1
|
Puig-Barbe A, Dettmann S, Nirello VD, Moor H, Azami S, Edgar BA, Varga-Weisz P, Korzelius J, de Navascués J. A bHLH interaction code controls bipotential differentiation and self-renewal in the Drosophila gut. Cell Rep 2025; 44:115398. [PMID: 40089983 DOI: 10.1016/j.celrep.2025.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/18/2025] Open
Abstract
Multipotent adult stem cells balance self-renewal with differentiation into various cell types. How this balance is regulated at the transcriptional level is poorly understood. Here, we show that a network of basic helix-loop-helix (bHLH) transcription factors controls both stemness and bipotential differentiation in the Drosophila adult intestine. We find that homodimers of Daughterless (Da), a homolog of mammalian E proteins, maintain self-renewal of intestinal stem cells (ISCs), antagonizing the enteroendocrine fate promoted by heterodimers of Da and Scute (Sc; homolog of ASCL). The HLH factor Extramacrochaetae (Emc; homologous to Id proteins) promotes absorptive differentiation by titrating Da and Sc. Emc prevents the committed absorptive progenitor from dedifferentiating, underscoring the plasticity of these cells. Switching physical interaction partners in this way enables the active maintenance of stemness while priming stem cells for differentiation along two alternative fates. Such regulatory logic is likely operative in other bipotent stem cell systems.
Collapse
Affiliation(s)
- Aleix Puig-Barbe
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Svenja Dettmann
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; AbbVie Germany GmbH & Co. KG, 81 Mainzer Str., 65189 Wiesbaden, Frankfurt, Germany
| | - Vinícius Dias Nirello
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Helen Moor
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Sina Azami
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931 Köln, Germany
| | - Bruce A Edgar
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Huntsman Cancer Institute & Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jerome Korzelius
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931 Köln, Germany; School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Joaquín de Navascués
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
2
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. eLife 2024; 12:RP91988. [PMID: 39564985 PMCID: PMC11578588 DOI: 10.7554/elife.91988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA-binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronxUnited States
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
3
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560841. [PMID: 39131389 PMCID: PMC11312471 DOI: 10.1101/2023.10.04.560841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of and Physiology, NYU School of Medicine, 435 East 30 St, New York, NY
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of Microbiology and Molecular Genetics, University of California, Irvine, 2011 Biological Sciences 3, Irvine, CA 92697-2300
| |
Collapse
|
4
|
Reddy Onteddu V, Bhattacharya A, Baker NE. The Id protein Extramacrochaetae restrains the E protein Daughterless to regulate Notch, Rap1, and Sevenless within the R7 equivalence group of the Drosophila eye. Biol Open 2024; 13:bio060124. [PMID: 39041866 PMCID: PMC11360143 DOI: 10.1242/bio.060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
The Drosophila Id gene extramacrochaetae (emc) is required during Drosophila eye development for proper cell fate specification within the R7 equivalence group. Without emc, R7 cells develop like R1/6 cells, and there are delays and deficits in differentiation of non-neuronal cone cells. Although emc encodes an Inhibitor of DNA-binding (Id) protein that is known to antagonize proneural bHLH protein function, no proneural gene is known for R7 or cone cell fates. These fates are also independent of daughterless (da), which encodes the ubiquitous E protein heterodimer partner of proneural bHLH proteins. We report here that the effects of emc mutations disappear in the absence of da, and are partially mimicked by forced expression of Da dimers, indicating that emc normally restrains da from interfering with R7 and cone cell specification, as occurs in emc mutants. emc, and da, regulate three known contributors to R7 fate, which are Notch signaling, Rap1, and Sevenless. R7 specification is partially restored to emc mutant cells by mutation of RapGap1, confirming that Rap1 activity, in addition to Notch activity, is a critical target of emc. These findings exemplify how mutations of an Id protein gene can affect processes that do not require any bHLH protein, by restraining Da activity within physiological bounds.
Collapse
Affiliation(s)
- Venkateswara Reddy Onteddu
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| | - Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| |
Collapse
|
5
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Buchberger E, Bilen A, Ayaz S, Salamanca D, Matas de las Heras C, Niksic A, Almudi I, Torres-Oliva M, Casares F, Posnien N. Variation in Pleiotropic Hub Gene Expression Is Associated with Interspecific Differences in Head Shape and Eye Size in Drosophila. Mol Biol Evol 2021; 38:1924-1942. [PMID: 33386848 PMCID: PMC8097299 DOI: 10.1093/molbev/msaa335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Revealing the mechanisms underlying the breathtaking morphological diversity observed in nature is a major challenge in Biology. It has been established that recurrent mutations in hotspot genes cause the repeated evolution of morphological traits, such as body pigmentation or the gain and loss of structures. To date, however, it remains elusive whether hotspot genes contribute to natural variation in the size and shape of organs. As natural variation in head morphology is pervasive in Drosophila, we studied the molecular and developmental basis of differences in compound eye size and head shape in two closely related Drosophila species. We show differences in the progression of retinal differentiation between species and we applied comparative transcriptomics and chromatin accessibility data to identify the GATA transcription factor Pannier (Pnr) as central factor associated with these differences. Although the genetic manipulation of Pnr affected multiple aspects of dorsal head development, the effect of natural variation is restricted to a subset of the phenotypic space. We present data suggesting that this developmental constraint is caused by the coevolution of expression of pnr and its cofactor u-shaped (ush). We propose that natural variation in expression or function of highly connected developmental regulators with pleiotropic functions is a major driver for morphological evolution and we discuss implications on gene regulatory network evolution. In comparison to previous findings, our data strongly suggest that evolutionary hotspots are not the only contributors to the repeated evolution of eye size and head shape in Drosophila.
