1
|
Lu QW, Liu SY, Liao XQ, Chen J, Jiang ZY, Wu YK, Fan HY, Lu YJ, Sha QQ. RNA G-quadruplex removal promotes a translational switch after meiosis resumption. Nucleic Acids Res 2025; 53:gkaf067. [PMID: 40304181 PMCID: PMC12041855 DOI: 10.1093/nar/gkaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 05/02/2025] Open
Abstract
Oocyte maturation-coupled mRNA post-transcriptional regulation is essential for the establishment of developmental potential. Previously, oocyte mRNA translation efficiencies focused on the trans-regulation of key RNA-binding protein (RBPs), rarely related to RNA structure. RNA G-quadruplexes (rG4s) are four-stranded RNA secondary structures involved in many different aspects of RNA metabolism. In this study, we have developed a low-input technique for rG4 detection (G4-LACE-seq) in mouse oocytes and found that rG4s were widely distributed in maternal transcripts, with enrichment in untranslated regions, and they underwent transcriptome-wide removal during meiotic maturation. The rG4-selective small-molecule ligand BYBX stabilized rG4s in the oocyte transcriptome and impaired spindle assembly and meiotic cell cycle progression. The proteomic spectrum results revealed that rG4 accumulation weakened the binding of a large number of RBPs to mRNAs, especially those associated with translational initiation. Ribosomal immunoprecipitation and translational reporter assays further proved that rG4s in the untranslated regions negatively affected the translational efficiency of key maternal mRNAs. Overexpression DEAH/RHA family helicase-36 partially reverses BYBX-induced oocyte developmental defects, suggesting its importance in rG4 regulation. Collectively, this study describes the distribution, dynamic changes, and regulation of rG4s in the mouse maternal transcriptome. Before meiosis resumption, a large number of rG4s in oocytes are necessary to maintain the translatome at a low level, and DHX36-mediated rG4 removal promotes a translational switch and is required for successful maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Qiong-Wen Lu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shao-Yuan Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510006, China
| | - Xiu-Quan Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510006, China
| | - Jing Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510006, China
| | - Zhi-Yan Jiang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu-Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, Guangzhou 510006, China
| | - Qian-Qian Sha
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510006, China
| |
Collapse
|
2
|
Wetherall B, Bulmer D, Sarginson A, Thomas C, Madgwick S. SGO2 does not play an essential role in separase inhibition during meiosis I in mouse oocytes. PLoS Biol 2025; 23:e3003131. [PMID: 40267054 PMCID: PMC12017502 DOI: 10.1371/journal.pbio.3003131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
During meiosis I in oocytes, anaphase is triggered by deactivation of cyclin B1-CDK1 and activation of separase. Active separase plays an essential role in cleaving cohesin rings that hold homologous chromosomes together. Critically, separase must be inhibited until all chromosomes are aligned and the cell is prepared for anaphase I. Inhibition can be mediated through the binding of separase to either securin or cyclin B1-CDK1. The relative contribution of each inhibitory pathway varies depending on cell type. Recently, shugoshin-2 (SGO2) has also been shown to inhibit separase in mitotic cells. Here, we used a separase biosensor and perturbed the three inhibitory pathways during meiosis I in mouse oocytes. We show that inhibition mediated by either securin or cyclin B1-CDK1, but not SGO2, is independently sufficient to suppress separase activity. However, when both the securin and cyclin B1-CDK1 inhibitory pathways are perturbed together, separase activity begins prematurely, resulting in gross segregation defects. Furthermore, we characterized SGO2 destruction dynamics and concluded that it is not an essential separase inhibitor in mouse oocytes. The existence of multiple separase inhibitory pathways highlights the critical importance of tightly regulated separase activity during this unique and challenging cell division.
Collapse
Affiliation(s)
- Benjamin Wetherall
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - David Bulmer
- Bioimaging Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Alexandra Sarginson
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Christopher Thomas
- IBDM—Institut de Biologie du Développement de Marseille, CNRS—UMR 7288, Aix-Marseille Université, Marseille, France
| | - Suzanne Madgwick
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
3
|
Chen SY, Cheng PW, Peng HF, Wu JC. C. elegans spermatocyte divisions show a weak spindle checkpoint response. J Cell Sci 2024; 137:jcs257675. [PMID: 38372383 PMCID: PMC11651637 DOI: 10.1242/jcs.257675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Male meiotic division exhibits two consecutive chromosome separation events without apparent pausing. Several studies have shown that spermatocyte divisions are not stringently regulated as in mitotic cells. In this study, we investigated the role of the canonical spindle assembly (SAC) pathway in Caenorhabditis elegans spermatogenesis. We found the intensity of chromosome-associated outer kinetochore protein BUB-1 and SAC effector MDF-1 oscillates between the two divisions. However, the SAC target securin is degraded during the first division and remains undetectable for the second division. Inhibition of proteasome-dependent protein degradation did not affect the progression of the second division but stopped the first division at metaphase. Perturbation of spindle integrity did not affect the duration of meiosis II, and only slightly lengthened meiosis I. Our results demonstrate that male meiosis II is independent of SAC regulation, and male meiosis I exhibits only weak checkpoint response.
