1
|
Soffers JH, Beck E, Sytkowski DJ, Maughan ME, Devarakonda D, Zhu Y, Wilson B, David Chen YC, Erclik T, Truman JW, Skeath JB, Lacin H. A library of lineage-specific driver lines connects developing neuronal circuits to behavior in the Drosophila Ventral Nerve Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.27.625713. [PMID: 39651218 PMCID: PMC11623677 DOI: 10.1101/2024.11.27.625713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding developmental changes in neuronal lineages is crucial to elucidate how they assemble into functional neural networks. Studies investigating nervous system development in model systems have only focused on select regions of the central nervous system due to the limited availability of genetic drivers that target specific neuronal lineages throughout development and adult life. This has hindered our understanding of how distinct neuronal lineages interconnect to form neuronal circuits during development. Here, we present a split-GAL4 library composed of genetic driver lines, which we generated via editing the genomic locus of lineage-specific transcription factors and demonstrate that we can use this library to specifically target most individual neuronal hemilineages in the Drosophila ventral nerve cord (VNC) throughout development and into adulthood. Using these genetic driver lines, we found striking morphological changes in neuronal processes within a lineage during metamorphosis. We also demonstrated how neurochemical features of neuronal classes can be quickly assessed. Lastly, we documented behaviors elicited in response to optogenetic activation of individual neuronal lineages and generated a comprehensive lineage-behavior map of the entire fly VNC. Looking forward, this lineage-specific split-GAL4 driver library will provide the genetic tools needed to address the questions emerging from the analysis of the recent VNC connectome and transcriptome datasets.
Collapse
|
2
|
Farmer AJ, Katariya R, Islam S, Rayhan MSA, Inlow MH, Ahmad SM, Schwab KR. trithorax is an essential regulator of cardiac Hox gene expression and anterior-posterior patterning of the Drosophila embryonic heart tube. Biol Open 2025; 14:bio061919. [PMID: 40172069 PMCID: PMC11993250 DOI: 10.1242/bio.061919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
The precise regulation of transcription required for embryonic development is partially controlled by the actions of the Trithorax group (TrxG) and Polycomb group (PcG) proteins. The genes trithorax (trx), trithorax-related (trr), and SET domain containing 1 (Set1) encode COMPASS-like histone methyltransferases, a subgroup of TrxG proteins that impart H3K4 methylation modifications onto chromatin in order to activate and maintain transcription. In this study, we identify the role of these genes in the development of the embryonic heart of the fruit fly Drosophila melanogaster. trx, trr, and Set1 independently ensure proper cardiac cell divisions. Additionally, trx regulation of collinear Hox expression is necessary for the anterior-posterior cardiac patterning of the linear heart tube. trx inactivation in Drosophila results in a remarkable homeotic transformation of the posterior heart-proper segment into an aorta-like fate due to the loss of posterior abdominal A expression. Furthermore, cardiac expression of Antennapedia, Ultrabithorax, and Abdominal B is also deregulated in trx mutants. Together, these data suggest that the COMPASS-like histone methyltransferases are essential developmental regulators of cardiogenesis, being necessary for both cardiac cell divisions and heart patterning.
Collapse
Affiliation(s)
- Adam J. Farmer
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Sumaiya Islam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Md. Sayeed Abu Rayhan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H. Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
3
|
Dondi C, Vogler G, Gupta A, Walls SM, Kervadec A, Marchant J, Romero MR, Diop S, Goode J, Thomas JB, Colas AR, Bodmer R, Montminy M, Ocorr K. The nutrient sensor CRTC and Sarcalumenin/thinman represent an alternate pathway in cardiac hypertrophy. Cell Rep 2024; 43:114549. [PMID: 39093699 PMCID: PMC11402474 DOI: 10.1016/j.celrep.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/06/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
CREB-regulated transcription co-activator (CRTC) is activated by Calcineurin (CaN) to regulate gluconeogenic genes. CaN also has roles in cardiac hypertrophy. Here, we explore a cardiac-autonomous role for CRTC in cardiac hypertrophy. In Drosophila, CRTC mutants exhibit severe cardiac restriction, myofibrillar disorganization, fibrosis, and tachycardia. Cardiac-specific CRTC knockdown (KD) phenocopies mutants, and cardiac overexpression causes hypertrophy. CaN-induced hypertrophy in Drosophila is reduced in CRTC mutants, suggesting that CRTC mediates the effects. RNA sequencing (RNA-seq) of CRTC-KD and -overexpressing hearts reveals contraregulation of metabolic genes. Genes with conserved CREB sites include the fly ortholog of Sarcalumenin, a Ca2+-binding protein. Cardiac manipulation of this gene recapitulates the CRTC-KD and -overexpression phenotypes. CRTC KD in zebrafish also causes cardiac restriction, and CRTC KD in human induced cardiomyocytes causes a reduction in Srl expression and increased action potential duration. Our data from three model systems suggest that CaN-CRTC-Sarcalumenin signaling represents an alternate, conserved pathway underlying cardiac function and hypertrophy.