Collapse
Affiliation(s)
- Elisa Buchberger
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Anıl Bilen
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Sanem Ayaz
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - David Salamanca
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Present address: Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | | | - Armin Niksic
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Isabel Almudi
- CABD (CSIC/UPO/JA), DMC2 Unit, Pablo de Olavide University Campus, Seville, Spain
| | - Montserrat Torres-Oliva
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Present address: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Fernando Casares
- CABD (CSIC/UPO/JA), DMC2 Unit, Pablo de Olavide University Campus, Seville, Spain
| | - Nico Posnien
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Corresponding author: E-mail:
| |
Collapse
|
7
|
Ali S, Signor SA, Kozlov K, Nuzhdin SV. Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing Drosophila eye. Evol Dev 2019; 21:157-171. [PMID: 30756455 DOI: 10.1111/ede.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.
Collapse
Affiliation(s)
- Sammi Ali
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.,Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
8
|
Li K, Baker NE. Transcriptional and post-transcriptional regulation of extra macrochaetae during Drosophila adult peripheral neurogenesis. Dev Biol 2019; 449:41-51. [PMID: 30771303 DOI: 10.1016/j.ydbio.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022]
Abstract
Regulation of the Drosophila ID protein Extra macrochaetae (Emc) is important because reduced Emc levels have been proposed to favor proneural gene activity and thereby define a prepattern for neurogenesis. Recent studies suggest a major role for post-translational control of Emc levels. To further define the mechanisms of Emc regulation, we identified two redundant cis-regulatory regions by germline transformation-rescue experiments that make use of new molecularly-defined emc mutants. We distinguished the mechanisms by which Daughterless (Da) regulated Emc expression, finding post-translational regulation in most tissues, and additional transcriptional regulation in the eye imaginal disc posterior to the morphogenetic furrow. Dpp and Hh signaling pathways repressed Emc transcriptionally and post-translationally within the morphogenetic furrow of the eye disc, whereas Wg signaling repressed Emc expression at the anterior margin of the wing imaginal disc. Although the emc 3' UTR is potentially regulatory, no effect of miRNA pathways on Emc protein levels was discernible. Our work supports recent evidence that post-transcriptional mechanisms contribute more to regulation of Emc protein levels than transcriptional mechanisms do.
Collapse
Affiliation(s)
- Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA.
| |
Collapse
|
9
|
Li K, Baker NE. Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners. eLife 2018; 7:33967. [PMID: 29687780 PMCID: PMC5915177 DOI: 10.7554/elife.33967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/25/2018] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH proteins are transcriptional regulators of neural fate specification. Extra macrochaetae (Emc) forms inactive heterodimers with both proneural bHLH proteins and their bHLH partners (represented in Drosophila by Daughterless). It is generally thought that varying levels of Emc define a prepattern that determines where proneural bHLH genes can be effective. We report that instead it is the bHLH proteins that determine the pattern of Emc levels. Daughterless level sets Emc protein levels in most cells, apparently by stabilizing Emc in heterodimers. Emc is destabilized in proneural regions by local competition for heterodimer formation by proneural bHLH proteins including Atonal or AS-C proteins. Reflecting this post-translational control through protein stability, uniform emc transcription is sufficient for almost normal patterns of neurogenesis. Protein stability regulated by exchanges between bHLH protein dimers could be a feature of bHLH-mediated developmental events.
Collapse
Affiliation(s)
- Ke Li
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, United States.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
10
|
Bhattacharya A, Li K, Quiquand M, Rimesso G, Baker NE. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 2017; 431:309-320. [PMID: 28919436 DOI: 10.1016/j.ydbio.2017.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Mavromatakis YE, Tomlinson A. Parsimony and complexity: Cell fate assignment in the developing Drosophila eye. Fly (Austin) 2017; 11:171-178. [PMID: 28165886 DOI: 10.1080/19336934.2017.1291103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The specification of the R7 photoreceptor in the Drosophila eye has become a classic model for understanding how cell fates are assigned in developing systems. R7 is derived from a group of cells that also gives rise to the R1/6 photoreceptor class and the non-photoreceptor cone cells. Our studies examine the signals and cellular information that direct each of these cell types. The cell fates are directed by the combined actions of the Receptor Tyrosine Kinase (RTK) and Notch (N) signaling pathways. The RTK pathway acts to remove the transcription factor Tramtrack (Ttk) which represses the photoreceptor fate. If a cell receives an RTK signal sufficient to remove Ttk then the photoreceptor fate is specified; if not, the cone cell fate results. If Ttk is removed from a cell and its N activity is high then it is specified as an R7, but if its N activity is low then it becomes an R1/6 class photoreceptor. Thus, a remarkably simple molecular code underlies the specification of the fates: 1. Ttk degraded or not: 2. N activity high or low. In the R1/6 and cone cell precursors the molecular codes are achieved with relative simplicity but in the R7 precursor, manifold interactions occur between the RTK and N pathways, and to-date we have identified 4 distinct roles played by N in R7 fate specification. In this review we detail this molecular complexity, and describe how the RTK/N pathway crosstalk eventually leads to the simple molecular code of Tramtrack removed and N activity high. Furthermore, we describe the role played by the transcription factor Lozenge (Lz) in directing retinal precursor fates, and how the RTK/N signals specify different retinal cell types depending on the presence or absence of Lz.