Collapse
Affiliation(s)
- Shang-yang Chen
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Pu-wei Cheng
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Hsiao-fang Peng
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Jui-ching Wu
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| |
Collapse
|
4
|
Konecna M, Abbasi Sani S, Anger M. Separase and Roads to Disengage Sister Chromatids during Anaphase. Int J Mol Sci 2023; 24:ijms24054604. [PMID: 36902034 PMCID: PMC10003635 DOI: 10.3390/ijms24054604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Receiving complete and undamaged genetic information is vital for the survival of daughter cells after chromosome segregation. The most critical steps in this process are accurate DNA replication during S phase and a faithful chromosome segregation during anaphase. Any errors in DNA replication or chromosome segregation have dire consequences, since cells arising after division might have either changed or incomplete genetic information. Accurate chromosome segregation during anaphase requires a protein complex called cohesin, which holds together sister chromatids. This complex unifies sister chromatids from their synthesis during S phase, until separation in anaphase. Upon entry into mitosis, the spindle apparatus is assembled, which eventually engages kinetochores of all chromosomes. Additionally, when kinetochores of sister chromatids assume amphitelic attachment to the spindle microtubules, cells are finally ready for the separation of sister chromatids. This is achieved by the enzymatic cleavage of cohesin subunits Scc1 or Rec8 by an enzyme called Separase. After cohesin cleavage, sister chromatids remain attached to the spindle apparatus and their poleward movement on the spindle is initiated. The removal of cohesion between sister chromatids is an irreversible step and therefore it must be synchronized with assembly of the spindle apparatus, since precocious separation of sister chromatids might lead into aneuploidy and tumorigenesis. In this review, we focus on recent discoveries concerning the regulation of Separase activity during the cell cycle.
Collapse
Affiliation(s)
- Marketa Konecna
- Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Soodabeh Abbasi Sani
- Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Correspondence:
| |
Collapse
|
5
|
Wassmann K. Separase Control and Cohesin Cleavage in Oocytes: Should I Stay or Should I Go? Cells 2022; 11:3399. [PMID: 36359795 PMCID: PMC9656630 DOI: 10.3390/cells11213399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/19/2023] Open
Abstract
The key to gametogenesis is the proper execution of a specialized form of cell division named meiosis. Prior to the meiotic divisions, the recombination of maternal and paternal chromosomes creates new genetic combinations necessary for fitness and adaptation to an ever-changing environment. Two rounds of chromosome segregation -meiosis I and II- have to take place without intermediate S-phase and lead to the creation of haploid gametes harboring only half of the genetic material. Importantly, the segregation patterns of the two divisions are fundamentally different and require adaptation of the mitotic cell cycle machinery to the specificities of meiosis. Separase, the enzyme that cleaves Rec8, a subunit of the cohesin complex constituting the physical connection between sister chromatids, has to be activated twice: once in meiosis I and immediately afterwards, in meiosis II. Rec8 is cleaved on chromosome arms in meiosis I and in the centromere region in meiosis II. This step-wise cohesin removal is essential to generate gametes of the correct ploidy and thus, embryo viability. Hence, separase control and Rec8 cleavage must be perfectly controlled in time and space. Focusing on mammalian oocytes, this review lays out what we know and what we still ignore about this fascinating mechanism.
Collapse
Affiliation(s)
- Katja Wassmann
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France
| |
Collapse
|
6
|
Pauerova T, Radonova L, Horakova A, Knott JG, Anger M. Accumulation of Securin on Spindle During Female Meiosis I. Front Cell Dev Biol 2021; 9:701179. [PMID: 34395431 PMCID: PMC8358270 DOI: 10.3389/fcell.2021.701179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Chromosome segregation during female meiosis is frequently incorrect with severe consequences including termination of further development or severe disorders, such as Down syndrome. Accurate chromosome segregation requires tight control of a protease called separase, which facilitates the separation of sister chromatids by cohesin cleavage. There are several control mechanisms in place, including the binding of specific protein inhibitor securin, phosphorylation by cyclin-dependent kinase 1 (CDK1), and complex with SGO2 and MAD2 proteins. All these mechanisms restrict the activation of separase for the time when all chromosomes are properly attached to the spindle. In our study, we focused on securin and compared the expression profile of endogenous protein with exogenous securin, which is widely used to study chromosome segregation. We also compared the dynamics of securin proteolysis in meiosis I and meiosis II. Our study revealed that the expression of both endogenous and exogenous securin in oocytes is compartmentalized and that this protein accumulates on the spindle during meiosis I. We believe that this might have a direct impact on the regulation of separase activity in the vicinity of the chromosomes.
