been identified, how the two are connected to form the SC has remained an enigma. Recent discoveries suggest that SUMO modification underlies protein-protein interactions within the SC of budding yeast. The versatility of SUMO in regulating protein-protein interactions adds an exciting new dimension to our understanding of the SC and suggests that SCs are not homogenous structures throughout the nucleus. We propose that this heterogeneity may allow differential regulation of chromosome structure and function.
Collapse
Affiliation(s)
- Felicity Z Watts
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, UK.
| | | |
Collapse
|
47
|
Tanaka N, Goto M, Kawasaki A, Sasano T, Eto K, Nishi R, Sugasawa K, Abe S, Saitoh H. An EF-hands protein, centrin-1, is an EGTA-sensitive SUMO-interacting protein in mouse testis. Cell Biochem Funct 2011; 28:604-12. [PMID: 20941751 DOI: 10.1002/cbf.1698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A multifunctional calcium-binding protein, centrin-1, is specifically expressed in male germ cells, certain neurons and ciliated cells. We identified centrin-1 as a protein interacting with SUMO-2/3 using yeast two-hybrid screening of a mouse testicular cDNA library. In bead halo assays, the interaction between centrin-1 and SUMO-2/3 was reduced in the presence of EGTA and facilitated by the addition of CaCl₂. immunostaining of seminiferous tubules in 35-day-old mouse testes revealed that cells in the layer containing spermatogonia showed colocalization of SUMO-2/3 with centrin-1 in cytoplasmic spots. Identification of centrin-1 as the EGTA-sensitive SUMO-2/3-interacting protein indicates the possible role of calcium in modulating the centrin-1-SUMO-2/3 interaction and suggests the importance of this interaction in mouse testis.
Collapse
Affiliation(s)
- Niina Tanaka
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Roles of Small Ubiquitin-Related Modifiers in Male Reproductive Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:227-59. [DOI: 10.1016/b978-0-12-386041-5.00006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
50
|
Shrivastava V, Pekar M, Grosser E, Im J, Vigodner M. SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells. Reproduction 2010; 139:999-1010. [PMID: 20385780 DOI: 10.1530/rep-09-0492] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small ubiquitin-like modifiers (SUMO) proteins have been implicated in cellular stress response in different tissues, but whether sumoylation has a similar role during spermatogenesis is currently unknown. In this study, changes in the levels of both free SUMO isoforms and high-molecular weight (HMW) SUMO conjugates were monitored before and after the induction of different types of cellular stresses. Using cell lines and primary cells freshly isolated from mouse testes, significant changes were detected in the levels of SUMO1 and SUMO2/3 conjugates following short exposure of the cells to heat stress and oxidative stress. While high concentrations of H(2)O(2) caused an increase in protein sumoylation, low concentrations of H(2)O(2) mostly caused protein desumoylation. Immunofluorescence studies localized SUMO to the sites of DNA double-strand breaks in stressed germ cells and during meiotic recombination. To study the effect of oxidative stress in vivo, animals exposed to tobacco smoke for 12 weeks were used. Changes in sumoylation of HMW proteins were consistent with their oxidative damage in the tobacco-exposed mice. Our results are consistent with the important roles of different SUMO isoforms in stress responses in germ cells. Furthermore, this study identified topoisomerase 2 alpha as one of the targets of sumoylation during normal spermatogenesis and under stress.
Collapse
Affiliation(s)
- Vibha Shrivastava
- Department of Biology, Stern College for Women, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|