Collapse
Affiliation(s)
- Yannis Emmanuel Mavromatakis
- a Department of Genetics and Development, College of Physicians and Surgeons , Columbia University , New York , NY , USA
| | - Andrew Tomlinson
- a Department of Genetics and Development, College of Physicians and Surgeons , Columbia University , New York , NY , USA
| |
Collapse
|
12
|
Yeung K, Boija A, Karlsson E, Holmqvist PH, Tsatskis Y, Nisoli I, Yap D, Lorzadeh A, Moksa M, Hirst M, Aparicio S, Fanto M, Stenberg P, Mannervik M, McNeill H. Atrophin controls developmental signaling pathways via interactions with Trithorax-like. eLife 2017; 6:e23084. [PMID: 28327288 PMCID: PMC5409829 DOI: 10.7554/elife.23084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including engrailed, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of thickveins and fringe. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the Drosophila GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of Trl and Atro clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ann Boija
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Edvin Karlsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden
| | - Per-Henrik Holmqvist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Yonit Tsatskis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ilaria Nisoli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Damian Yap
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
13
|
Ling X, Huang Q, Xu Y, Jin Y, Feng Y, Shi W, Ye X, Lin Y, Hou L, Lin X. The deubiquitinating enzyme Usp5 regulates Notch and RTK signaling duringDrosophilaeye development. FEBS Lett 2017; 591:875-888. [PMID: 28140449 DOI: 10.1002/1873-3468.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xuemei Ling
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Qinzhu Huang
- Taizhou Hospital of Zhejiang Province; Wenzhou Medical University; Linhai Zhejiang China
| | - Yanqin Xu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yuxiao Jin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Weijie Shi
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ling Hou
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| |
Collapse
|
14
|
Dorot O, Steller H, Segal D, Horowitz M. Past1 Modulates Drosophila Eye Development. PLoS One 2017; 12:e0169639. [PMID: 28060904 PMCID: PMC5218476 DOI: 10.1371/journal.pone.0169639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
Endocytosis is a multi-step process involving a large number of proteins, both general factors, such as clathrin and adaptor protein complexes, and unique proteins, which modulate specialized endocytic processes, like the EHD proteins. EHDs are a family of Eps15 Homology Domain containing proteins that consists of four mammalian homologs, one C. elegans, one Drosophila melanogaster and two plants orthologs. These membrane-associated proteins are involved in different steps of endocytic trafficking pathways. We have previously shown that the Drosophila EHD ortholog, PAST1, associates predominantly with the plasma membrane. Mutations in Past1 result in defects in endocytosis, male sterility, temperature sensitivity and premature death of the flies. Also, Past1 genetically interacts with Notch. In the present study, we investigated the role of PAST1 in the developing fly eye. In mutant flies lacking PAST1, abnormal differentiation of photoreceptors R1, R6 and R7 was evident, with partial penetrance. Likewise, five cone cells were present instead of four. Expression of transgenic PAST1 resulted in a dominant negative effect, with a phenotype similar to that of the deletion mutant, and appearance of additional inter-ommatidial pigment cells. Our results strongly suggest a role for PAST1 in differentiation of photoreceptors R1/R6/R7 and cone cells of the fly ommatidia.
Collapse
Affiliation(s)
- Orly Dorot
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Hermann Steller
- Howard Hughes Medical Institute, Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
15
|
Mavromatakis YE, Tomlinson A. R7 Photoreceptor Specification in the Developing Drosophila Eye: The Role of the Transcription Factor Deadpan. PLoS Genet 2016; 12:e1006159. [PMID: 27427987 PMCID: PMC4948816 DOI: 10.1371/journal.pgen.1006159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023] Open
Abstract
As cells proceed along their developmental pathways they make a series of sequential cell fate decisions. Each of those decisions needs to be made in a robust manner so there is no ambiguity in the state of the cell as it proceeds to the next stage. Here we examine the decision made by the Drosophila R7 precursor cell to become a photoreceptor and ask how the robustness of that decision is achieved. The transcription factor Tramtrack (Ttk) inhibits photoreceptor assignment, and previous studies found that the RTK-induced degradation of Ttk was critically required for R7 specification. Here we find that the transcription factor Deadpan (Dpn) is also required; it is needed to silence ttk transcription, and only when Ttk protein degradation and transcriptional silencing occur together is the photoreceptor fate robustly achieved. Dpn expression needs to be tightly restricted to R7 precursors, and we describe the role played by Ttk in repressing dpn transcription. Thus, Dpn and Ttk act as mutually repressive transcription factors, with Dpn acting to ensure that Ttk is effectively removed from R7, and Ttk acting to prevent Dpn expression in other cells. Furthermore, we find that N activity is required to promote dpn transcription, and only in R7 precursors does the removal of Ttk coincide with high N activity, and only in this cell does Dpn expression result. Animals are made from a vast diversity of different cell types, and understanding how they are specified is a major goal of developmental biology. In this study we use the Drosophila R7 photoreceptor as a model system for understanding how cell fate specification occurs. We examine the step when the R7 precursor cell adopts the photoreceptor fate, and ask how the signaling pathways active in the cell are integrated to provide an unambiguous directive to become a photoreceptor. The transcription factor Tramtrack (Ttk) represses the ability of the cell to become a photoreceptor, and how it is removed is the focus of this study. Previous work identified a protein degradation mechanism, and here we describe the role of the transcription factor Deadpan (Dpn) in repressing ttk transcription. We find that both the protein degradation mechanism and transcriptional silencing are required for efficient Ttk removal. Dpn expression needs to be restricted to the R7 precursor and we describe how the mutual antagonism between Ttk and Dpn and the action of the Notch signaling pathway are integrated to ensure that Dpn is selectively expressed in the cell.