Collapse
Affiliation(s)
- Cristiana Dondi
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Georg Vogler
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anjali Gupta
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stanley M Walls
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Marchant
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michaela R Romero
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Soda Diop
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jason Goode
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John B Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex R Colas
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Dondi C, Vogler G, Gupta A, Walls SM, Kervadec A, Romero MR, Diop SB, Goode J, Thomas JB, Colas AR, Bodmer R, Montminy M, Ocorr K. The nutrient sensor CRTC & Sarcalumenin / Thinman represent a new pathway in cardiac hypertrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560407. [PMID: 37873259 PMCID: PMC10592890 DOI: 10.1101/2023.10.02.560407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Obesity and type 2 diabetes are at epidemic levels and a significant proportion of these patients are diagnosed with left ventricular hypertrophy. CREB R egulated T ranscription C o-activator ( CRTC ) is a key regulator of metabolism in mammalian hepatocytes, where it is activated by calcineurin (CaN) to increase expression of gluconeogenic genes. CaN is known its role in pathological cardiac hypertrophy, however, a role for CRTC in the heart has not been identified. In Drosophila , CRTC null mutants have little body fat and exhibit severe cardiac restriction, myofibrillar disorganization, cardiac fibrosis and tachycardia, all hallmarks of heart disease. Cardiac-specific knockdown of CRTC , or its coactivator CREBb , mimicked the reduced body fat and heart defects of CRTC null mutants. Comparative gene expression in CRTC loss- or gain-of-function fly hearts revealed contra-regulation of genes involved in glucose, fatty acid, and amino acid metabolism, suggesting that CRTC also acts as a metabolic switch in the heart. Among the contra-regulated genes with conserved CREB binding sites, we identified the fly ortholog of Sarcalumenin, which is a Ca 2+ -binding protein in the sarcoplasmic reticulum. Cardiac knockdown recapitulated the loss of CRTC cardiac restriction and fibrotic phenotypes, suggesting it is a downstream effector of CRTC we named thinman ( tmn ). Importantly, cardiac overexpression of either CaN or CRTC in flies caused hypertrophy that was reversed in a CRTC mutant background, suggesting CRTC mediates hypertrophy downstream of CaN, perhaps as an alternative to NFAT. CRTC novel role in the heart is likely conserved in vertebrates as knockdown in zebrafish also caused cardiac restriction, as in fl ies. These data suggest that CRTC is involved in myocardial cell maintenance and that CaN-CRTC- Sarcalumenin/ tmn signaling represents a novel and conserved pathway underlying cardiac hypertrophy.
Collapse
|
5
|
Soriano A, Petit C, Ryan S, Jemc JC. Tracking Follicle Cell Development. Methods Mol Biol 2023; 2626:151-177. [PMID: 36715904 DOI: 10.1007/978-1-0716-2970-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Somatic follicle cells are critical support cells for Drosophila oogenesis, as they provide signals and molecules needed to produce a mature egg. Throughout this process, the follicle cells differentiate into multiple subpopulations and transition between three different cell cycle programs to support nurse cell and oocyte development. The follicle cells are mitotic in early egg chamber development, as they cover the germline cyst. In mid-oogenesis, follicle cells switch from mitosis to endocycling, increasing their ploidy from 2C to 16C. Finally, in late oogenesis, cells transition from endocycling to gene amplification, increasing the copy number of a small subset of genes, including the genes encoding proteins required for egg maturation. In order to explore the genetic regulation of these cell cycle switches and follicle cell development and specification, clonal analysis and the GAL4/UAS system are used frequently to reduce or increase expression of genes of interest. These genetic approaches combined with immunohistochemistry and in situ hybridization are powerful tools for characterizing the mechanisms regulating follicle cell development and the mitosis/endocycle and endocycle/gene amplification transitions. This chapter describes the genetic tools available to manipulate gene expression in follicle cells, as well as the methods and reagents that can be utilized to explore gene expression throughout follicle cell development.
Collapse
Affiliation(s)
- Adrianna Soriano
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Houston Baptist University, Houston, TX, USA
| | | | - Savannah Ryan
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Jennifer C Jemc
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Katti P, Ajayi PT, Aponte A, Bleck CKE, Glancy B. Identification of evolutionarily conserved regulators of muscle mitochondrial network organization. Nat Commun 2022; 13:6622. [PMID: 36333356 PMCID: PMC9636386 DOI: 10.1038/s41467-022-34445-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial networks are incompletely understood and it is unclear how they might affect contractile fiber-type. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated differentially. Proteomic analyses of indirect flight, jump, and leg muscles, together with muscles misexpressing known fiber-type specification factor salm, identified transcription factors H15 and cut as potential mitochondrial network regulators. We demonstrate H15 operates downstream of salm regulating flight muscle contractile and mitochondrial network-type. Conversely, H15 regulates mitochondrial network configuration but not contractile type in jump and leg muscles. Further, we find that cut regulates salm expression in flight muscles and mitochondrial network configuration in leg muscles. These data indicate cell type-specific regulation of muscle mitochondrial network organization through evolutionarily conserved transcription factors cut, salm, and H15.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter T Ajayi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angel Aponte
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Transcriptional profiling from whole embryos to single neuroblast lineages in Drosophila. Dev Biol 2022; 489:21-33. [PMID: 35660371 PMCID: PMC9805786 DOI: 10.1016/j.ydbio.2022.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 01/03/2023]
Abstract
Embryonic development results in the production of distinct tissue types, and different cell types within each tissue. A major goal of developmental biology is to uncover the "parts list" of cell types that comprise each organ. Here we perform single cell RNA sequencing (scRNA-seq) of the Drosophila embryo to identify the genes that characterize different cell and tissue types during development. We assay three different timepoints, revealing a coordinated change in gene expression within each tissue. Interestingly, we find that the elav and Mhc genes, whose protein products are widely used as markers for neurons and muscles, respectively, show broad pan-embryonic expression, indicating the importance of post-transcriptional regulation. We next focus on the central nervous system (CNS), where we identify genes whose expression is enriched at each stage of neuronal differentiation: from neural progenitors, called neuroblasts, to their immediate progeny ganglion mother cells (GMCs), followed by new-born neurons, young neurons, and the most mature neurons. Finally, we ask whether the clonal progeny of a single neuroblast (NB7-1) share a similar transcriptional identity. Surprisingly, we find that clonal identity does not lead to transcriptional clustering, showing that neurons within a lineage are diverse, and that neurons with a similar transcriptional profile (e.g. motor neurons, glia) are distributed among multiple neuroblast lineages. Although each lineage consists of diverse progeny, we were able to identify a previously uncharacterized gene, Fer3, as an excellent marker for the NB7-1 lineage. Within the NB7-1 lineage, neurons which share a temporal identity (e.g. Hunchback, Kruppel, Pdm, and Castor temporal transcription factors in the NB7-1 lineage) have shared transcriptional features, allowing for the identification of candidate novel temporal factors or targets of the temporal transcription factors. In conclusion, we have characterized the embryonic transcriptome for all major tissue types and for three stages of development, as well as the first transcriptomic analysis of a single, identified neuroblast lineage, finding a lineage-enriched transcription factor.