Collapse
Affiliation(s)
- Tereza Pauerova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lenka Radonova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Adela Horakova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jason G Knott
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Martin Anger
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czechia
| |
Collapse
|
7
|
Thomas C, Wetherall B, Levasseur MD, Harris RJ, Kerridge ST, Higgins JMG, Davies OR, Madgwick S. A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat Commun 2021; 12:4322. [PMID: 34262048 PMCID: PMC8280194 DOI: 10.1038/s41467-021-24554-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Successful cell division relies on the timely removal of key cell cycle proteins such as securin. Securin inhibits separase, which cleaves the cohesin rings holding chromosomes together. Securin must be depleted before anaphase to ensure chromosome segregation occurs with anaphase. Here we find that in meiosis I, mouse oocytes contain an excess of securin over separase. We reveal a mechanism that promotes excess securin destruction in prometaphase I. Importantly, this mechanism relies on two phenylalanine residues within the separase-interacting segment (SIS) of securin that are only exposed when securin is not bound to separase. We suggest that these residues facilitate the removal of non-separase-bound securin ahead of metaphase, as inhibiting this period of destruction by mutating both residues causes the majority of oocytes to arrest in meiosis I. We further propose that cellular securin levels exceed the amount an oocyte is capable of removing in metaphase alone, such that the prometaphase destruction mechanism identified here is essential for correct meiotic progression in mouse oocytes.
Collapse
Affiliation(s)
- Christopher Thomas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. .,Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.
| | - Benjamin Wetherall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark D Levasseur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Scott T Kerridge
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Suzanne Madgwick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Zhang HY, Li J, Ouyang YC, Meng TG, Zhang CH, Yue W, Sun QY, Qian WP. Cell Division Cycle 5-Like Regulates Metaphase-to-Anaphase Transition in Meiotic Oocyte. Front Cell Dev Biol 2021; 9:671685. [PMID: 34277613 PMCID: PMC8282184 DOI: 10.3389/fcell.2021.671685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The quality of oocytes is a vital factor for embryo development. Meiotic progression through metaphase I usually takes a relatively long time to ensure correct chromosome separation, a process that is critical for determining oocyte quality. Here, we report that cell division cycle 5-like (Cdc5L) plays a critical role in regulating metaphase-to-anaphase I transition during mouse oocyte meiotic maturation. Knockdown of Cdc5L by small interfering RNA injection did not affect spindle assembly but caused metaphase I arrest and subsequent reduced first polar body extrusion due to insufficient anaphase-promoting complex/cyclosome activity. We further showed that Cdc5L could also directly interact with securin, and Cdc5L knockdown led to a continuous high expression level of securin, causing severely compromised meiotic progression. The metaphase-to-anaphase I arrest caused by Cdc5L knockdown could be rescued by knockdown of endogenous securin. In summary, we reveal a novel role for Cdc5L in regulating mouse oocyte meiotic progression by interacting with securin.
Collapse
Affiliation(s)
- Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Mengoli V, Jonak K, Lyzak O, Lamb M, Lister LM, Lodge C, Rojas J, Zagoriy I, Herbert M, Zachariae W. Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO J 2021; 40:e106812. [PMID: 33644894 PMCID: PMC8013787 DOI: 10.15252/embj.2020106812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
Genome haploidization involves sequential loss of cohesin from chromosome arms and centromeres during two meiotic divisions. At centromeres, cohesin's Rec8 subunit is protected from separase cleavage at meiosis I and then deprotected to allow its cleavage at meiosis II. Protection of centromeric cohesin by shugoshin-PP2A seems evolutionarily conserved. However, deprotection has been proposed to rely on spindle forces separating the Rec8 protector from cohesin at metaphase II in mammalian oocytes and on APC/C-dependent destruction of the protector at anaphase II in yeast. Here, we have activated APC/C in the absence of sister kinetochore biorientation at meiosis II in yeast and mouse oocytes, and find that bipolar spindle forces are dispensable for sister centromere separation in both systems. Furthermore, we show that at least in yeast, protection of Rec8 by shugoshin and inhibition of separase by securin are both required for the stability of centromeric cohesin at metaphase II. Our data imply that related mechanisms preserve the integrity of dyad chromosomes during the short metaphase II of yeast and the prolonged metaphase II arrest of mammalian oocytes.