Collapse
Affiliation(s)
- Yannis Emmanuel Mavromatakis
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Andrew Tomlinson
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Identification of novel direct targets of Drosophila Sine oculis and Eyes absent by integration of genome-wide data sets. Dev Biol 2016; 415:157-167. [PMID: 27178668 DOI: 10.1016/j.ydbio.2016.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/06/2016] [Accepted: 05/07/2016] [Indexed: 12/12/2022]
Abstract
Drosophila eye development is a complex process that involves many transcription factors (TFs) and interactions with their cofactors and targets. The TF Sine oculis (So) and its cofactor Eyes absent (Eya) are highly conserved and are both necessary and sufficient for eye development. Despite their many important roles during development, the direct targets of So are still largely unknown. Therefore the So-dependent regulatory network governing eye determination and differentiation is poorly understood. In this study, we intersected gene expression profiles of so or eya mutant eye tissue prepared from three different developmental stages and identified 1731 differentially expressed genes across the Drosophila genome. A combination of co-expression analyses and motif discovery identified a set of twelve putative direct So targets, including three known and nine novel targets. We also used our previous So ChIP-seq data to assess motif predictions for So and identified a canonical So binding motif. Finally, we performed in vivo enhancer reporter assays to test predicted enhancers from six candidate target genes and find that at least one enhancer from each gene is expressed in the developing eye disc and that their expression patterns overlap with that of So. We furthermore confirmed that the expression level of predicted direct So targets, for which antibodies are available, are reduced in so or eya post-mitotic knockout eye discs. In summary, we expand the set of putative So targets and show for the first time that the combined use of expression profiling of so with its cofactor eya is an effective method to identify novel So targets. Moreover, since So is highly conserved throughout the metazoa, our results provide the basis for future functional studies in a wide variety of organisms.
Collapse
|
17
|
Wang LH, Baker NE. E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev Cell 2016; 35:269-80. [PMID: 26555048 DOI: 10.1016/j.devcel.2015.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E proteins. A widely expressed class of inhibitory heterodimer partners-the Inhibitor of DNA-binding (ID) proteins-also exists. Genetic and molecular analyses in humans and in knockout mice implicate E proteins and ID proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E proteins and ID proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms.
Collapse
Affiliation(s)
- Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Spratford CM, Kumar JP. Inhibition of Daughterless by Extramacrochaetae mediates Notch-induced cell proliferation. Development 2015; 142:2058-68. [PMID: 25977368 DOI: 10.1242/dev.121855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/16/2015] [Indexed: 12/30/2022]
Abstract
During development, the rate of cell proliferation must be constantly monitored so that an individual tissue achieves its correct size. Mutations in genes that normally promote tissue growth often result in undersized, disorganized and non-functional organs. However, mutations in genes that encode growth inhibitors can trigger the onset of tumorigenesis and cancer. The developing eye of the fruit fly, Drosophila melanogaster, has become a premier model system for studies that are focused on identifying the molecular mechanisms that underpin growth control. Here, we examine the mechanism by which the Notch pathway, a major contributor to growth, promotes cell proliferation in the developing eye. Current models propose that the Notch pathway directly influences cell proliferation by regulating growth-promoting genes such as four-jointed, cyclin D1 and E2f1. Here, we show that, in addition to these mechanisms, some Notch signaling is devoted to blocking the growth-suppressing activity of the bHLH DNA-binding protein Daughterless (Da). We demonstrate that Notch signaling activates the expression of extramacrochaetae (emc), which encodes a helix-loop-helix (HLH) transcription factor. Emc, in turn, then forms a biochemical complex with Da. As Emc lacks a basic DNA-binding domain, the Emc-Da heterodimer cannot bind to and regulate genomic targets. One effect of Da sequestration is to relieve the repression on growth. Here, we present data supporting our model that Notch-induced cell proliferation in the developing eye is mediated in part by the activity of Emc.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Spratford CM, Kumar JP. Extramacrochaetae functions in dorsal-ventral patterning of Drosophila imaginal discs. Development 2015; 142:1006-15. [PMID: 25715400 DOI: 10.1242/dev.120618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the seminal events in the history of a tissue is the establishment of the anterior-posterior, dorsal-ventral (D/V) and proximal-distal axes. Axis formation is important for the regional specification of a tissue and allows cells along the different axes to obtain directional and positional information. Within the Drosophila retina, D/V axis formation is essential to ensure that each unit eye first adopts the proper chiral form and then rotates precisely 90° in the correct direction. These two steps are important because the photoreceptor array must be correctly aligned with the neurons of the optic lobe. Defects in chirality and/or ommatidial rotation will lead to disorganization of the photoreceptor array, misalignment of retinal and optic lobe neurons, and loss of visual acuity. Loss of the helix-loop-helix protein Extramacrochaetae (Emc) leads to defects in both ommatidial chirality and rotation. Here, we describe a new role for emc in eye development in patterning the D/V axis. We show that the juxtaposition of dorsal and ventral fated tissue in the eye leads to an enrichment of emc expression at the D/V midline. emc expression at the midline can be eliminated when D/V patterning is disrupted and can be induced in situations in which ectopic boundaries are artificially generated. We also show that emc functions downstream of Notch signaling to maintain the expression of four-jointed along the midline.