1
|
Lim DH, Choi MS, Jeon JW, Lee YS. MicroRNA miR-252-5p regulates the Notch signaling pathway by targeting Rab6 in Drosophila wing development. INSECT SCIENCE 2023; 30:1431-1444. [PMID: 36847222 DOI: 10.1111/1744-7917.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The Notch signaling pathway plays a central role in the development of various organisms. However, dysregulation of microRNAs (miRNAs), which are crucial regulators of gene expression, can disrupt signaling pathways at all stages of development. Although Notch signaling is involved in wing development in Drosophila, the mechanism underlying miRNA-based regulation of the Notch signaling pathway is unclear. Here, we report that loss of Drosophila miR-252 increases the size of adult wings, whereas the overexpression of miR-252 in specific compartments of larval wing discs leads to patterning defects in the adult wings. The miR-252 overexpression-induced wing phenotypes were caused by aberrant Notch signaling with intracellular accumulation of the full-length Notch receptor during development, which could be due to defects in intracellular Notch trafficking associated with its recycling to the plasma membrane and autophagy-mediated degradation. Moreover, we identified Rab6 as a direct target of miR-252-5p; Rab6 encodes a small Ras-like GTPase that regulates endosomal trafficking pathways. Consistent with this finding, RNAi-mediated downregulation of Rab6 led to similar defects in both wing patterning and Notch signaling. Notably, co-overexpression of Rab6 completely rescued the wing phenotype associated with miR-252 overexpression, further supporting that Rab6 is a biologically relevant target of miR-252-5p in the context of wing development. Thus, our data indicate that the miR-252-5p-Rab6 regulatory axis is involved in Drosophila wing development by controlling the Notch signaling pathway.
Collapse
Affiliation(s)
- Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Won Jeon
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
3
|
Li C, Wu W, Tang J, Feng F, Chen P, Li B. Identification and Characterization of Development-Related microRNAs in the Red Flour Beetle, Tribolium castaneum. Int J Mol Sci 2023; 24:ijms24076685. [PMID: 37047657 PMCID: PMC10094939 DOI: 10.3390/ijms24076685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in insect growth and development, but they were poorly studied in insects. In this study, a total of 883 miRNAs were detected from the early embryo (EE), late larva (LL), early pupa (EP), late pupa (LP), and early adult (EA) of Tribolium castaneum by microarray assay. Further analysis identified 179 differentially expressed unique miRNAs (DEmiRNAs) during these developmental stages. Of the DEmiRNAs, 102 DEmiRNAs exhibited stage-specific expression patterns during development, including 53 specifically highly expressed miRNAs and 20 lowly expressed miRNAs in EE, 19 highly expressed miRNAs in LL, 5 weakly expressed miRNAs in EP, and 5 abundantly expressed miRNAs in EA. These miRNAs were predicted to target 747, 265, 472, 234, and 121 genes, respectively. GO enrichment analysis indicates that the targets were enriched by protein phosphorylation, calcium ion binding, sequence-specific DNA binding transcription factor activity, and cytoplasm. An RNA interference-mediated knockdown of the DEmiRNAs tca-miR-6-3p, tca-miR-9a-3p, tca-miR-9d-3p, tca-miR-11-3p, and tca-miR-13a-3p led to defects in metamorphosis and wing development of T. castaneum. This study has completed the identification and characterization of development-related miRNAs in T. castaneum, and will enable us to investigate their roles in the growth and development of insect.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
5
|
Zhao ZM, Yin HT, Shen MM, Zhang SL, Chen ZK, Li T, Zhang ZD, Zhao WG, Guo XJ, Wu P. Transcriptome of miRNA during inhibition of Bombyx mori nuclear polyhedrosis virus by geldanamycin in BmN cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21880. [PMID: 35191078 DOI: 10.1002/arch.21880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of several viruses that cause great harm to the sericulture industry, and its pathogenic mechanism is still being explored. Geldanamycin (GA), a kind of HSP90 inhibitor, has been verified to suppress BmNPV proliferation. However, the molecular mechanism by which GA inhibits BmNPV is unclear. MicroRNAs (miRNAs) have been shown to play a key role in regulating virus proliferation and host-pathogen interactions. In this study, BmN cells infected with BmNPV were treated by GA and DMSO for 72 h, respectively, then transcriptome analysis of miRNA was performed from the GA group and the control group. As a result, a total of 29 miRNAs were differentially expressed (DE), with 13 upregulated and 16 downregulated. Using bioinformatics analysis, it was found that the target genes of DEmiRNAs were involved in ubiquitin-mediated proteolysis, phagosome, proteasome, endocytosis pathways, and so on. Six DEmiRNAs were verified by quantitative reverse-transcription polymerase chain reaction. DElong noncoding RNA (DElncRNA)-DEmiRNA-messenger RNA (mRNA) regulatory networks involved in apoptosis and immune pathways were constructed in GA-treated BmN cells, which included 12 DEmiRNA, 132 DElncRNA, and 69 mRNAs. This regulatory network enriched the functional role of miRNA in the BmNPV-silkworm interactions and improved our understanding of the molecular mechanism of HSP90 inhibitors on BmNPV proliferation.