Collapse
Affiliation(s)
- Valentina Mengoli
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Institute for Research in BiomedicineUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Katarzyna Jonak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Oleksii Lyzak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mahdi Lamb
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Lisa M Lister
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Chris Lodge
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Julie Rojas
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
EMBL HeidelbergHeidelbergGermany
| | - Mary Herbert
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Wolfgang Zachariae
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
10
|
Gryaznova Y, Keating L, Touati SA, Cladière D, El Yakoubi W, Buffin E, Wassmann K. Kinetochore individualization in meiosis I is required for centromeric cohesin removal in meiosis II. EMBO J 2021; 40:e106797. [PMID: 33644892 PMCID: PMC8013791 DOI: 10.15252/embj.2020106797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Partitioning of the genome in meiosis occurs through two highly specialized cell divisions, named meiosis I and meiosis II. Step-wise cohesin removal is required for chromosome segregation in meiosis I, and sister chromatid segregation in meiosis II. In meiosis I, mono-oriented sister kinetochores appear as fused together when examined by high-resolution confocal microscopy, whereas they are clearly separated in meiosis II, when attachments are bipolar. It has been proposed that bipolar tension applied by the spindle is responsible for the physical separation of sister kinetochores, removal of cohesin protection, and chromatid separation in meiosis II. We show here that this is not the case, and initial separation of sister kinetochores occurs already in anaphase I independently of bipolar spindle forces applied on sister kinetochores, in mouse oocytes. This kinetochore individualization depends on separase cleavage activity. Crucially, without kinetochore individualization in meiosis I, bivalents when present in meiosis II oocytes separate into chromosomes and not sister chromatids. This shows that whether centromeric cohesin is removed or not is determined by the kinetochore structure prior to meiosis II.
Collapse
Affiliation(s)
- Yulia Gryaznova
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Leonor Keating
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Sandra A Touati
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Damien Cladière
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Warif El Yakoubi
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
- Present address:
Cell and Developmental Biology CenterNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Eulalie Buffin
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Katja Wassmann
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| |
Collapse
|
11
|
Li J, Zhang HY, Wang F, Sun QY, Qian WP. The Cyclin B2/CDK1 Complex Conservatively Inhibits Separase Activity in Oocyte Meiosis II. Front Cell Dev Biol 2021; 9:648053. [PMID: 33777955 PMCID: PMC7993350 DOI: 10.3389/fcell.2021.648053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
Recently, we have reported that the cyclin B2/CDK1 complex regulates homologous chromosome segregation through inhibiting separase activity in oocyte meiosis I, which further elucidates the compensation of cyclin B2 on cyclin B1’s function in meiosis I. However, whether cyclin B2/CDK1 complex also negatively regulates separase activity during oocyte meiosis II remains unknown. In the present study, we investigated the function of cyclin B2 in meiosis II of oocyte. We found that stable cyclin B2 expression impeded segregation of sister chromatids after oocyte parthenogenetic activation. Consistently, stable cyclin B2 inhibited separase activation, while introduction of non-phosphorylatable separase mutant rescued chromatid separation in the stable cyclin B2-expressed oocytes. Therefore, the cyclin B2/CDK1 complex conservatively regulates separase activity via inhibitory phosphorylation of separase in both meiosis I and meiosis II of mouse oocyte.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| |
Collapse
|
12
|
Li J, Ouyang YC, Zhang CH, Qian WP, Sun QY. The cyclin B2/CDK1 complex inhibits separase activity in mouse oocyte meiosis I. Development 2019; 146:dev.182519. [PMID: 31704793 DOI: 10.1242/dev.182519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/04/2019] [Indexed: 01/26/2023]
Abstract
Chromosome segregation is driven by separase, activity of which is inhibited by binding to securin and cyclin B1/CDK1. In meiosis, premature separase activity will induce aneuploidy or abolish chromosome segregation owing to the untimely destruction of cohesin. Recently, we have proved that cyclin B2 can compensate for cyclin B1 in CDK1 activation for the oocyte meiosis G2/M transition. In the present study, we identify an interaction between cyclin B2/CDK1 and separase in mouse oocytes. We find that cyclin B2 degradation is required for separase activation during the metaphase I-anaphase I transition because the presence of stable cyclin B2 leads to failure of homologous chromosome separation and to metaphase I arrest, especially in the simultaneous absence of securin and cyclin B1. Moreover, non-phosphorylatable separase rescues the separation of homologous chromosomes in stable cyclin B2-arrested cyclin B1-null oocytes. Our results indicate that cyclin B2/CDK1 is also responsible for separase inhibition via inhibitory phosphorylation to regulate chromosome separation in oocyte meiosis, which may not occur in other cell types.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China .,University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
13
|
Abstract
Genome haploidization involves two meiotic divisions following a single round of DNA replication. In this issue of Developmental Cell, Argüello-Miranda et al. (2017) show that production and packaging of the single-copy genome into gametes during the second meiotic division is coordinated by a conserved casein kinase 1.
Collapse
Affiliation(s)
- Mary Herbert
- Newcastle Fertility Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Times Square, Newcastle upon Tyne NE1 4EP, UK.
| | - Attila Toth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany.
| |
Collapse
|
14
|
Cheng JM, Liu YX. Age-Related Loss of Cohesion: Causes and Effects. Int J Mol Sci 2017; 18:E1578. [PMID: 28737671 PMCID: PMC5536066 DOI: 10.3390/ijms18071578] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Aneuploidy is a leading genetic cause of birth defects and lower implantation rates in humans. Most errors in chromosome number originate from oocytes. Aneuploidy in oocytes increases with advanced maternal age. Recent studies support the hypothesis that cohesion deterioration with advanced maternal age represents a leading cause of age-related aneuploidy. Cohesin generates cohesion, and is established only during the premeiotic S phase of fetal development without any replenishment throughout a female's period of fertility. Cohesion holds sister chromatids together until meiosis resumes at puberty, and then chromosome segregation requires the release of sister chromatid cohesion from chromosome arms and centromeres at anaphase I and anaphase II, respectively. The time of cohesion cleavage plays an important role in correct chromosome segregation. This review focuses specifically on the causes and effects of age-related cohesion deterioration in female meiosis.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat Commun 2017; 8:15346. [PMID: 28516917 PMCID: PMC5454377 DOI: 10.1038/ncomms15346] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC–APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing. Sister chromatid cohesion during meiosis II (MII), maintained by securin-mediated inhibition of separase, is reduced in aged mouse oocytes. Here the authors show that, in MII oocytes, securin levels are reduced by increased destruction by the anaphase promoting complex/cyclosome.
Collapse
|
16
|
Jonak K, Zagoriy I, Oz T, Graf P, Rojas J, Mengoli V, Zachariae W. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast. Cell Cycle 2017; 16:1145-1152. [PMID: 28514186 DOI: 10.1080/15384101.2017.1320628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.
Collapse
Affiliation(s)
- Katarzyna Jonak
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Ievgeniia Zagoriy
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Tugce Oz
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Peter Graf
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Julie Rojas
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Valentina Mengoli
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Wolfgang Zachariae
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| |
Collapse
|
17
|
Argüello-Miranda O, Zagoriy I, Mengoli V, Rojas J, Jonak K, Oz T, Graf P, Zachariae W. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II. Dev Cell 2017; 40:37-52. [PMID: 28017619 DOI: 10.1016/j.devcel.2016.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023]
Abstract
Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Valentina Mengoli
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katarzyna Jonak
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tugce Oz
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Graf
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Zachariae
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
18
|
Kamenz J, Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol 2017; 27:42-54. [DOI: 10.1016/j.tcb.2016.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
|
19
|
Prasad S, Koch B, Chaube SK. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro. Cell Reprogram 2016; 18:96-107. [PMID: 26982431 DOI: 10.1089/cell.2015.0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Shilpa Prasad
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Biplob Koch
- 2 Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
20
|
Nabti I, Marangos P, Bormann J, Kudo NR, Carroll J. Dual-mode regulation of the APC/C by CDK1 and MAPK controls meiosis I progression and fidelity. ACTA ACUST UNITED AC 2014; 204:891-900. [PMID: 24637322 PMCID: PMC3998794 DOI: 10.1083/jcb.201305049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
MAPK and Cdk1 play compensatory roles in suppressing APC/C activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.
Collapse
Affiliation(s)
- Ibtissem Nabti
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | | | | | | | | |
Collapse
|
21
|
Hellmuth S, Böttger F, Pan C, Mann M, Stemmann O. PP2A delays APC/C-dependent degradation of separase-associated but not free securin. EMBO J 2014; 33:1134-47. [PMID: 24781523 DOI: 10.1002/embj.201488098] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase-associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase-associated securin is destabilized by introduction of phosphorylation-mimetic aspartates or extinction of separase-associated PP2A activity. G2- or prometaphase-arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate-mutant securin. Thus, PP2A-dependent stabilization of separase-associated securin prevents precocious activation of separase during checkpoint-mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase.
Collapse
Affiliation(s)
| | | | - Cuiping Pan
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
22
|
Abstract
Mammalian oocytes are particularly error prone in segregating their chromosomes during their two meiotic divisions. This results in the creation of an embryo that has inherited the wrong number of chromosomes: it is aneuploid. The incidence of aneuploidy rises significantly with maternal age and so there is much interest in understanding this association and the underlying causes of aneuploidy. The spindle assembly checkpoint, a surveillance mechanism that operates in all cells to prevent chromosome mis-segregation, and the cohesive ties that hold those chromosomes together, have thus both been the subject of intensive investigation in oocytes. It is possible that a lowered sensitivity of the spindle assembly checkpoint to certain types of chromosome attachment error may endow oocytes with an innate susceptibility to aneuploidy, which is made worse by an age-related loss in the factors that hold the chromosomes together.
Collapse
Affiliation(s)
- Keith T Jones
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | | |
Collapse
|
23
|
Wang R, Kaul Z, Ambardekar C, Yamamoto TG, Kavdia K, Kodali K, High AA, Kitagawa R. HECT-E3 ligase ETC-1 regulates securin and cyclin B1 cytoplasmic abundance to promote timely anaphase during meiosis in C. elegans. Development 2013; 140:2149-59. [PMID: 23578927 DOI: 10.1242/dev.090688] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The anaphase inhibitor securin plays a crucial role in regulating the timing of sister chromatid separation during mitosis. When sister chromatid pairs become bioriented, the E3 ligase anaphase promoting complex/cyclosome (APC/C) ubiquitylates securin for proteolysis, triggering sister chromatid separation. Securin is also implicated in regulating meiotic progression. Securin protein levels change sharply during cell cycle progression, enabling its timely action. To understand the mechanism underlying the tightly regulated dynamics of securin, we analyzed the subcellular localization of the securin IFY-1 during C. elegans development. IFY-1 was highly expressed in the cytoplasm of germ cells. The cytoplasmic level of IFY-1 declined immediately following meiosis I division and remained low during meiosis II and following mitoses. We identified a C. elegans homolog of another type of E3 ligase, UBE3C, designated ETC-1, as a regulator of the cytoplasmic IFY-1 level. RNAi-mediated depletion of ETC-1 stabilized IFY-1 and CYB-1 (cyclin B1) in post-meiosis I embryos. ETC-1 knockdown in a reduced APC function background caused an embryonic lethal phenotype. In vitro, ETC-1 ubiquitylates IFY-1 and CYB-1 in the presence of the E2 enzyme UBC-18, which functions in pharyngeal development. Genetic analysis revealed that UBC-18 plays a distinct role together with ETC-1 in regulating the cytoplasmic level of IFY-1 during meiosis. Our study reports a novel mechanism, mediated by ETC-1, that co-operates with APC/C to maintain the meiotic arrest required for proper cell cycle timing during reproduction.
Collapse
Affiliation(s)
- Ruishan Wang
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Touati SA, Cladière D, Lister LM, Leontiou I, Chambon JP, Rattani A, Böttger F, Stemmann O, Nasmyth K, Herbert M, Wassmann K. Cyclin A2 is required for sister chromatid segregation, but not separase control, in mouse oocyte meiosis. Cell Rep 2012; 2:1077-87. [PMID: 23122964 DOI: 10.1016/j.celrep.2012.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
In meiosis, two specialized cell divisions allow the separation of paired chromosomes first, then of sister chromatids. Separase removes the cohesin complex holding sister chromatids together in a stepwise manner from chromosome arms in meiosis I, then from the centromere region in meiosis II. Using mouse oocytes, our study reveals that cyclin A2 promotes entry into meiosis, as well as an additional unexpected role; namely, its requirement for separase-dependent sister chromatid separation in meiosis II. Untimely cyclin A2-associated kinase activity in meiosis I leads to precocious sister separation, whereas inhibition of cyclin A2 in meiosis II prevents it. Accordingly, endogenous cyclin A is localized to kinetochores throughout meiosis II, but not in anaphase I. Additionally, we found that cyclin B1, but not cyclin A2, inhibits separase in meiosis I. These findings indicate that separase-dependent cohesin removal is differentially regulated by cyclin B1 and A2 in mammalian meiosis.
Collapse
Affiliation(s)
- Sandra A Touati
- UPMC Université Paris 06, UMR7622 Laboratoire de Biologie du Développement, 9 quai St. Bernard, Paris 75005, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu W, Yin J, Zhao G, Yun Y, Wu S, Jones K, Lei A. Differential regulation of cyclin B1 degradation between the first and second meiotic divisions of bovine oocytes. Theriogenology 2012; 78:1171-81.e1. [DOI: 10.1016/j.theriogenology.2012.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/28/2022]
|
26
|
Peng H, Wu Y, Zhang Y. Efficient delivery of DNA and morpholinos into mouse preimplantation embryos by electroporation. PLoS One 2012; 7:e43748. [PMID: 22928027 PMCID: PMC3424252 DOI: 10.1371/journal.pone.0043748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/23/2012] [Indexed: 01/19/2023] Open
Abstract
Mouse preimplantation development is characterized by three major transitions and two lineage segregations. Each transition or lineage segregation entails pronounced changes in the pattern of gene expression. Thus, research into the function of genes with obvious changes in expression pattern will shed light on the molecular basis of preimplantation development. We have described a simplified and effective method–electroporation–of introducing plasmid DNA and morpholinos into mouse preimplantation embryos and verified effectiveness of this approach by testing the procedure on the endogenous gene Oct4. Before electroporation, the zona pellucida was weakened by the treatment of acid Tyrode’s solution. Then we optimized the parameters such as voltage, pulse duration, number of pulses and repeats, and applied these parameters to subsequent experiments. Compared with the control groups, the number of apoptotic cells and the expression and localization of OCT3/4 or CDX2 was not significantly changed in blastocysts developed from 1-cell embryos, which were electroporated with pIRES2-AcGFP1-Nuc eukaryotic expression vector or mismatched morpholino oligonucleotides. Furthermore, electroporated plasmid DNA and morpholinos targeting the endogenous gene Oct4 were able to sharply down regulate expression of OCT4 protein and actually cause expected phenotypes in mouse preimplantation embryos. In conclusion, plasmid DNA and morpholinos could be efficient delivered into mouse preimplantation embryos by electroporation and exert their functions, and normal development of preimplantation embryos was not affected.
Collapse
Affiliation(s)
- Hui Peng
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
FitzHarris G. Anaphase B precedes anaphase A in the mouse egg. Curr Biol 2012; 22:437-44. [PMID: 22342753 DOI: 10.1016/j.cub.2012.01.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/14/2012] [Accepted: 01/20/2012] [Indexed: 11/29/2022]
Abstract
Segregation of chromosomes at the time of cell division is achieved by the microtubules and associated molecules of the spindle. Chromosomes attach to kinetochore microtubules (kMTs), which extend from the spindle pole region to kinetochores assembled upon centromeric DNA. In most animal cells studied, chromosome segregation occurs as a result of kMT shortening, which causes chromosomes to move toward the spindle poles (anaphase A). Anaphase A is typically followed by a spindle elongation that further separates the chromosomes (anaphase B). The experiments presented here provide the first detailed analysis of anaphase in a live vertebrate oocyte and show that chromosome segregation is initially driven by a significant spindle elongation (anaphase B), which is followed by a shortening of kMTs to fully segregate the chromosomes (anaphase A). Loss of tension across kMTs at anaphase onset produces a force imbalance, allowing the bipolar motor kinesin-5 to drive early anaphase B spindle elongation and chromosome segregation. Early anaphase B spindle elongation determines the extent of chromosome segregation and the size of the resulting cells. The vertebrate egg therefore employs a novel mode of anaphase wherein spindle elongation caused by loss of k-fiber tension is harnessed to kick-start chromosome segregation prior to anaphase A.
Collapse
Affiliation(s)
- Greg FitzHarris
- University College London Institute for Women's Health, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|
28
|
Abstract
Chromosome segregation errors in female meiosis lead to aneuploidy in the resulting egg and embryo, making them one of the leading genetic causes of spontaneous abortions and developmental disabilities in humans. It is known that aneuploidy of meiotic origin increases dramatically as women age, and current evidence suggests that most errors occur in meiosis I. Several hypotheses regarding the cause of maternal age-related aneuploidy have been proposed, including recombination errors in early meiosis, a defective spindle assembly checkpoint in meiosis I, and deterioration of sister chromatid cohesion with age. This review discusses findings in each area, and focuses especially on recent studies suggesting that deterioration of cohesion with increasing maternal age is a leading cause of age-related aneuploidy.
Collapse
Affiliation(s)
- Teresa Chiang
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
29
|
Hoffmann S, Maro B, Kubiak JZ, Polanski Z. A single bivalent efficiently inhibits cyclin B1 degradation and polar body extrusion in mouse oocytes indicating robust SAC during female meiosis I. PLoS One 2011; 6:e27143. [PMID: 22125605 PMCID: PMC3220673 DOI: 10.1371/journal.pone.0027143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023] Open
Abstract
The Spindle Assembly Checkpoint (SAC) inhibits anaphase until microtubule-to-kinetochore attachments are formed, thus securing correct chromosome separation and preventing aneuploidy. Whereas in mitosis even a single unattached chromosome keeps the SAC active, the high incidence of aneuploidy related to maternal meiotic errors raises a concern about the lower efficiency of SAC in oocytes. Recently it was suggested that in mouse oocytes, contrary to somatic cells, not a single chromosome but a critical mass of chromosomes triggers efficient SAC pointing to the necessity of evaluating the robustness of SAC in oocytes. Two types of errors in chromosome segregation upon meiosis I related to SAC were envisaged: (1) SAC escape, when kinetochores emit SAC-activating signal unable to stop anaphase I; and (2) SAC deceive, when kinetochores do not emit the signal. Using micromanipulations and live imaging of the first polar body extrusion, as well as the dynamics of cyclin B1 degradation, here we show that in mouse oocytes a single bivalent keeps the SAC active. This is the first direct evaluation of SAC efficiency in mouse oocytes, which provides strong evidence that the robustness of SAC in mammalian oocytes is comparable to other cell types. Our data do not contradict the hypothesis of the critical mass of chromosomes necessary for SAC activation, but suggest that the same rule may govern SAC activity also in other cell types. We postulate that the innate susceptibility of oocytes to errors in chromosome segregation during the first meiotic division may not be caused by lower efficiency of SAC itself, but could be linked to high critical chromosome mass necessary to keep SAC active in oocyte of large size.
Collapse
Affiliation(s)
- Steffen Hoffmann
- Department of Developmental Biology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Bernard Maro
- UMR 6061 CNRS/ University of Rennes 1, Mitosis & Meiosis Group, IFR 140 GFAS, Rennes, France
| | - Jacek Z. Kubiak
- UMR 6061 CNRS/ University of Rennes 1, Mitosis & Meiosis Group, IFR 140 GFAS, Rennes, France
- * E-mail: (ZP); (JZK)
| | - Zbigniew Polanski
- Department of Developmental Biology, Max Planck Institute of Immunobiology, Freiburg, Germany
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Cracow, Poland
- * E-mail: (ZP); (JZK)
| |
Collapse
|
30
|
Chebotareva T, Taylor J, Mullins JJ, Wilmut I. Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Mol Reprod Dev 2011; 78:795-807. [PMID: 21910153 DOI: 10.1002/mrd.21385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/06/2022]
Abstract
Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.
Collapse
Affiliation(s)
- Tatiana Chebotareva
- MRC Centre for Regenerative Medicine, Edinburgh University, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
31
|
Abstract
Entry into, and passage through, the two meiotic divisions of the oocyte has to be highly coordinated to ensure proper segregation of chromosomes. This coordination ensures that the hallmark stops and starts of the meiotic process occur at the right time to prevent aneuploidy. The Anaphase-Promoting Complex is an activity mostly studied in the mitotic cell cycle division, where it has essential functions during mitosis. As detailed here the Anaphase-Promoting Complex also plays vital roles in controlling at least three meiotic events: maintenance of prophase I arrest, timely and faithful segregation of homologous chromosomes in meiosis I, and the meiotic arrest following ovulation.
Collapse
Affiliation(s)
- Keith T Jones
- University of Newcastle, 2308 Newcastle, NSW, Australia.
| |
Collapse
|
32
|
Chiang T, Schultz RM, Lampson MA. Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes. Biol Reprod 2011; 85:1279-83. [PMID: 21865557 DOI: 10.1095/biolreprod.111.094094] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A hypothesis to explain the maternal age-dependent increase in formation of aneuploid eggs is deterioration of chromosome cohesion. Although several lines of evidence are consistent with this hypothesis, whether cohesion is actually reduced in naturally aged oocytes has not been directly tested by any experimental perturbation. To directly target cohesion, we increased the activity of separase, the protease that cleaves the meiotic cohesin REC8, in oocytes. We show that cohesion is more susceptible to premature separase activation in old oocytes than in young oocytes, demonstrating that cohesion is significantly reduced. Furthermore, cohesion is protected by two independent mechanisms that inhibit separase, securin and an inhibitory phosphorylation of separase by CDK1; both mechanisms must be disrupted to prematurely activate separase. With the continual loss of cohesins from chromosomes that occurs throughout the natural reproductive lifespan, tight regulation of separase in oocytes may be particularly important to maintain cohesion and prevent aneuploidy.
Collapse
Affiliation(s)
- Teresa Chiang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | |
Collapse
|
33
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
34
|
Chang HY, Jennings PC, Stewart J, Verrills NM, Jones KT. Essential role of protein phosphatase 2A in metaphase II arrest and activation of mouse eggs shown by okadaic acid, dominant negative protein phosphatase 2A, and FTY720. J Biol Chem 2011; 286:14705-12. [PMID: 21383018 DOI: 10.1074/jbc.m110.193227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.
Collapse
Affiliation(s)
- Heng-Yu Chang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | | | | | | | | |
Collapse
|