Collapse
|
8
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Everetts NJ, Worley MI, Yasutomi R, Yosef N, Hariharan IK. Single-cell transcriptomics of the Drosophila wing disc reveals instructive epithelium-to-myoblast interactions. eLife 2021; 10:61276. [PMID: 33749594 PMCID: PMC8021398 DOI: 10.7554/elife.61276] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
In both vertebrates and invertebrates, generating a functional appendage requires interactions between ectoderm-derived epithelia and mesoderm-derived cells. To investigate such interactions, we used single-cell transcriptomics to generate a temporal cell atlas of the Drosophila wing disc from two developmental time points. Using these data, we visualized gene expression using a multilayered model of the wing disc and cataloged ligand–receptor pairs that could mediate signaling between epithelial cells and adult muscle precursors (AMPs). We found that localized expression of the fibroblast growth factor ligands, Thisbe and Pyramus, in the disc epithelium regulates the number and location of the AMPs. In addition, Hedgehog ligand from the epithelium activates a specific transcriptional program within adjacent AMP cells, defined by AMP-specific targets Neurotactin and midline, that is critical for proper formation of direct flight muscles. More generally, our annotated temporal cell atlas provides an organ-wide view of potential cell–cell interactions between epithelial and myogenic cells.
Collapse
Affiliation(s)
- Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nir Yosef
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
10
|
Svendsen PC, Phillips LA, Deshwar AR, Ryu JR, Najand N, Brook WJ. The selector genes midline and H15 control ventral leg pattern by both inhibiting Dpp signaling and specifying ventral fate. Dev Biol 2019; 455:19-31. [PMID: 31299230 DOI: 10.1016/j.ydbio.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/27/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023]
Abstract
mid and H15 encode Tbx20 transcription factors that specify ventral pattern in the Drosophila leg. We find that there are at least two pathways for mid and H15 specification of ventral fate. In the first pathway, mid and H15 negatively regulate Dpp, the dorsal signal in leg development. mid and H15 block the dorsalizing effects of Dpp signaling in the ventral leg. In loss- and gain-of-function experiments in imaginal discs, we show that mid and H15 block the accumulation of phospho-Mad, the activated form of the Drosophila pSmad1/5 homolog. In a second pathway, we find mid and H15 must also directly promote ventral fate because simultaneously blocking Dpp signaling in mid H15 mutants does not rescue the ventral to dorsal transformation in most ventral leg structures. We show that mid and H15 act as transcriptional repressors in ventral leg development. The two genes repress the Dpp target gene Dad, the laterally expressed gene Upd, and the mid VLE enhancer. This repression depends on the eh1 domain, a binding site for the Groucho co-repressor, and is likely direct because Mid localizes to target gene enhancers in PCR-ChIP assays. A mid allele mutant for the repressing domain (eh1), mideh1, was found to be compromised in gain-of-function assays and in rescue of mid H15 loss-of-function. We propose that mid and H15 specify ventral fate through inhibition of Dpp signaling and through coordinating the repression of genes in the ventral leg.