Collapse
Affiliation(s)
- Zhi-Meng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Hao-Tong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Man-Man Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Shao-Lun Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zi-Kang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhen-Dong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Wei-Guo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xi-Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Gallicchio L, Griffiths-Jones S, Ronshaugen M. miR-9a regulates levels of both rhomboid mRNA and protein in the early Drosophila melanogaster embryo. G3 GENES|GENOMES|GENETICS 2022; 12:6526387. [PMID: 35143618 PMCID: PMC8982436 DOI: 10.1093/g3journal/jkac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs can have subtle and combinatorial effects on the levels of the targets and pathways they act on. Studying the consequences of a single microRNA knockout often proves difficult as many such knockouts exhibit phenotypes only under stress conditions. This has often led to the hypothesis that microRNAs buffer the effects of intrinsic and environmental stochasticity on gene expression. Observing and understanding this buffering effect entails quantitative analysis of microRNA and target expression in single cells. To this end, we have employed single-molecule fluorescence in situ hybridization, immunofluorescence, and high-resolution confocal microscopy to investigate the effects of miR-9a loss on the expression of the serine-protease Rhomboid in Drosophila melanogaster early embryos. Our single-cell quantitative approach shows that spatially, the rhomboid mRNA pattern is identical in WT and miR-9a knockout embryos. However, we find that the number of mRNA molecules per cell is higher when miR-9a is absent, and the level and temporal accumulation of rhomboid protein shows a more dramatic increase in the miR-9a knockout. Specifically, we see accumulation of rhomboid protein in miR-9a mutants by stage 5, much earlier than in WT. The data, therefore, show that miR-9a functions in the regulation of rhomboid mRNA and protein levels. While further work is required to establish whether rhomboid is a direct target of miR-9 in Drosophila, our results further establish the miR-9 family microRNAs as conserved regulators of timing in neurogenic processes. This study shows the power of single-cell quantification as an experimental tool to study phenotypic consequences of microRNA mis-regulation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- School of Biological Sciences, Faculty of Medicine, Biology and Health, Michael Smith Building, The University of Manchester, Manchester M13 9GB, UK
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Medicine, Biology and Health, Michael Smith Building, The University of Manchester, Manchester M13 9GB, UK
| | - Matthew Ronshaugen
- School of Medical Sciences, Faculty of Medicine, Biology and Health, Michael Smith Building, The University of Manchester, Manchester M13 9GB, UK
| |
Collapse
|
7
|
Li X, Zhao MH, Tian MM, Zhao J, Cai WL, Hua HX. An InR/mir-9a/NlUbx regulatory cascade regulates wing diphenism in brown planthoppers. INSECT SCIENCE 2021; 28:1300-1313. [PMID: 32935926 DOI: 10.1111/1744-7917.12872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Wing polymorphism significantly contributes to the ecological success of some insect species. For example, the brown planthopper (BPH) Nilaparvata lugens, which is one of the most destructive rice pests in Asia, can develop into either highly mobile long-winged or highly fecund short-winged adult morphs. A recent study reported a highly provocative result that the Hox gene Ultrabithorax (Ubx) is expressed in BPH forewings and showed that this wing development gene is differentially expressed in nymphs that develop into long-winged versus short-winged morphs. Here, we found that Ubx may be a mir-9a target, and used dual luciferase reporter assays and injected micro RNA (miRNA) mimics and inhibitors to confirm the interactions between mir-9a and NlUbx. We measured the mir-9a and NlUbx expression profiles in nymphs and found that the expression of these two biomolecules was negatively correlated. By rearing BPH nymphs on host rice plants with different nutritional status, we were able to characterize a regulatory cascade between insulin receptor genes, mir-9a, and NlUbx that regulate wing length in BPHs. When host quality was low, NlInR1 expression in the nymph terga increased and NlInR2 expression decreased; this led to a higher mir-9a level, which in turn reduced the NlUbx transcript level and ultimately resulted in longer wing lengths. Beyond extending our understanding of the interplay between host plant status and genetic events that modulate polymorphism, we demonstrated both the upstream signal and miRNA-based regulatory mechanism that control Ubx expression in BPH forewings.
Collapse
Affiliation(s)
- Xiang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mu-Hua Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miao-Miao Tian
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wan-Lun Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong-Xia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Ma X, He K, Shi Z, Li M, Li F, Chen XX. Large-Scale Annotation and Evolution Analysis of MiRNA in Insects. Genome Biol Evol 2021; 13:6255746. [PMID: 33905491 PMCID: PMC8126727 DOI: 10.1093/gbe/evab083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Insects are among the most diverse and successful groups of animals and exhibit great morphological diversity and complexity. The innovation of wings and metamorphosis are some examples of the fascinating biological evolution of insects. Most microRNAs (miRNAs) contribute to canalization by conferring robustness to gene networks and thus increase the heritability of important phenotypes. Though previous studies have demonstrated how miRNAs regulate important phenotypes, little is still known about miRNA evolution in insects. Here, we used both small RNA-seq data and homology searching methods to annotate the miRNA repertoires of 152 arthropod species, including 135 insects and 17 noninsect arthropods. We identified 16,212 miRNA genes, and classified them into highly conserved (62), insect-conserved (90), and lineage-specific (354) miRNA families. The phylogenetic relationship of miRNA binary presence/absence dynamics implies that homoplastic loss of conserved miRNA families tends to occur in far-related morphologically simplified taxa, including scale insects (Coccoidea) and twisted-wing insects (Strepsiptera), leading to inconsistent phylogenetic tree reconstruction. The common ancestor of Insecta shares 62 conserved miRNA families, of which five were rapidly gained in the early winged-insects (Pterygota). We also detected extensive miRNA losses in Paraneoptera that are correlated with morphological reduction, and miRNA gains in early Endopterygota around the time holometabolous metamorphosis appeared. This was followed by abundant miRNA gains in Hymenoptera and Lepidoptera. In summary, we provide a comprehensive data set and a detailed evolutionary analysis of miRNAs in insects. These data will be important for future studies on miRNA functions associated with insect morphological innovation and trait biodiversity.
Collapse
Affiliation(s)
- Xingzhou Ma
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,College of Plant Protection, Nanjing Agricultural University, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmin Shi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meizhen Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
10
|
Chen EH, Tao YX, Song W, Shen F, Yuan ML, Tang PA. Transcriptome-Wide Identification of MicroRNAs and Analysis of Their Potential Roles in Development of Indian Meal Moth (Lepidoptera:Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1535-1546. [PMID: 32108881 DOI: 10.1093/jee/toaa030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the posttranscriptional repression of target genes in insect species. In the present paper, we studied the miRNAs in Indian meal moth (Plodia interpunctella (Hübener)), one of the most economically important stored grains pests around the world. In total, 12 small RNA libraries from four developmental stages of P. interpunctella were constructed, and 178 known and 23 novel miRNAs were identified. In addition, the expression profiles of these miRNAs were assessed across different developmental stages and miRNAs that were highly expressed in eggs, larvae, pupae, and adults were identified. Specifically, 100, 61, and 52 miRNAs were differentially expressed between eggs and larvae, larvae and pupae, and pupae and adults, respectively. The KEGG and GO analysis of the predicted target genes suggested the essential roles of miRNAs in the regulation of complex development of P. interpunctella. Importantly, we also found a set of miRNAs might be involved in the larval metamorphic molting process, with their expressions increasing and then decreasing during the larva-pupa-adult stages of P. interpunctella. In conclusion, the current paper has discovered numerous miRNAs, and some key miRNAs that might be responsible for regulating development in P. interpunctella. To our knowledge, this is the first study to document miRNAs and their expression patterns in interpunctella, and those findings would lay an important molecular foundation for future functional analysis of these miRNAs in P. interpunctella.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Ye-Xin Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Wei Song
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Fei Shen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Liu WG, Luo J, Ren QY, Qu ZQ, Lin HL, Xu XF, Ni J, Xiao RH, Chen RG, Rashid M, Wu ZG, Tan YC, Qiu XF, Luo JX, Yin H, Wang H, Yang ZQ, Xiao S, Liu GY. A Novel miRNA-hlo-miR-2-Serves as a Regulatory Factor That Controls Molting Events by Targeting CPR1 in Haemaphysalis longicornis Nymphs. Front Microbiol 2020; 11:1098. [PMID: 32547523 PMCID: PMC7274079 DOI: 10.3389/fmicb.2020.01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
Successful completion of the molting process requires new epidermal growth and ecdysis of the old cuticle in Haemaphysalis longicornis (H. longicornis). MicroRNAs (miRNAs) participate in the development of organisms by inhibiting the expression of their target mRNAs. In this study, a novel tick-specific miRNA was identified and denoted hlo-miR-2 that serves as a novel regulator of molting events in H. longicornis nymphs by targeting a cuticular protein. The full length of this cuticular protein was first obtained and named it CPR1. A qRT-PCR analysis showed that hlo-miR-2 and CPR1 exhibit significant tissue and temporal specificity and that their transcription levels are negatively correlated during the molting process. CPR1, as a direct target of hlo-miR-2, was identified by a luciferase reporter assay in vitro. Agomir treatment indicated that the overexpression of hlo-miR-2 significantly reduced the protein expression level of CPR1, decreased the molting rate and delayed the molting time point in H. longicornis nymphs. RNA interference (RNAi) experiments demonstrated that CPR1 was significantly associated with the molting process in H. longicornis nymphs. Phenotypic rescue experiments convincingly showed that hlo-miR-2 participated in molting events by targeting CPR1 in H. longicornis nymphs. In summary, we present evidence demonstrating that miRNAs constitute a novel important regulator of molting events in addition to hormones. The described functional evidence implicating CPR1 in molting events contributes to an improved understanding of the distinct functions of the CPR family in ticks and will aid the development of a promising application of cuticular protein RNAi in tick control.
Collapse
Affiliation(s)
- Wen-Ge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao-Yun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Qiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Han-Liang Lin
- Xinjiang Animal Health Supervision Station, Ürümqi, China
| | - Xiao-Feng Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun Ni
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rong-Hai Xiao
- Ruili Entry-Exit Inspection and Quarantine Bureau Inspection and Quarantine Comprehensive Technology Center, Yunnan, China
| | - Rong-Gui Chen
- Ili Center of Animal Disease Control and Diagnosis, Ili, China
| | - Muhammad Rashid
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ze-Gong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang-Chun Tan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Fei Qiu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Engineering, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Zeng-Qi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guang-Yuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
12
|
Chen Y, Shen Y, Lin P, Tong D, Zhao Y, Allesina S, Shen X, Wu CI. Gene regulatory network stabilized by pervasive weak repressions: microRNA functions revealed by the May-Wigner theory. Natl Sci Rev 2019; 6:1176-1188. [PMID: 34691996 PMCID: PMC8291590 DOI: 10.1093/nsr/nwz076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Food web and gene regulatory networks (GRNs) are large biological networks, both of which can be analyzed using the May-Wigner theory. According to the theory, networks as large as mammalian GRNs would require dedicated gene products for stabilization. We propose that microRNAs (miRNAs) are those products. More than 30% of genes are repressed by miRNAs, but most repressions are too weak to have a phenotypic consequence. The theory shows that (i) weak repressions cumulatively enhance the stability of GRNs, and (ii) broad and weak repressions confer greater stability than a few strong ones. Hence, the diffuse actions of miRNAs in mammalian cells appear to function mainly in stabilizing GRNs. The postulated link between mRNA repression and GRN stability can be seen in a different light in yeast, which do not have miRNAs. Yeast cells rely on non-specific RNA nucleases to strongly degrade mRNAs for GRN stability. The strategy is suited to GRNs of small and rapidly dividing yeast cells, but not the larger mammalian cells. In conclusion, the May-Wigner theory, supplanting the analysis of small motifs, provides a mathematical solution to GRN stability, thus linking miRNAs explicitly to 'developmental canalization'.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Shen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riß, Germany
| | - Pei Lin
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ding Tong
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT 06520, UK
| | - Yixin Zhao
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, UK
| | - Xu Shen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chung-I Wu
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, UK
| |
Collapse
|
13
|
Nian X, Chen W, Bai W, Zhao Z, Zhang Y. miR-263b Controls Circadian Behavior and the Structural Plasticity of Pacemaker Neurons by Regulating the LIM-Only Protein Beadex. Cells 2019; 8:cells8080923. [PMID: 31426557 PMCID: PMC6721658 DOI: 10.3390/cells8080923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
: Circadian clocks drive rhythmic physiology and behavior to allow adaption to daily environmental changes. In Drosophila, the small ventral lateral neurons (sLNvs) are primary pacemakers that control circadian rhythms. