1
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
2
|
Hutchings C, Sela-Donenfeld D. Primer on FGF3. Differentiation 2024; 139:100730. [PMID: 37741710 DOI: 10.1016/j.diff.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Though initially discovered as a proto-oncogene in virally induced mouse mammary tumors, FGF3 is primarily active in prenatal stages, where it is found at various sites at specific times. FGF3 is crucial during development, as its roles include tail formation, inner ear development and hindbrain induction and patterning. FGF3 expression and function are highly conserved in vertebrates, while it also interacts with other FGFs in various developmental processes. Intriguingly, while it is classified as a classical paracrine signaling factor, murine FGF3 was uniquely found to also act in an intracrine manner, depending on alternative translation initiation sites. Corresponding with its conserved role in inner ear morphogenesis, mutations in FGF3 in humans are associated with LAMM syndrome, a disorder that include hearing loss and inner ear malformations. While recent studies indicate of some FGF3 presence in post-natal stages, emerging evidences of its upregulation in various human tumors and cariogenic processes in mouse models, highlights the importance of its close regulation in adult tissues. Altogether, the broad and dynamic expression pattern and regulation of FGF3 in embryonic and adult tissues together with its link to congenital malformations and cancer, calls for further discoveries of its diverse roles in health and disease.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Hutchings C, Nuriel Y, Lazar D, Kohl A, Muir E, Genin O, Cinnamon Y, Benyamini H, Nevo Y, Sela-Donenfeld D. Hindbrain boundaries as niches of neural progenitor and stem cells regulated by the extracellular matrix proteoglycan chondroitin sulphate. Development 2024; 151:dev201934. [PMID: 38251863 PMCID: PMC10911165 DOI: 10.1242/dev.201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yarden Nuriel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Daniel Lazar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Olga Genin
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Yuval Cinnamon
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Leino SA, Constable SCJ, Streit A, Wilkinson DG. Zbtb16 mediates a switch between Fgf signalling regimes in the developing hindbrain. Development 2023; 150:dev201319. [PMID: 37642135 PMCID: PMC10508701 DOI: 10.1242/dev.201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Developing tissues are sequentially patterned by extracellular signals that are turned on and off at specific times. In the zebrafish hindbrain, fibroblast growth factor (Fgf) signalling has different roles at different developmental stages: in the early hindbrain, transient Fgf3 and Fgf8 signalling from rhombomere 4 is required for correct segmentation, whereas later, neuronal Fgf20 expression confines neurogenesis to specific spatial domains within each rhombomere. How the switch between these two signalling regimes is coordinated is not known. We present evidence that the Zbtb16 transcription factor is required for this transition to happen in an orderly fashion. Zbtb16 expression is high in the early anterior hindbrain, then gradually upregulated posteriorly and confined to neural progenitors. In mutants lacking functional Zbtb16, fgf3 expression fails to be downregulated and persists until a late stage, resulting in excess and more widespread Fgf signalling during neurogenesis. Accordingly, the spatial pattern of neurogenesis is disrupted in Zbtb16 mutants. Our results reveal how the distinct stage-specific roles of Fgf signalling are coordinated in the zebrafish hindbrain.
Collapse
Affiliation(s)
- Sami A. Leino
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Sean C. J. Constable
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - David G. Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
5
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Abstract
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Collapse
Affiliation(s)
- Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Dept of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, KS 66160, USA
| | | |
Collapse
|
7
|
Pujades C. The multiple functions of hindbrain boundary cells: Tinkering boundaries? Semin Cell Dev Biol 2020; 107:179-189. [DOI: 10.1016/j.semcdb.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 02/01/2023]
|
8
|
Cambronero F, Ariza‐McNaughton L, Wiedemann LM, Krumlauf R. Inter‐rhombomeric interactions reveal roles for fibroblast growth factors signaling in segmental regulation of
EphA4
expression. Dev Dyn 2019; 249:354-368. [DOI: 10.1002/dvdy.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Leanne M. Wiedemann
- Stowers Institute for Medical Research Kansas City Missouri
- Department of Pathology and Laboratory MedicineKansas University Medical Center Kansas City Kansas
| | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City Missouri
- Division of Developmental NeurobiologyNational Institute for Medical Research London UK
- Department of Anatomy and Cell BiologyKansas University Medical School Kansas City Kansas
| |
Collapse
|
9
|
Polevoy H, Gutkovich YE, Michaelov A, Volovik Y, Elkouby YM, Frank D. New roles for Wnt and BMP signaling in neural anteroposterior patterning. EMBO Rep 2019; 20:embr.201845842. [PMID: 30936121 DOI: 10.15252/embr.201845842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
During amphibian development, neural patterning occurs via a two-step process. Spemann's organizer secretes BMP antagonists that induce anterior neural tissue. A subsequent caudalizing step re-specifies anterior fated cells to posterior fates such as hindbrain and spinal cord. The neural patterning paradigm suggests that a canonical Wnt-signaling gradient acts along the anteroposterior axis to pattern the nervous system. Wnt activity is highest in the posterior, inducing spinal cord, at intermediate levels in the trunk, inducing hindbrain, and is lowest in anterior fated forebrain, while BMP-antagonist levels are constant along the axis. Our results in Xenopus laevis challenge this paradigm. We find that inhibition of canonical Wnt signaling or its downstream transcription factors eliminates hindbrain, but not spinal cord fates, an observation not compatible with a simple high-to-low Wnt gradient specifying all fates along the neural anteroposterior axis. Additionally, we find that BMP activity promotes posterior spinal cord cell fate formation in an FGF-dependent manner, while inhibiting hindbrain fates. These results suggest a need to re-evaluate the paradigms of neural anteroposterior pattern formation during vertebrate development.
Collapse
Affiliation(s)
- Hanna Polevoy
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoni E Gutkovich
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ariel Michaelov
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Volovik
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaniv M Elkouby
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
11
|
Neural stem cells deriving from chick embryonic hindbrain recapitulate hindbrain development in culture. Sci Rep 2018; 8:13920. [PMID: 30224755 PMCID: PMC6141497 DOI: 10.1038/s41598-018-32203-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells (NSCs) are self-renewing multipotent cells that line the neural-tube and generate all the nervous system. Understanding NSC biology is fundamental for neurodevelopmental research and therapy. Many studies emphasized the need to culture NSCs, which are typically purified from mammalian embryonic/adult brains. These sources are somewhat limited in terms of quantity, availability and animal ethical guidelines. Therefore, new sources are needed. The chick is a powerful system for experimental embryology which contributed enormously to neurodevelopmental concepts. Its accessibility, genetic/molecular manipulations, and homology to other vertebrates, makes it valuable for developmental biology research. Recently, we identified a population of NSCs in the chick hindbrain. It resides in rhombomere-boundaries, expresses Sox2 and generates progenitors and neurons. Here, we investigated whether these cells can recapitulate hindbrain development in culture. By developing approaches to propagate and image cells, manipulate their growth-conditions and separate them into subpopulations, we demonstrate the ordered formation of multipotent and self-renewing neurospheres that maintain regional identity and display differential stem/differentiation/proliferation properties. Live imaging revealed new cellular dynamics in the culture. Collectively, these NSC cultures reproduce major aspects of hindbrain development in-vitro, proposing the chick as a model for culturing hindbrain-NSCs that can be directly applied to other neural-tube domains and species.
Collapse
|
12
|
Abstract
Studies of the vertebrate hindbrain have revealed parallel mechanisms that establish sharp segments with a distinct and homogeneous regional identity. Recent work has revealed roles of cell identity regulation and its relationships with cell segregation. At early stages, there is overlapping expression at segment borders of the Egr2 and Hoxb1 transcription factors that specify distinct identities, which is resolved by reciprocal repression. Computer simulations show that this dynamic regulation of cell identity synergises with cell segregation to generate sharp borders. Some intermingling between segments occurs at early stages, and ectopic egr2-expressing cells switch identity to match their new neighbours. This switching is mediated by coupling between egr2 expression and the level of retinoic acid signalling, which acts in a community effect to maintain homogeneous segmental identity. These findings reveal an interplay between cell segregation and the dynamic regulation of cell identity in the formation of sharp patterns in the hindbrain and raise the question of whether similar mechanisms occur in other tissues.
Collapse
|
13
|
Molecular specification of facial branchial motor neurons in vertebrates. Dev Biol 2018; 436:5-13. [PMID: 29391164 DOI: 10.1016/j.ydbio.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 02/02/2023]
Abstract
Orofacial muscles are critical for life-sustaining behaviors, such as feeding and breathing. Centuries of work by neuroanatomists and surgeons resulted in the mapping of bulbar motor neurons in the brainstem and the course of the cranial nerves that carry their axons. Despite the sophisticated understanding of the anatomy of the region, the molecular mechanisms that dictate the development and maturation of facial motor neurons remain poorly understood. This fundamental problem has been recently revisited by physiologists with novel techniques of studying the rhythmic contraction of orofacial muscles in relationship to breathing. The molecular understanding of facial motor neuron development will not only lead to the comprehension of the neural basis of facial expression but may also unlock new avenues to generate stem cell-derived replacements. This review summarizes the current understanding of molecular programs involved in facial motor neuron generation, migration, and maturation, including neural circuit assembly.
Collapse
|
14
|
Fung RSK, Jin B, He M, Yuen KWY, Wong AOL. Grass Carp Follisatin: Molecular Cloning, Functional Characterization, Dopamine D1 Regulation at Pituitary Level, and Implication in Growth Hormone Regulation. Front Endocrinol (Lausanne) 2017; 8:211. [PMID: 28883808 PMCID: PMC5574371 DOI: 10.3389/fendo.2017.00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022] Open
Abstract
Activin is involved in pituitary hormone regulation and its pituitary actions can be nullified by local production of its binding protein follistatin. In our recent study with grass carp, local release of growth hormone (GH) was shown to induce activin expression at pituitary level, which in turn could exert an intrapituitary feedback to inhibit GH synthesis and secretion. To further examine the activin/follistatin system in the carp pituitary, grass carp follistatin was cloned and confirmed to be single-copy gene widely expressed at tissue level. At the pituitary level, follistatin signals could be located in carp somatotrophs, gonadotrophs, and lactotrophs. Functional expression also revealed that carp follistatin was effective in neutralizing activin's action in stimulating target promoter with activin-responsive elements. In grass carp pituitary cells, follistatin co-treatment was found to revert activin inhibition on GH mRNA expression. Meanwhile, follistatin mRNA levels could be up-regulated by local production of activin but the opposite was true for dopaminergic activation with dopamine (DA) or its agonist apomorphine. Since GH stimulation by DA via pituitary D1 receptor is well-documented in fish models, the receptor specificity for follistatin regulation by DA was also investigated. Using a pharmacological approach, the inhibitory effect of DA on follistatin gene expression was confirmed to be mediated by pituitary D1 but not D2 receptor. Furthermore, activation of D1 receptor by the D1-specific agonist SKF77434 was also effective in blocking follistatin mRNA expression induced by activin and GH treatment both in carp pituitary cells as well as in carp somatotrophs enriched by density gradient centrifugation. These results, as a whole, suggest that activin can interact with dopaminergic input from the hypothalamus to regulate follistatin expression in carp pituitary, which may contribute to GH regulation by activin/follistatin system via autocrine/paracrine mechanisms.
Collapse
Affiliation(s)
- Roger S. K. Fung
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Bai Jin
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Mulan He
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Karen W. Y. Yuen
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Anderson O. L. Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Anderson O. L. Wong,
| |
Collapse
|
15
|
Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, Cinnamon Y, Sela-Donenfeld D. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol 2016; 14:57. [PMID: 27392568 PMCID: PMC4938926 DOI: 10.1186/s12915-016-0277-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
Background Compartment boundaries are an essential developmental mechanism throughout evolution, designated to act as organizing centers and to regulate and localize differently fated cells. The hindbrain serves as a fascinating example for this phenomenon as its early development is devoted to the formation of repetitive rhombomeres and their well-defined boundaries in all vertebrates. Yet, the actual role of hindbrain boundaries remains unresolved, especially in amniotes. Results Here, we report that hindbrain boundaries in the chick embryo consist of a subset of cells expressing the key neural stem cell (NSC) gene Sox2. These cells co-express other neural progenitor markers such as Transitin (the avian Nestin), GFAP, Pax6 and chondroitin sulfate proteoglycan. The majority of the Sox2+ cells that reside within the boundary core are slow-dividing, whereas nearer to and within rhombomeres Sox2+ cells are largely proliferating. In vivo analyses and cell tracing experiments revealed the contribution of boundary Sox2+ cells to neurons in a ventricular-to-mantle manner within the boundaries, as well as their lateral contribution to proliferating Sox2+ cells in rhombomeres. The generation of boundary-derived neurospheres from hindbrain cultures confirmed the typical NSC behavior of boundary cells as a multipotent and self-renewing Sox2+ cell population. Inhibition of Sox2 in boundaries led to enhanced and aberrant neural differentiation together with inhibition in cell-proliferation, whereas Sox2 mis-expression attenuated neurogenesis, confirming its significant function in hindbrain neuronal organization. Conclusions Data obtained in this study deciphers a novel role of hindbrain boundaries as repetitive pools of neural stem/progenitor cells, which provide proliferating progenitors and differentiating neurons in a Sox2-dependent regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0277-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuval Peretz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noa Eren
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Gideon Hen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Weisinger
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Yuval Cinnamon
- Institute of Animal Sciences, Department of Poultry and Aquaculture Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
16
|
Grefhorst A, van den Beukel JC, van Houten ELA, Steenbergen J, Visser JA, Themmen AP. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice. Biol Sex Differ 2015; 6:7. [PMID: 25866617 PMCID: PMC4392498 DOI: 10.1186/s13293-015-0025-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FGFs in BAT of male and female C57BL/6J mice upon gonadectomy, cold exposure, and exposure to sex steroids. Results Of the FGF family, BAT Fgf1, Fgf9, Fgf18, and Fgf21 expression was induced upon cold exposure, but only Fgf1 expression was obviously different between the sexes: females had 2.5-fold lower BAT Fgf1 than males. Cold exposure induced BAT Bmp4 and Bmp8b expression, but only Bmp8b differed between the sexes: females had 35-fold higher BAT Bmp8b than males. Ovariectomy almost completely blunted BAT Bmp8b expression, while orchidectomy had no effect. Male mice and ovariectomized female mice treated with diethylstilbestrol (DES) had approximately 350-fold and approximately 36-fold higher BAT Bmp8b expression, respectively. Ninety-day and 7-day treatment of female mice with dihydrotestosterone (DHT) decreased BAT Bmp8b expression by approximately fivefold and approximately fourfold, respectively. Finally, treatment of primary murine brown adipocytes with DES did not result in changes in Bmp8b expression. Conclusions BAT Bmp8b expression in mice is positively regulated by presence of ovaries and estrogens such as DES.
Collapse
Affiliation(s)
- Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Johanna C van den Beukel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - E Leonie Af van Houten
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Axel Pn Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
17
|
Guimarães JM, Guimarães ICDV, Duarte MEL, Vieira T, Vianna VF, Fernandes MBC, Vieira AR, Casado PL. Polymorphisms in BMP4 and FGFR1 genes are associated with fracture non-union. J Orthop Res 2013; 31:1971-9. [PMID: 23939983 DOI: 10.1002/jor.22455] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/08/2013] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process influenced by a multitude of factors and expression of several thousand genes. Polymorphisms in these genes can lead to an extended healing process and explain why certain patients are more susceptible to develop non-union. A total of 16 SNPs within five genes involved in bone repair pathogenesis (FAM5C, BMP4, FGF3, FGF10, and FGFR1) were investigated in 167 patients with long bone fractures, 101 with uneventful healing, and 66 presenting aseptic non-unions. Exclusion criteria were patients presenting pathological fractures, osteoporosis, hypertrophic and infected non-unions, pregnancy, and children. All genetic markers were genotyped using TaqMan real-time PCR. Chi-square test was used to compare genotypes, allele frequencies, and haplotype differences between groups. Binary logistic regression analyzed the significance of many covariates and the incidence of non-union. Statistical analysis revealed open fracture to be a risk factor for non-union development (p < 0.001, OR 3.6 [1.70-7.67]). A significant association of haplotype GTAA in BMP4 (p = 0.01) and FGFR1 rs13317 (p = 0.005) with NU could be observed. Also, uneventful healing showed association with FAM5C rs1342913 (p = 0.04). Our work supported the role of BMP4 and FGFR1 in NU fracture independently of the presence of previously described risk factors.
Collapse
Affiliation(s)
- João Matheus Guimarães
- Trauma and Orthopaedic Surgery, National Institute of Traumatology and Orthopaedics, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Haupaix N, Stolfi A, Sirour C, Picco V, Levine M, Christiaen L, Yasuo H. p120RasGAP mediates ephrin/Eph-dependent attenuation of FGF/ERK signals during cell fate specification in ascidian embryos. Development 2013; 140:4347-52. [PMID: 24067356 DOI: 10.1242/dev.098756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ERK1/2 MAP kinase exhibits a highly dynamic activation pattern in developing embryos, which largely depends on fibroblast growth factor (FGF) signals. In ascidian embryos, FGF-dependent activation of ERK1/2 occurs differentially between sister cells during marginal zone and neural lineage patterning. Selective attenuation of FGF signals by localised ephrin/Eph signals accounts for this differential ERK activation, which controls the binary fate choice of each sibling cell pair. Here, we show that p120 Ras GTPase-activating protein (p120RasGAP) is a crucial mediator of these ephrin/Eph signals. First, inhibition of p120RasGAP has a similar effect to inhibition of ephrin/Eph function during marginal zone and neural patterning. Second, p120RasGAP acts epistatically to ephrin/Eph signals. Third, p120RasGAP physically associates with Eph3 in an ephrin-dependent manner. This study provides the first in vivo evidence that the functional association between Eph and RasGAP controls the spatial extent of FGF-activated ERK.
Collapse
Affiliation(s)
- Nicolas Haupaix
- Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Kayam G, Kohl A, Magen Z, Peretz Y, Weisinger K, Bar A, Novikov O, Brodski C, Sela-Donenfeld D. A novel role for Pax6 in the segmental organization of the hindbrain. Development 2013; 140:2190-202. [PMID: 23578930 DOI: 10.1242/dev.089136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex patterns and networks of genes coordinate rhombomeric identities, hindbrain segmentation and neuronal differentiation and are responsible for later brainstem functions. Pax6 is a highly conserved transcription factor crucial for neuronal development, yet little is known regarding its early roles during hindbrain segmentation. We show that Pax6 expression is highly dynamic in rhombomeres, suggesting an early function in the hindbrain. Utilization of multiple gain- and loss-of-function approaches in chick and mice revealed that loss of Pax6 disrupts the sharp expression borders of Krox20, Kreisler, Hoxa2, Hoxb1 and EphA and leads to their expansion into adjacent territories, whereas excess Pax6 reduces these expression domains. A mutual negative cross-talk between Pax6 and Krox20 allows these genes to be co-expressed in the hindbrain through regulation of the Krox20-repressor gene Nab1 by Pax6. Rhombomere boundaries are also distorted upon Pax6 manipulations, suggesting a mechanism by which Pax6 acts to set hindbrain segmentation. Finally, FGF signaling acts upstream of the Pax6-Krox20 network to regulate Pax6 segmental expression. This study unravels a novel role for Pax6 in the segmental organization of the early hindbrain and provides new evidence for its significance in regional organization along the central nervous system.
Collapse
Affiliation(s)
- Galya Kayam
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ulmer B, Hagenlocher C, Schmalholz S, Kurz S, Schweickert A, Kohl A, Roth L, Sela-Donenfeld D, Blum M. Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration. Cell Rep 2013; 3:615-21. [PMID: 23499442 DOI: 10.1016/j.celrep.2013.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/17/2013] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells (NCCs) migrate throughout the embryo to differentiate into cell types of all germ layers. Initial directed NCC emigration relies on planar cell polarity (PCP), which through the activity of the small GTPases RhoA and Rac governs the actin-driven formation of polarized cell protrusions. We found that the actin binding protein calponin 2 (Cnn2) was expressed in protrusions at the leading edge of migratory NCCs in chicks and frogs. Cnn2 knockdown resulted in NCC migration defects in frogs and chicks and randomized outgrowth of cell protrusions in NCC explants. Morphant cells showed central stress fibers at the expense of the peripheral actin network. Cnn2 acted downstream of Wnt/PCP, as migration defects induced by dominant-negative Wnt11 or inhibition of RhoA function were rescued by Cnn2 knockdown. These results suggest that Cnn2 modulates actin dynamics during NCC migration as an effector of noncanonical Wnt/PCP signaling.
Collapse
Affiliation(s)
- Bärbel Ulmer
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Hindbrain dorsal interneurons that comprise the rhombic lip relay sensory information and coordinate motor outputs. The progenitor dA1 subgroup of interneurons, which is formed along the dorsal-most region of the caudal rhombic lip, gives rise to the cochlear and precerebellar nuclei. These centers project sensory inputs toward upper-brain regions. The fundamental role of dA1 interneurons in the assembly and function of these brainstem nuclei is well characterized. However, the precise en route axonal patterns and synaptic targets of dA1 interneurons are not clear as of yet. Novel genetic tools were used to label dA1 neurons and trace their axonal trajectories and synaptic connections at various stages of chick embryos. Using dA1-specific enhancers, two contralateral ascending axonal projection patterns were identified; one derived from rhombomeres 6-7 that elongated in the dorsal funiculus, while the other originated from rhombomeres 2-5 and extended in the lateral funiculus. Targets of dA1 axons were followed at later stages using PiggyBac-mediated DNA transposition. dA1 axons were found to project and form synapses in the auditory nuclei and cerebellum. Investigation of mechanisms that regulate the patterns of dA1 axons revealed a fundamental role of Lim-homeodomain (HD) proteins. Switch in the expression of the specific dA1 Lim-HD proteins Lhx2/9 into Lhx1, which is typically expressed in dB1 interneurons, modified dA1 axonal patterns to project along the routes of dB1 subgroup. Together, the results of this research provided new tools and knowledge to the assembly of trajectories and connectivity of hindbrain dA1 interneurons and of molecular mechanisms that control these patterns.
Collapse
|
22
|
Weisinger K, Kohl A, Kayam G, Monsonego-Ornan E, Sela-Donenfeld D. Expression of hindbrain boundary markers is regulated by FGF3. Biol Open 2011; 1:67-74. [PMID: 23213398 PMCID: PMC3507201 DOI: 10.1242/bio.2011032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compartment boundaries act as organizing centers that segregate adjacent areas into domains of gene expression and regulation, and control their distinct fates via the secretion of signalling factors. During hindbrain development, a specialized cell-population forms boundaries between rhombomeres. These boundary cells demonstrate unique morphological properties and express multiple genes that differs them from intra-rhombomeric cells. Yet, little is known regarding the mechanisms that controls the expression or function of these boundary markers.Multiple components of the FGF signaling system, including ligands, receptors, downstream effectors as well as proteoglycans are shown to localize to boundary cells in the chick hindbrain. These patterns raise the possibility that FGF signaling plays a role in regulating boundary properties. We provide evidence to the role of FGF signaling, particularly the boundary-derived FGF3, in regulating the expression of multiple markers at hindbrain boundaries. These findings enable further characterization of the unique boundary-cell population, and expose a new function for FGFs as regulators of boundary-gene expression in the chick hindbrain.
Collapse
|
23
|
Pax6 regulates boundary-cell specification in the rat hindbrain. Mech Dev 2011; 128:289-302. [DOI: 10.1016/j.mod.2011.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/12/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
|
24
|
Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, Domany E, Tzahor E. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 2010; 137:2989-3000. [PMID: 20702560 DOI: 10.1242/dev.051649] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anterior heart field (AHF) encompasses a niche in which mesoderm-derived cardiac progenitors maintain their multipotent and undifferentiated nature in response to signals from surrounding tissues. Here, we investigate the signaling mechanism that promotes the shift from proliferating cardiac progenitors to differentiating cardiomyocytes in chick embryos. Genomic and systems biology approaches, as well as perturbations of signaling molecules, in vitro and in vivo, reveal tight crosstalk between the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) signaling pathways within the AHF niche: BMP4 promotes myofibrillar gene expression and cardiomyocyte contraction by blocking FGF signaling. Furthermore, inhibition of the FGF-ERK pathway is both sufficient and necessary for these processes, suggesting that FGF signaling blocks premature differentiation of cardiac progenitors in the AHF. We further revealed that BMP4 induced a set of neural crest-related genes, including MSX1. Overexpression of Msx1 was sufficient to repress FGF gene expression and cell proliferation, thereby promoting cardiomyocyte differentiation. Finally, we show that BMP-induced cardiomyocyte differentiation is diminished following cranial neural crest ablation, underscoring the key roles of these cells in the regulation of AHF cell differentiation. Hence, BMP and FGF signaling pathways act via inter- and intra-regulatory loops in multiple tissues, to coordinate the balance between proliferation and differentiation of cardiac progenitors.
Collapse
Affiliation(s)
- Libbat Tirosh-Finkel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Weisinger K, Kayam G, Missulawin-Drillman T, Sela-Donenfeld D. Analysis of expression and function of FGF-MAPK signaling components in the hindbrain reveals a central role for FGF3 in the regulation of Krox20, mediated by Pea3. Dev Biol 2010; 344:881-95. [PMID: 20553903 DOI: 10.1016/j.ydbio.2010.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 12/18/2022]
Abstract
The development of the vertebrate hindbrain requires multiple coordinated signals which act via several pathways. One such signal is Fibroblast Growth Factor (FGF), which is necessary for the patterning of a major transcription factor in the hindbrain, Krox20. However, in the chick, it is still not known which specific FGF ligand is responsible for the regulation of Krox20 and how the signal is dispatched. The most characterized signaling pathway which FGF acts through in the nervous system is the MAPK/Erk1/2 pathway. Nevertheless, a detailed analysis of the hindbrain distribution of various components of this pathway has not been fully described. In this study we present a comprehensive atlas of the FGF ligands, receptors and members of the MAPK/Erk1/2 signaling components in subsequent stages of avian hindbrain development. Moreover, we show that FGF is a major signaling pathway that contributes to the activation of ERK1/2 and expression of the downstream targets Pea3 and Erm. Central to this study, we provide multiple evidence that FGF3 is required for the upregulation of Pea3 that in turn is necessary for Krox20 distribution in rhombomeres 3 and 5. These results show for the first time that Pea3 mediates the FGF3 signal to regulate the hindbrain expression of Krox20.
Collapse
Affiliation(s)
- Karen Weisinger
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
26
|
Aragon F, Pujades C. FGF signaling controls caudal hindbrain specification through Ras-ERK1/2 pathway. BMC DEVELOPMENTAL BIOLOGY 2009; 9:61. [PMID: 19958530 PMCID: PMC2794271 DOI: 10.1186/1471-213x-9-61] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 12/03/2009] [Indexed: 11/10/2022]
Abstract
Background During early steps of embryonic development the hindbrain undergoes a regionalization process along the anterior-posterior (AP) axis that leads to a metameric organization in a series of rhombomeres (r). Refinement of the AP identities within the hindbrain requires the establishment of local signaling centers, which emit signals that pattern territories in their vicinity. Previous results demonstrated that the transcription factor vHnf1 confers caudal identity to the hindbrain inducing Krox20 in r5 and MafB/Kreisler in r5 and r6, through FGF signaling [1]. Results We show that in the chick hindbrain, Fgf3 is transcriptionally activated as early as 30 min after mvHnf1 electroporation, suggesting that it is a direct target of this transcription factor. We also analyzed the expression profiles of FGF activity readouts, such as MKP3 and Pea3, and showed that both are expressed within the hindbrain at early stages of embryonic development. In addition, MKP3 is induced upon overexpression of mFgf3 or mvHnf1 in the hindbrain, confirming vHnf1 is upstream FGF signaling. Finally, we addressed the question of which of the FGF-responding intracellular pathways were active and involved in the regulation of Krox20 and MafB in the hindbrain. While Ras-ERK1/2 activity is necessary for MKP3, Krox20 and MafB induction, PI3K-Akt is not involved in that process. Conclusion Based on these observations we propose that vHnf1 acts directly through FGF3, and promotes caudal hindbrain identity by activating MafB and Krox20 via the Ras-ERK1/2 intracellular pathway.
Collapse
Affiliation(s)
- Ferran Aragon
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, PRBB, Barcelona, Spain.
| | | |
Collapse
|
27
|
Rogers C, Moody SA, Casey E. Neural induction and factors that stabilize a neural fate. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:249-62. [PMID: 19750523 PMCID: PMC2756055 DOI: 10.1002/bdrc.20157] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neural ectoderm of vertebrates forms when the bone morphogenetic protein (BMP) signaling pathway is suppressed. Herein, we review the molecules that directly antagonize extracellular BMP and the signaling pathways that further contribute to reduce BMP activity in the neural ectoderm. Downstream of neural induction, a large number of "neural fate stabilizing" (NFS) transcription factors are expressed in the presumptive neural ectoderm, developing neural tube and ultimately in neural stem cells. Herein, we review what is known about their activities during normal development to maintain a neural fate and regulate neural differentiation. Further elucidation of how the NFS genes interact to regulate neural specification and differentiation should ultimately prove useful for regulating the expansion and differentiation of neural stem and progenitor cells.
Collapse
Affiliation(s)
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University
| | - Elena Casey
- Department of Biology, Georgetown University
| |
Collapse
|
28
|
Sela-Donenfeld D, Kayam G, Wilkinson DG. Boundary cells regulate a switch in the expression of FGF3 in hindbrain rhombomeres. BMC DEVELOPMENTAL BIOLOGY 2009; 9:16. [PMID: 19232109 PMCID: PMC2656489 DOI: 10.1186/1471-213x-9-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND During formation of the vertebrate central nervous system, the hindbrain is organized into segmental units, called rhombomeres (r). These cell-lineage restricted segments are separated by a subpopulation of cells known as boundary cells. Boundary cells display distinct molecular and cellular properties such as an elongated shape, enriched extracellular matrix components and a reduced proliferation rate compared to intra-rhombomeric cells. However, little is known regarding their functions and the mechanisms that regulate their formation. RESULTS Hindbrain boundary cells express several signaling molecules, such as FGF3, which at earlier developmental stages is transiently expressed in specific rhombomeres. We show that chick embryos that lack boundary cells due to overexpression of truncated EphA4 receptor in the hindbrain have continued segmental expression of FGF3 at stages when it is normally restricted to hindbrain boundaries. Furthermore, surgical ablation of the boundary between r3 and r4, or blocking of the contact of r4 with boundary cells, results in sustained FGF3 expression in this segment. CONCLUSION These findings suggest that boundary cells are required for the downregulation of segmental FGF3, presumably mediated by a soluble factor(s) that emanates from boundaries. We propose that this new function of boundary cells enables a switch in gene expression that may be required for stage-specific functions of FGF3 in the developing hindbrain.
Collapse
Affiliation(s)
- Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Hebrew University, The Robert H Smith Faculty of Agriculture, Food and Environment, PO Box 12, Rehovot 76100, Israel
| | - Galya Kayam
- Koret School of Veterinary Medicine, The Hebrew University, The Robert H Smith Faculty of Agriculture, Food and Environment, PO Box 12, Rehovot 76100, Israel
| | - David G Wilkinson
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|