Collapse
Affiliation(s)
- Pia C Svendsen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Lindsay A Phillips
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Ashish R Deshwar
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Nima Najand
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - William J Brook
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
11
|
Schwarz B, Hollfelder D, Scharf K, Hartmann L, Reim I. Diversification of heart progenitor cells by EGF signaling and differential modulation of ETS protein activity. eLife 2018; 7:32847. [PMID: 29869981 PMCID: PMC6033539 DOI: 10.7554/elife.32847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
For coordinated circulation, vertebrate and invertebrate hearts require stereotyped arrangements of diverse cell populations. This study explores the process of cardiac cell diversification in the Drosophila heart, focusing on the two major cardioblast subpopulations: generic working myocardial cells and inflow valve-forming ostial cardioblasts. By screening a large collection of randomly induced mutants, we identified several genes involved in cardiac patterning. Further analysis revealed an unexpected, specific requirement of EGF signaling for the specification of generic cardioblasts and a subset of pericardial cells. We demonstrate that the Tbx20 ortholog Midline acts as a direct target of the EGFR effector Pointed to repress ostial fates. Furthermore, we identified Edl/Mae, an antagonist of the ETS factor Pointed, as a novel cardiac regulator crucial for ostial cardioblast specification. Combining these findings, we propose a regulatory model in which the balance between activation of Pointed and its inhibition by Edl controls cardioblast subtype-specific gene expression. Organs contain many different kinds of cells, each specialised to perform a particular role. The fruit fly heart, for example, has two types of muscle cells: generic heart muscle cells and ostial heart muscle cells. The generic cells contract to force blood around the body, whilst the ostial cells form openings that allow blood to enter the heart. Though both types of cells carry the same genetic information, each uses a different combination of active genes to perform their role. During development, the cells must decide whether to become generic or ostial. They obtain signals from other cells in and near the developing heart, and respond by turning genes on or off. The response uses proteins called transcription factors, which bind to regulatory portions of specific genes. The sequence of signals and transcription factors that control the fate of developing heart muscle cells was not known. So Schwarz et al. examined the process using a technique called a mutagenesis screen. This involved triggering random genetic mutations and looking for flies with defects in their heart muscle cells. Matching the defects to the mutations revealed genes responsible for heart development. Schwarz et al. found that for cells to develop into generic heart muscle cells, a signal called epidermal growth factor (EGF) switches on a transcription factor called Pointed in the cells. Pointed then turns on another transcription factor that switches off the genes for ostial cells. Conversely, ostial heart muscle cells develop when a protein called ‘ETS-domain lacking’ (Edl) interferes with Pointed, allowing the ostial genes to remain on. The balance between Pointed and Edl controls which type of heart cell each cell will become. Many cells in other tissues in fruit flies also produce the Pointed and Edl proteins and respond to EGF signals. This means that this system may help to decide the fate of cells in other organs. The EGF signaling system is also present in other animals, including humans. Future work could reveal whether the same molecular decision making happens in our own hearts.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Scharf
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Hartmann
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
|
13
|
Lacin H, Truman JW. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system. eLife 2016; 5:e13399. [PMID: 26975248 PMCID: PMC4805552 DOI: 10.7554/elife.13399] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI:http://dx.doi.org/10.7554/eLife.13399.001 Fruit flies undergo a process called metamorphosis in which they change from a maggot or larva into an adult fly. These two life stages look and behave differently and appear to have strikingly different nervous systems. The relationship between the two nervous systems has been most extensively studied in the ventral nerve cord (which is the equivalent to the spinal cord in humans). Although the ventral nerve cords of a larva and an adult fly look quite different, they are generated by the same set of stem cells known as neuroblasts. This is made possible because the neuroblasts proliferate in two separate phases: the first phase occurs in the embryo to generate the neurons of the larval nervous system, and the second phase occurs in the larva to generate neurons for the adult’s nervous system. Now, Lacin and Truman have paired each of the neurons in the adult fruit fly’s nerve cord with their corresponding neurons in the nerve cords of fruit fly larvae. This involved identifying the original neuroblasts that gave rise to each of the neurons in both larval and adult fruit flies. The results suggest that most neurons that arise from a given neuroblast produce a similar set of molecules and extend similar nerve fibers, even though they work in two different nervous systems. Since neuroblasts in non-metamorphosing insects proliferate continuously, these findings also suggest that, when metamorphosis evolved, a pause was introduced to create the two separate phases of proliferation without a big effect on the types of neurons generated. Lacin and Truman then went on to discover three neuroblasts that appear to be unique to the middle (or thoracic) segments of a fruit fly. The experiments reveal that the presence of these neuroblasts depended on specific genes that control the development of animal body plans. Two of these neuroblasts generate the so-called motor neurons that control the movement of a fly’s legs. Flies only have legs on their thoracic segments, so this indicates that the development of new neurons is coordinated with the development of the body plan at the stem cell level. The third neuroblast generates neurons that connect with the leg motor neurons, and Lacin and Truman propose that this neuroblast arose from a copy of a neighboring stem cell. The resulting extra neurons may have enabled finer control over the leg movements required for activities such as walking and grooming. Following on from this work, it is now possible to investigate how molecular events that occur from the embryonic to the adult stages of a fruit fly’s life control the formation and function of its nervous system. DOI:http://dx.doi.org/10.7554/eLife.13399.002
Collapse
Affiliation(s)
- Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
14
|
Svendsen PC, Ryu JR, Brook WJ. The expression of the T-box selector gene midline in the leg imaginal disc is controlled by both transcriptional regulation and cell lineage. Biol Open 2015; 4:1707-14. [PMID: 26581591 PMCID: PMC4736030 DOI: 10.1242/bio.013565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila Tbx20 homologs midline and H15 act as selector genes for ventral fate in Drosophila legs. midline and H15 expression defines the ventral domain of the leg and the two genes are necessary and sufficient for the development of ventral fate. Ventral-specific expression of midline and H15 is activated by Wingless (Wg) and repressed by Decapentaplegic (Dpp). Here we identify VLE, a 5 kb enhancer that drives ventral specific expression in the leg disc that is very similar to midline expression. Subdivision of VLE identifies two regions that mediate both activation and repression and third region that only mediates repression. Loss- and gain-of-function genetic mosaic analysis shows that the activating and repressing regions respond to Wg and Dpp signaling respectively. All three repression regions depend on the activity of Mothers-against-decapentaplegic, a Drosophila r-Smad that mediates Dpp signaling, and respond to ectopic expression of the Dpp target genes optomoter-blind and Dorsocross 3. However, only one repression region is responsive to loss of schnurri, a co-repressor required for direct repression by Dpp-signaling. Thus, Dpp signaling restricts midline expression through both direct repression and through the activation of downstream repressors. We also find that midline and H15 expression are both subject to cross-repression and feedback inhibition. Finally, a lineage analysis indicates that ventral midline-expressing cells and dorsal omb-expressing cells do not mix during development. Together this data indicates that the ventral-specific expression of midline results from both transcriptional regulation and from a lack of cell-mixing between dorsal and ventral cells.
Collapse
Affiliation(s)
- Pia C Svendsen
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - Jae-Ryeon Ryu
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - William J Brook
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| |
Collapse
|
15
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
16
|
Lovato TL, Sensibaugh CA, Swingle KL, Martinez MM, Cripps RM. The Drosophila Transcription Factors Tinman and Pannier Activate and Collaborate with Myocyte Enhancer Factor-2 to Promote Heart Cell Fate. PLoS One 2015. [PMID: 26225919 PMCID: PMC4520567 DOI: 10.1371/journal.pone.0132965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2) is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur) expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.
Collapse
Affiliation(s)
- TyAnna L. Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Cheryl A. Sensibaugh
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Kirstie L. Swingle
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Melody M. Martinez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
- * E-mail:
| |
Collapse
|
17
|
The drosophila T-box transcription factor midline functions within Insulin/Akt and c-Jun-N terminal kinase stress-reactive signaling pathways to regulate interommatial bristle formation and cell survival. Mech Dev 2015; 136:8-29. [PMID: 25748605 DOI: 10.1016/j.mod.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/04/2023]
Abstract
We recently reported that the T-box transcription factor midline (mid) functions within the Notch-Delta signaling pathway to specify sensory organ precursor (SOP) cell fates in early-staged pupal eye imaginal discs and to suppress apoptosis (Das et al.). From genetic and allelic modifier screens, we now report that mid interacts with genes downstream of the insulin receptor(InR)/Akt, c-Jun-N-terminal kinase (JNK) and Notch signaling pathways to regulate interommatidial bristle (IOB) formation and cell survival. One of the most significant mid-interacting genes identified from the modifier screen is dFOXO, a transcription factor exhibiting a nucleocytoplasmic subcellular distribution pattern. In common with dFOXO, we show that Mid exhibits a nucleocytoplasmic distribution pattern within WT third-instar larval (3(o)L) tissue homogenates. Because dFOXO is a stress-responsive factor, we assayed the effects of either oxidative or metabolic stress responses on modifying the mid mutant phenotype which is characterized by a 50% loss of IOBs within the adult compound eye. While metabolic starvation stress does not affect the mid mutant phenotype, either 1 mM paraquat or 20% coconut oil, oxidative stress inducers, partially suppresses the mid mutant phenotype resulting in a significant recovery of IOBs. Another significant mid-interacting gene we identified is groucho (gro). Mid and Gro are predicted to act as corepressors of the enhancer-of-split gene complex downstream of Notch. Immunolabeling WT and dFOXO null 3(o)L eye-antennal imaginal discs with anti-Mid and anti-Engrailed (En) antibodies indicate that dFOXO is required to activate Mid and En expression within photoreceptor neurons of the eye disc. Taken together, these studies show that Mid and dFOXO serve as critical effectors of cell fate specification and survival within integrated Notch, InR/dAkt, and JNK signaling pathways during 3(o)L and pupal eye imaginal disc development.
Collapse
|
18
|
Kumar RP, Dobi KC, Baylies MK, Abmayr SM. Muscle cell fate choice requires the T-box transcription factor midline in Drosophila. Genetics 2015; 199:777-91. [PMID: 25614583 PMCID: PMC4349071 DOI: 10.1534/genetics.115.174300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/11/2015] [Indexed: 11/18/2022] Open
Abstract
Drosophila Midline (Mid) is an ortholog of vertebrate Tbx20, which plays roles in the developing heart, migrating cranial motor neurons, and endothelial cells. Mid functions in cell-fate specification and differentiation of tissues that include the ectoderm, cardioblasts, neuroblasts, and egg chambers; however, a role in the somatic musculature has not been described. We identified mid in genetic and molecular screens for factors contributing to somatic muscle morphogenesis. Mid is expressed in founder cells (FCs) for several muscle fibers, and functions cooperatively with the T-box protein H15 in lateral oblique muscle 1 and the segment border muscle. Mid is particularly important for the specification and development of the lateral transverse (LT) muscles LT3 and LT4, which arise by asymmetric division of a single muscle progenitor. Mid is expressed in this progenitor and its two sibling FCs, but is maintained only in the LT4 FC. Both muscles were frequently missing in mid mutant embryos, and LT4-associated expression of the transcription factor Krüppel (Kr) was lost. When present, LT4 adopted an LT3-like morphology. Coordinately, mid misexpression caused LT3 to adopt an LT4-like morphology and was associated with ectopic Kr expression. From these data, we concluded that mid functions first in the progenitor to direct development of LT3 and LT4, and later in the FCs to influence whichever of these differentiation profiles is selected. Mid is the first T-box factor shown to influence LT3 and LT4 muscle identity and, along with the T-box protein Optomotor-blind-related-gene 1 (Org-1), is representative of a new class of transcription factors in muscle specification.
Collapse
Affiliation(s)
- Ram P Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Krista C Dobi
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Mary K Baylies
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110 Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| |
Collapse
|
19
|
Vogler G, Liu J, Iafe TW, Migh E, Mihály J, Bodmer R. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. ACTA ACUST UNITED AC 2014; 206:909-22. [PMID: 25267295 PMCID: PMC4178965 DOI: 10.1083/jcb.201405075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cdc42 and the formins dDAAM and Diaphanous play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network. During heart formation, a network of transcription factors and signaling pathways guide cardiac cell fate and differentiation, but the genetic mechanisms orchestrating heart assembly and lumen formation remain unclear. Here, we show that the small GTPase Cdc42 is essential for Drosophila melanogaster heart morphogenesis and lumen formation. Cdc42 genetically interacts with the cardiogenic transcription factor tinman; with dDAAM which belongs to the family of actin organizing formins; and with zipper, which encodes nonmuscle myosin II. Zipper is required for heart lumen formation, and its spatiotemporal activity at the prospective luminal surface is controlled by Cdc42. Heart-specific expression of activated Cdc42, or the regulatory formins dDAAM and Diaphanous caused mislocalization of Zipper and induced ectopic heart lumina, as characterized by luminal markers such as the extracellular matrix protein Slit. Placement of Slit at the lumen surface depends on Cdc42 and formin function. Thus, Cdc42 and formins play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network.
Collapse
Affiliation(s)
- Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jiandong Liu
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Timothy W Iafe
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Ede Migh
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
20
|
Sen A, Grimm S, Hofmeyer K, Pflugfelder GO. Optomotor-blindin the Development of theDrosophilaHS and VS Lobula Plate Tangential Cells. J Neurogenet 2014; 28:250-63. [DOI: 10.3109/01677063.2014.917645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Tripathy R, Kunwar PS, Sano H, Renault AD. Transcriptional regulation of Drosophila gonad formation. Dev Biol 2014; 392:193-208. [PMID: 24927896 DOI: 10.1016/j.ydbio.2014.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes.
Collapse
Affiliation(s)
- Ratna Tripathy
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany
| | - Prabhat S Kunwar
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Sciences, Kurume University, Kurume, Fukuoka, Japan
| | - Andrew D Renault
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany.
| |
Collapse
|
22
|
Methods to assess Drosophila heart development, function and aging. Methods 2014; 68:265-72. [PMID: 24727147 DOI: 10.1016/j.ymeth.2014.03.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years the Drosophila heart has become an established model for many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study of underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure.
Collapse
|
23
|
Tang M, Yuan W, Bodmer R, Wu X, Ocorr K. The role of pygopus in the differentiation of intracardiac valves in Drosophila. Genesis 2013; 52:19-28. [PMID: 24265259 DOI: 10.1002/dvg.22724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/14/2022]
Abstract
Cardiac valves serve an important function; they support unidirectional blood flow and prevent blood regurgitation. Wnt signaling plays an important role in the formation of mouse cardiac valves and cardiac valve proliferation in Zebrafish, but identification of the specific signaling components involved has not been addressed systematically. Of the components involved in Wnt signal transduction, pygopus (pygo), first identified as a core component of Wnt signaling in Drosophila, has not yet to be investigated with respect to valve development and differentiation. Here, we take advantage of the Drosophila heart model to study the role of pygo in formation of valves between the cardiac chambers. We found that cardiac-specific pygo knockdown in the Drosophila heart causes dilation in the region of these cardiac valves, and their characteristic dense mesh of myofibrils does not form and resembles that of neighboring cardiomyocytes. In contrast, heart-specific knockdown of the transcription factors, arm/β-Cat, lgs/BCL9, or pan/TCF, which mediates canonical Wnt signal transduction, shows a much weaker valve differentiation defect. Double-heterozygous combinations of mutants for pygo and the Wnt-signaling components have no additional effect on heart function compared with pygo heterozygotes alone. These results are consistent with the idea that pygo functions independently of canonical Wnt signaling in the differentiation of the adult interchamber cardiac valves.
Collapse
Affiliation(s)
- Min Tang
- The Center for Heart Development, Key Laboratory of MOE for Developmental Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China; Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, California, 92037
| | | | | | | | | |
Collapse
|
24
|
Response to the dorsal anterior gradient of EGFR signaling in Drosophila oogenesis is prepatterned by earlier posterior EGFR activation. Cell Rep 2013; 4:791-802. [PMID: 23972992 DOI: 10.1016/j.celrep.2013.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022] Open
Abstract
Spatially restricted epidermal growth factor receptor (EGFR) activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.
Collapse
|
25
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Najand N, Ryu JR, Brook WJ. In vitro site selection of a consensus binding site for the Drosophila melanogaster Tbx20 homolog midline. PLoS One 2012; 7:e48176. [PMID: 23133562 PMCID: PMC3485041 DOI: 10.1371/journal.pone.0048176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/20/2012] [Indexed: 11/22/2022] Open
Abstract
We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.
Collapse
Affiliation(s)
- Nima Najand
- Genes and Development Research Group, Alberta Children’s Hospital Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Jae-Ryeon Ryu
- Genes and Development Research Group, Alberta Children’s Hospital Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - William J. Brook
- Genes and Development Research Group, Alberta Children’s Hospital Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
27
|
The Tbx20 homolog Midline represses wingless in conjunction with Groucho during the maintenance of segment polarity. Dev Biol 2012; 369:319-29. [PMID: 22814213 DOI: 10.1016/j.ydbio.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022]
Abstract
The regulation of the segment polarity gene wingless is essential for the correct patterning of the Drosophila ectoderm. We have previously shown that the asymmetric activation of wingless downstream of Hedghog-signaling depends on the T-box transcription factors, midline and H15. Hedgehog activates wingless anterior to the Hedgehog domain. midline/H15 are responsible in part for repressing wingless in cells posterior to the Hedgehog expressing cells. Here, we show that Midline binds the Groucho co-repressor directly via the engrailed homology-1 domain and requires an intact engrailed-homology-1 domain to repress wingless. In contrast, the regulation of Serrate, a second target of midline repression, is not dependent on the engrailed-homology-1 domain. Furthermore, we identify a midline responsive region of the wingless cis-regulatory region and show that Midline binds to sequences within this region. Mutating these sequences in transgenic reporter constructs results in ectopic reporter expression in the midline-expression domain, consistent with wingless being a direct target of Midline repression.
Collapse
|
28
|
Nawabi H, Castellani V. Axonal commissures in the central nervous system: how to cross the midline? Cell Mol Life Sci 2011; 68:2539-53. [PMID: 21538161 PMCID: PMC11114790 DOI: 10.1007/s00018-011-0691-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 01/02/2023]
Abstract
Organisms with bilateral symmetry elaborate patterns of neuronal projections connecting both sides of the central nervous system at all levels of the neuraxis. During development, these so-called commissural projections navigate across the midline to innervate their contralateral targets. Commissural axon pathfinding has been extensively studied over the past years and turns out to be a highly complex process, implicating modulation of axon responsiveness to the various guidance cues that instruct axon trajectories towards, within and away from the midline. Understanding the molecular mechanisms allowing these switches of response to take place at the appropriate time and place is a major challenge for current research. Recent work characterized several instructive processes controlling the spatial and temporal fine-tuning of the guidance molecular machinery. These findings illustrate the molecular strategies by which commissural axons modulate their sensitivity to guidance cues during midline crossing and show that regulation at both transcriptional and post-transcriptional levels are crucial for commissural axon guidance.
Collapse
Affiliation(s)
- Homaira Nawabi
- F.M. Kirby Neurobiology Center, Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Lin N, Badie N, Yu L, Abraham D, Cheng H, Bursac N, Rockman HA, Wolf MJ. A method to measure myocardial calcium handling in adult Drosophila. Circ Res 2011; 108:1306-15. [PMID: 21493892 PMCID: PMC3128985 DOI: 10.1161/circresaha.110.238105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/01/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE Normal cardiac physiology requires highly regulated cytosolic Ca(2+) concentrations and abnormalities in Ca(2+) handling are associated with heart failure. The majority of approaches to identifying the components that regulate intracellular Ca(2+) dynamics rely on cells in culture, mouse models, and human samples. However, a genetically robust system for unbiased screens of mutations that affect Ca(2+) handling remains a challenge. OBJECTIVE We sought to develop a new method to measure myocardial Ca(2+) cycling in adult Drosophila and determine whether cardiomyopathic fly hearts recapitulate aspects of diseased mammalian myocardium. METHODS AND RESULTS Using engineered transgenic Drosophila that have cardiac-specific expression of Ca(2+)-sensing fluorescent protein, GCaMP2, we developed methods to measure parameters associated with myocardial Ca(2+) handling. The following key observations were identified: (1) Control w(1118) Drosophila hearts have readily measureable Ca(2+)-dependent fluorescent signals that are dependent on L-type Ca(2+) channels and SR Ca(2+) stores and originate from rostral and caudal pacemakers. (2) A fly mutant, held-up(2) (hdp(2)), that has a point mutation in troponin I and has a dilated cardiomyopathic phenotype demonstrates abnormalities in myocardial Ca(2+) handling that include increases in the duration of the 50% rise in intensity to peak intensity, the half-time of fluorescence decline from peak, the full duration at half-maximal intensity, and decreases in the linear slope of decay from 80% to 20% intensity decay. (3) Hearts from hdp(2) mutants had reductions in caffeine-induced Ca(2+) increases and reductions in ryanodine receptor (RyR) without changes in L-type Ca(2+) channel transcripts in comparison with w(1118). CONCLUSIONS Our results show that the cardiac-specific expression of GCaMP2 provides a means of characterizing propagating Ca(2+) transients in adult fly hearts. Moreover, the adult fruit fly heart recapitulates several aspects of Ca(2+) regulation observed in mammalian myocardium. A mutation in Drosophila that causes an enlarged cardiac chamber and impaired contractile function is associated with abnormalities in the cytosolic Ca(2+) transient as well as changes in transcript levels of proteins associated with Ca(2+) handling. This new methodology has the potential to permit an examination of evolutionarily conserved myocardial Ca(2+)-handing mechanisms by applying the vast resources available in the fly genomics community to conduct genetic screens to identify new genes involved in generated Ca(2+) transients and arrhythmias.