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Finley JK, Miller AC, Herman TG. Polycomb group genes are required to maintain a binary fate choice in the Drosophila eye. Neural Dev 2015; 10:2. [PMID: 25636358 PMCID: PMC4331296 DOI: 10.1186/s13064-015-0029-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Background Identifying the mechanisms by which cells remain irreversibly committed to their fates is a critical step toward understanding and being able to manipulate development and homeostasis. Polycomb group (PcG) proteins are chromatin modifiers that maintain transcriptional silencing, and loss of PcG genes causes widespread derepression of many developmentally important genes. However, because of their broad effects, the degree to which PcG proteins are used at specific fate choice points has not been tested. To understand how fate choices are maintained, we have been analyzing R7 photoreceptor neuron development in the fly eye. R1, R6, and R7 neurons are recruited from a pool of equivalent precursors. In order to adopt the R7 fate, these precursors make three binary choices. They: (1) adopt a neuronal fate, as a consequence of high receptor tyrosine kinase (RTK) activity (they would otherwise become non-neuronal support cells); (2) fail to express Seven-up (Svp), as a consequence of Notch (N) activation (they would otherwise express Svp and become R1/R6 neurons); and (3) fail to express Senseless (Sens), as a parallel consequence of N activation (they would otherwise express Sens and become R8 neurons in the absence of Svp). We were able to remove PcG genes specifically from post-mitotic R1/R6/R7 precursors, allowing us to probe these genes' roles in the three binary fate choices that R1/R6/R7 precursors face when differentiating as R7s. Results Here, we show that loss of the PcG genes Sce, Scm, or Pc specifically affects one of the three binary fate choices that R7 precursors must make: mutant R7s derepress Sens and adopt R8 fate characteristics. We find that this fate transformation occurs independently of the PcG genes' canonical role in repressing Hox genes. While N initially establishes Sens repression in R7s, we show that N is not required to keep Sens off, nor do these PcG genes act downstream of N. Instead, the PcG genes act independently of N to maintain Sens repression in R1/R6/R7 precursors that adopt the R7 fate. Conclusions We conclude that cells can use PcG genes specifically to maintain a subset of their binary fate choices.
Collapse
Affiliation(s)
- Jennifer K Finley
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR, 97403, USA.
| | - Adam C Miller
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR, 97403, USA.
| | - Tory G Herman
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR, 97403, USA.
| |
Collapse
|
21
|
Troost T, Schneider M, Klein T. A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster. PLoS Genet 2015; 11:e1004911. [PMID: 25569355 PMCID: PMC4287480 DOI: 10.1371/journal.pgen.1004911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
The bristle sensillum of the imago of Drosophila is made of four cells that arise from a sensory organ precursor cell (SOP). This SOP is selected within proneural clusters (PNC) through a mechanism that involves Notch signalling. PNCs are defined through the expression domains of the proneural genes, whose activities enables cells to become SOPs. They encode tissue specific bHLH proteins that form functional heterodimers with the bHLH protein Daughterless (Da). In the prevailing lateral inhibition model for SOP selection, a transcriptional feedback loop that involves the Notch pathway amplifies small differences of proneural activity between cells of the PNC. As a result only one or two cells accumulate sufficient proneural activity to adopt the SOP fate. Most of the experiments that sustained the prevailing lateral inhibition model were performed a decade ago. We here re-examined the selection process using recently available reagents. Our data suggest a different picture of SOP selection. They indicate that a band-like region of proneural activity exists. In this proneural band the activity of the Notch pathway is required in combination with Emc to define the PNCs. We found a sub-group in the PNCs from which a pre-selected SOP arises. Our data indicate that most imaginal disc cells are able to adopt a proneural state from which they can progress to become SOPs. They further show that bristle formation can occur in the absence of the proneural genes if the function of emc is abolished. These results suggest that the tissue specific proneural proteins of Drosophila have a similar function as in the vertebrates, which is to determine the time of emergence and position of the SOP and to stabilise the proneural state. The sensory organ precursor cell (SOP) that forms the mechanosensory bristles of the adult PNS of Drosophila is a paradigm to study neural precursor determination. The current model states that the SOP is selected in proneural clusters (PNCs) defined through the expression of the proneural genes. The selection occurs through lateral inhibition mediated by the Notch signalling pathway. The SOP is pre-selected by differential expression of Extramacrochaetae (Emc), the only member of the Id proteins in Drosophila, which inactivates the proneural factors. We have re-examined the selection process using novel markers and mutants. Our data suggest a different picture of SOP selection. We discovered a band–like region of varying proneural activity where the peaks constitute the proneural clusters. Within the PNC, a subgroup exists from which the SOP arises. The Notch pathway has two distinct functions in the subgroup and in the rest of the band. We show that so far one unappreciated essential role of the proneural genes is the neutralisation of the activity of Emc. Our data suggest that the selection of the SOP is more similar to neural selection in vertebrates than previously anticipated.
Collapse
Affiliation(s)
- Tobias Troost
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Markus Schneider
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Thomas Klein
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
22
|
Daughterless homodimer synergizes with Eyeless to induce Atonal expression and retinal neuron differentiation. Dev Biol 2014; 392:256-65. [PMID: 24886829 DOI: 10.1016/j.ydbio.2014.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/18/2014] [Accepted: 05/25/2014] [Indexed: 12/19/2022]
Abstract
Class I Basic Helix-Loop-Helix (bHLH) transcription factors form homodimers or heterodimers with class II bHLH proteins. While bHLH heterodimers are known to have diverse roles, little is known about the role of class I homodimers. In this manuscript, we show that a linked dimer of Daughterless (Da), the only Drosophila class I bHLH protein, activates Atonal (Ato) expression and retinal neuron differentiation synergistically with the retinal determination factor Eyeless (Ey). The HLH protein Extramacrocheate (Emc), which forms heterodimer with Da, antagonizes the synergistic activation from Da but not the Da-Da linked dimer with Ey. We show that Da directly interacts with Ey and promotes Ey binding to the Ey binding site in the Ato 3׳ enhancer. Interestingly, the Ey binding site in the Ato 3׳ enhancer contains an embedded E-box that is also required for the synergistic activation by Ey and Da. Finally we show that mammalian homologs of Ey and Da can functionally replace their Drosophila counterparts to synergistically activate the Ato enhancer, suggesting that the observed function is evolutionary conserved.
Collapse
|
23
|
Baker NE, Li K, Quiquand M, Ruggiero R, Wang LH. Eye development. Methods 2014; 68:252-9. [PMID: 24784530 DOI: 10.1016/j.ymeth.2014.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
The eye has been one of the most intensively studied organs in Drosophila. The wealth of knowledge about its development, as well as the reagents that have been developed, and the fact that the eye is dispensable for survival, also make the eye suitable for genetic interaction studies and genetic screens. This article provides a brief overview of the methods developed to image and probe eye development at multiple developmental stages, including live imaging, immunostaining of fixed tissues, in situ hybridizations, and scanning electron microscopy and color photography of adult eyes. Also summarized are genetic approaches that can be performed in the eye, including mosaic analysis and conditional mutation, gene misexpression and knockdown, and forward genetic and modifier screens.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Robert Ruggiero
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
24
|
Andrade-Zapata I, Baonza A. The bHLH factors extramacrochaetae and daughterless control cell cycle in Drosophila imaginal discs through the transcriptional regulation of the Cdc25 phosphatase string. PLoS Genet 2014; 10:e1004233. [PMID: 24651265 PMCID: PMC3961188 DOI: 10.1371/journal.pgen.1004233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
One of the major issues in developmental biology is about having a better understanding of the mechanisms that regulate organ growth. Identifying these mechanisms is essential to understand the development processes that occur both in physiological and pathological conditions, such as cancer. The E protein family of basic helix-loop helix (bHLH) transcription factors, and their inhibitors the Id proteins, regulate cell proliferation in metazoans. This notion is further supported because the activity of these factors is frequently deregulated in cancerous cells. The E protein orthologue Daughterless (Da) and the Id orthologue Extramacrochaetae (Emc) are the only members of these classes of bHLH proteins in Drosophila. Although these factors are involved in controlling proliferation, the mechanism underlying this regulatory activity is poorly understood. Through a genetic analysis, we show that during the development of epithelial cells in the imaginal discs, the G2/M transition, and hence cell proliferation, is controlled by Emc via Da. In eukaryotic cells, the main activator of this transition is the Cdc25 phosphatase, string. Our genetic analyses reveal that the ectopic expression of string in cells with reduced levels of Emc or high levels of Da is sufficient to rescue the proliferative defects seen in these mutant cells. Moreover, we present evidence demonstrating a role of Da as a transcriptional repressor of string. Taken together, these findings define a mechanism through which Emc controls cell proliferation by regulating the activity of Da, which transcriptionally represses string. Precise control of cell proliferation is critical for normal development and tissue homeostasis. Members of the inhibitor of differentiation (Id) family of helix-loop-helix (HLH) proteins are key regulators that coordinate the balance between cell division and differentiation. These proteins exert this function in part by combining with ubiquitously expressed bHLH transcription factors (E proteins), preventing these transcription factors from forming functional hetero- or homodimeric DNA binding complexes. Deregulation of the activity of Id proteins frequently leads to tumour formation. The Daughterless (Da) and Extramacrochaetae (Emc) proteins are the only members of the E and Id families in Drosophila, yet their role in the control of cell proliferation has not been determined. In this study, we show that the elimination of emc or the ectopic expression of da arrests cells in the G2 phase of the cell cycle. Moreover, we demonstrate that emc controls cell proliferation via Da, which acts as a transcriptional repressor of the Cdc25 phosphatase string. These results provide an important insight into the mechanisms through which Id and E protein interactions control cell cycle progression and therefore how the disruption of the function of Id proteins can induce oncogenic transformation.
Collapse
Affiliation(s)
| | - Antonio Baonza
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
Spratford CM, Kumar JP. Hedgehog and extramacrochaetae in the Drosophila eye: an irresistible force meets an immovable object. Fly (Austin) 2014; 8:36-42. [PMID: 24406336 DOI: 10.4161/fly.27691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the third and final larval instar stage, thousands of pluripotent cells within the Drosophila eye imaginal disc are transformed into a near perfect neurocrystalline lattice of 800 unit eyes called ommatidia. This transformation begins with the initiation of the morphogenetic furrow at the posterior margin of the eye field. The furrow, which marks the leading edge of a wave of differentiation, passes across the epithelium transforming unpatterned and undifferentiated cells into rows of periodically spaced clusters of photoreceptor neurons. As cells enter and exit the furrow they undergo dramatic alterations in cellular architecture and gene expression, many of which are required to propel the furrow forward and for proper cell fate specification. The Decapentaplegic (Dpp) and Hedgehog (Hh) signaling pathways are required for the initiation and progression of the furrow, respectively. Consistent with a role in furrow progression, the loss of Hh pathway activity results in a "furrow stop" phenotype. In contrast, reductions in levels of the helix-loop-helix transcription factor, Extramacrochaetae (Emc), lead to the polar opposite phenotype--the furrow accelerates. Recently, we demonstrated that the furrow stop and furrow acceleration phenotypes are molecularly connected. Emc appears to serve as a brake on the furrow by dampening the activity of the Hh pathway. Loss of Emc leads to an upsurge in Hh pathway activity and a faster moving furrow. The acceleration of the furrow appears to be due to an increase in levels of the full-length isoform of Cubitus Interruptus (Ci (155)) and Suppressor of Fused [Su(fu)]. Here we will briefly review the mechanisms by which Hh drives and Emc impedes the progression of the furrow across the developing retina.
Collapse
Affiliation(s)
| | - Justin P Kumar
- Department of Biology; Indiana University; Bloomington, IN USA
| |
Collapse
|
26
|
|
27
|
Spratford CM, Kumar JP. Extramacrochaetae imposes order on the Drosophila eye by refining the activity of the Hedgehog signaling gradient. Development 2013; 140:1994-2004. [PMID: 23536565 DOI: 10.1242/dev.088963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The compound eye of Drosophila melanogaster is configured by a differentiating wave, the morphogenetic furrow, that sweeps across the eye imaginal disc and transforms thousands of undifferentiated cells into a precisely ordered repetitive array of 800 ommatidia. The initiation of the furrow at the posterior margin of the epithelium and its subsequent movement across the eye field is controlled by the activity of the Hedgehog (Hh) signaling pathway. Differentiating photoreceptors that lie behind the furrow produce and secrete the Hh morphogen, which is captured by cells within the furrow itself. This leads to the stabilization of the full-length form of the zinc-finger transcription factor Cubitus interruptus (Ci(155)), the main effector of Hh signaling. Ci(155) functions as a transcriptional activator of a number of downstream targets, including decapentaplegic (dpp), a TGFβ homolog. In this report, we describe a mechanism that is in place within the fly retina to limit Hh pathway activity within and ahead of the furrow. We demonstrate that the helix-loop-helix (HLH) protein Extramacrochaetae (Emc) regulates Ci(155) levels. Loss of emc leads to an increase in Ci(155) levels, nuclear migration, apical cell constriction and an acceleration of the furrow. We find that these roles are distinct from the bHLH protein Hairy (H), which we show restricts atonal (ato) expression ahead of the furrow. Secondary furrow initiation along the dorsal and ventral margins is blocked by the activity of the Wingless (Wg) pathway. We also show that Emc regulates and cooperates with Wg signaling to inhibit lateral furrow initiation.
Collapse
|
28
|
The role of the bHLH protein hairy in morphogenetic furrow progression in the developing Drosophila eye. PLoS One 2012; 7:e47503. [PMID: 23118874 PMCID: PMC3485281 DOI: 10.1371/journal.pone.0047503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
In Drosophila eye development, a wave of differentiation follows a morphogenetic furrow progressing across the eye imaginal disc. This is subject to negative regulation attributed to the HLH repressor proteins Hairy and Extramacrochaete. Recent studies identify negative feedback on the bHLH gene daughterless as one of the main functions of extramacrochaete. Here the role of hairy was assessed in relation to daughterless and other HLH genes. Hairy was not found to regulate the expression of Daughterless, Extramacrochaete or Atonal, and Hairy expression was largely unregulated by these other genes. Null alleles of hairy did not alter the rate or pattern of differentiation, either alone or in the absence of Extramacrochaete. These findings question whether hairy is an important regulator of the progression of retinal differentiation in Drosophila, alone or redundantly with extramacrochaete.
Collapse
|
29
|
Mavromatakis YE, Tomlinson A. Stop and go: antagonistic signals in the specification of the Drosophila R7 photoreceptor viewed from an evolutionary perspective. Fly (Austin) 2012; 6:228-33. [PMID: 22878552 DOI: 10.4161/fly.21102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Drosophila R7 photoreceptor precursor is directed to its fate by signals from adjacent cells that activate its Receptor Tyrosine Kinase (RTK) and Notch (N) signaling pathways. Counter-intuitively, the N activity both promotes and inhibits the photoreceptor fate in the R7 precursor. We offer an evolutionary perspective for this in which earlier ommatidia had fewer photoreceptors and used N to inhibit the addition of any more. When additional photoreceptors were added by evolution, an RTK signal was used to overcome the N inhibition in these cells, and these new additions potently activated N in their neighboring cells, preventing them from also responding to the RTK signal. The R7 precursor also receives this block, and requires robust RTK activation for it to become a photoreceptor. This is achieved by N transcriptionally activating a new RTK, one that is potently activated in the R7 precursor and sufficing to overcome the N inhibition. The unusually high RTK signal in R7 requires additional transduction components not needed when the signal is mild; in R7 the small GTPases Ras and Rap are both required to transduce the signal, but in other photoreceptors Ras alone suffices.
Collapse
|
30
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
31
|
A network of broadly expressed HLH genes regulates tissue-specific cell fates. Cell 2012; 147:881-92. [PMID: 22078884 DOI: 10.1016/j.cell.2011.08.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 07/06/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Spatial and temporal expression of specific basic-helix-loop-helix (bHLH) transcription factors defines many types of cellular differentiation. We find that a distinct mechanism regulates the much broader expression of the heterodimer partners of these specific factors and impinges on differentiation. In Drosophila, a cross-interacting regulatory network links expression of the E protein Daughterless (Da), which heterodimerizes with bHLH proteins to activate them, with expression of the Id protein Extramacrochaetae (Emc), which antagonizes bHLH proteins. Coupled transcriptional feedback loops maintain the widespread Emc expression that restrains Da expression, opposing bHLH-dependent differentiation while enhancing growth and cell survival. Where extracellular signals repress emc, Da expression can increase. This defines regions of proneural ectoderm independently from the proneural bHLH genes. Similar regulation is found in multiple Drosophila tissues and in mammalian cells and therefore is likely to be a conserved general feature of developmental regulation by HLH proteins.
Collapse
|
32
|
Popova MK, He W, Korenjak M, Dyson NJ, Moon NS. Rb deficiency during Drosophila eye development deregulates EMC, causing defects in the development of photoreceptors and cone cells. J Cell Sci 2011; 124:4203-12. [PMID: 22193959 DOI: 10.1242/jcs.088773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retinoblastoma tumor suppressor protein (pRb) regulates various biological processes during development and tumorigenesis. Although the molecular mechanism by which pRb controls cell cycle progression is well characterized, how pRb promotes cell-type specification and differentiation is less understood. Here, we report that Extra Macrochaetae (EMC), the Drosophila homolog of inhibitor of DNA binding/differentiation (ID), is an important protein contributing to the developmental defects caused by Rb deficiency. An emc allele was identified from a genetic screen designed to identify factors that, when overexpressed, cooperate with mutations in rbf1, which encodes one of the two Rb proteins found in Drosophila. EMC overexpression in an rbf1 hypomorphic mutant background induces cone cell and photoreceptor defects but has negligible effects in the wild-type background. Interestingly, a substantial fraction of the rbf1-null ommatidia normally exhibit similar cone cell and photoreceptor defects in the absence of ectopic EMC expression. Detailed EMC expression analyses revealed that RBF1 suppresses expression of both endogenous and ectopic EMC protein in photoreceptors, thus explaining the synergistic effect between EMC overexpression and rbf1 mutations, and the developmental defect observed in rbf1-null ommatidia. Our findings demonstrate that ID family proteins are an evolutionarily conserved determinant of Rb-deficient cells, and play an important role during development.
Collapse
Affiliation(s)
- Milena K Popova
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
33
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|
34
|
Charlton-Perkins M, Whitaker SL, Fei Y, Xie B, Li-Kroeger D, Gebelein B, Cook T. Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling. Neural Dev 2011; 6:20. [PMID: 21539742 PMCID: PMC3123624 DOI: 10.1186/1749-8104-6-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/03/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The concept of an equivalence group, a cluster of cells with equal potential to adopt the same specific fate, has served as a useful paradigm to understand neural cell type specification. In the Drosophila eye, a set of five cells, called the 'R7 equivalence group', generates a single photoreceptor neuron and four lens-secreting epithelial cells. This choice between neuronal versus non-neuronal cell fates rests on differential requirements for, and cross-talk between, Notch/Delta- and Ras/mitogen-activated protein kinase (MAPK)-dependent signaling pathways. However, many questions remain unanswered related to how downstream events of these two signaling pathways mediate distinct cell fate decisions. RESULTS Here, we demonstrate that two direct downstream targets of Ras and Notch signaling, the transcription factors Prospero and dPax2, are essential regulators of neuronal versus non-neuronal cell fate decisions in the R7 equivalence group. Prospero controls high activated MAPK levels required for neuronal fate, whereas dPax2 represses Delta expression to prevent neuronal fate. Importantly, activity from both factors is required for proper cell fate decisions to occur. CONCLUSIONS These data demonstrate that Ras and Notch signaling are integrated during cell fate decisions within the R7 equivalence group through the combinatorial and opposing activities of Pros and dPax2. Our study provides one of the first examples of how the differential expression and synergistic roles of two independent transcription factors determine cell fate within an equivalence group. Since the integration of Ras and Notch signaling is associated with many developmental and cancer models, these findings should provide new insights into how cell specificity is achieved by ubiquitously used signaling pathways in diverse biological contexts.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cells are sequentially recruited during formation of the Drosophila compound eye. A few simple rules are reiteratively utilized to control successive steps of eye assembly. Two themes emerge: the interplay between cell signaling and competence determines diversity of cell types and selective cell adhesion determines spatial patterns of cells. Cell signaling through competence creates signaling relays, which sequentially trigger differentiation of all cell types. Selective cell adhesion, on the other hand, provides forces to drive cells into energy-favored spatial configurations. Organ formation is nevertheless a complex process. The complexity lies in the spatial, temporal, and quantitative precision of gene expression. Many challenging questions remain.
Collapse
Affiliation(s)
- Sujin Bao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
36
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
37
|
Miller AC, Lyons EL, Herman TG. cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr Biol 2009; 19:1378-83. [PMID: 19631544 DOI: 10.1016/j.cub.2009.06.042] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/26/2009] [Accepted: 06/18/2009] [Indexed: 01/17/2023]
Abstract
Lateral inhibition mediated by Delta/Notch (Dl/N) signaling is used throughout development to limit the number of initially equivalent cells that adopt a particular fate. Although adjacent cells express both Dl ligand and N receptor, signaling between them ultimately occurs in only one direction. Classically, this has been explained entirely by feedback: activated N can downregulate Dl, amplifying even slight asymmetries in the Dl or N activities of adjacent cells. Here, however, we present an example of lateral inhibition in which unidirectional signaling depends instead on Dl's ability to inhibit N within the same cell, a phenomenon known as cis-inhibition. By genetically manipulating individual R1/R6/R7 photoreceptor precursors in the Drosophila eye, we show that loss of Dl-mediated cis-inhibition reverses the direction of lateral signaling. Based on our finding that Dl in R1/R6s requires endocytosis to trans-activate but not to cis-inhibit N, we reexamine previously published data from other examples of lateral inhibition. We conclude that cis-inhibition generally influences the direction of Dl/N signaling and should therefore be included in standard models of lateral inhibition.
Collapse
Affiliation(s)
- Adam C Miller
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|