Collapse
Affiliation(s)
- Na Lin
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Nima Badie
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lin Yu
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dennis Abraham
- Department of Medicine, Duke University, Durham, NC, USA
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
30
|
King IN, Qian L, Liang J, Huang Y, Shieh JT, Kwon C, Srivastava D. A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity. Dev Cell 2011; 20:497-510. [PMID: 21497762 PMCID: PMC3086096 DOI: 10.1016/j.devcel.2011.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/21/2011] [Accepted: 03/13/2011] [Indexed: 11/16/2022]
Abstract
Many molecular pathways involved in heart disease have their roots in evolutionarily ancient developmental programs that depend critically on gene dosage and timing. MicroRNAs (miRNAs) modulate gene dosage posttranscriptionally, and among these, the muscle-specific miR-1 is particularly important for developing and maintaining somatic/skeletal and cardiac muscle. To identify pathways regulated by miR-1, we performed a forward genetic screen in Drosophila using wing-vein patterning as a biological assay. We identified several unexpected genes that genetically interacted with dmiR-1, one of which was kayak, encodes a developmentally regulated transcription factor. Additional studies directed at this genetic relationship revealed a previously unappreciated function of dmiR-1 in regulating the polarity of cardiac progenitor cells. The mammalian ortholog of kayak, c-Fos, was dysregulated in hearts of gain- or loss-of-function miR-1 mutant mice in a stress-dependent manner. These findings illustrate the power of Drosophila-based screens to find points of intersection between miRNAs and conserved pathways in mammals.
Collapse
Affiliation(s)
- Isabelle N. King
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
- Department of Pediatrics, University of California, San Francisco, CA 94143
- Division of Critical Care, University of California, San Francisco, CA 94143
| | - Li Qian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Jianping Liang
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Joseph T.C. Shieh
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
- Department of Pediatrics, University of California, San Francisco, CA 94143
- Medical Genetics, University of California, San Francisco, CA 94143
| | - Chulan Kwon
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
- Department of Pediatrics, University of California, San Francisco, CA 94143
| |
Collapse
|
31
|
Babaoglan AB, O'Connor-Giles KM, Mistry H, Schickedanz A, Wilson BA, Skeath JB. Sanpodo: a context-dependent activator and inhibitor of Notch signaling during asymmetric divisions. Development 2009; 136:4089-98. [PMID: 19906847 DOI: 10.1242/dev.040386] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric cell divisions generate sibling cells of distinct fates ('A', 'B') and constitute a fundamental mechanism that creates cell-type diversity in multicellular organisms. Antagonistic interactions between the Notch pathway and the intrinsic cell-fate determinant Numb appear to regulate asymmetric divisions in flies and vertebrates. During these divisions, productive Notch signaling requires sanpodo, which encodes a novel transmembrane protein. Here, we demonstrate that Drosophila sanpodo plays a dual role to regulate Notch signaling during asymmetric divisions - amplifying Notch signaling in the absence of Numb in the 'A' daughter cell and inhibiting Notch signaling in the presence of Numb in the 'B' daughter cell. In so doing, sanpodo ensures the asymmetry in Notch signaling levels necessary for the acquisition of distinct fates by the two daughter cells. These findings answer long-standing questions about the restricted ability of Numb and Sanpodo to inhibit and to promote, respectively, Notch signaling during asymmetric divisions.
Collapse
Affiliation(s)
- A Burcu Babaoglan
- Program in Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
32
|
Svendsen PC, Formaz-Preston A, Leal SM, Brook WJ. The Tbx20 homologs midline and H15 specify ventral fate in the Drosophila melanogaster leg. Development 2009; 136:2689-93. [DOI: 10.1242/dev.037911] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regional fates in the developing limbs of Drosophila melanogasterare controlled by selector gene transcription factors. Ventral fate in the fly leg is specified by the expression of the ligand Wingless. We present evidence that midline and H15, members of the Tbx20 class of T-box transcription factors, are key mediators of the Wingless signal in the formation of the ventral region of the fly leg. midline and H15 are restricted to identical ventral domains of expression through activation by Wingless and repression by the dorsal signal Decapentaplegic. midline and H15 function redundantly and cell autonomously in the formation of ventral-specific structures. Conversely, midlineis sufficient to induce ventral fate. Finally, the induction of ectopic ventral fate by mid is compromised when Wingless signaling is attenuated, suggesting that Wingless acts both upstream and in parallel with midline/H15 to specify ventral fate. Based on these results,we propose that midline and H15 may be considered as the selector genes for ventral leg fate.
Collapse
Affiliation(s)
- Pia C. Svendsen
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary AB, Canada T2N 4N1
| | - Ann Formaz-Preston
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary AB, Canada T2N 4N1
| | - Sandra M. Leal
- Department of Biological Sciences, University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS 39406-0001, USA
| | - William J. Brook
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary AB, Canada T2N 4N1
| |
Collapse
|
33
|
Liu QX, Hiramoto M, Ueda H, Gojobori T, Hiromi Y, Hirose S. Midline governs axon pathfinding by coordinating expression of two major guidance systems. Genes Dev 2009; 23:1165-70. [PMID: 19451216 PMCID: PMC2685537 DOI: 10.1101/gad.1774209] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/31/2009] [Indexed: 01/31/2023]
Abstract
Formation of the neural network requires concerted action of multiple axon guidance systems. How neurons orchestrate expression of multiple guidance genes is poorly understood. Here, we show that Drosophila T-box protein Midline controls expression of genes encoding components of two major guidance systems: Frazzled, ROBO, and Slit. In midline mutant, expression of all these molecules are reduced, resulting in severe axon guidance defects, whereas misexpression of Midline induces their expression. Midline is present on the promoter regions of these genes, indicating that Midline controls transcription directly. We propose that Midline controls axon pathfinding through coordinating the two guidance systems.
Collapse
Affiliation(s)
- Qing-Xin Liu
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaki Hiramoto
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hitoshi Ueda
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- The Graduate School of Natural Science and Technology, and Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Gojobori
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Yasushi Hiromi
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|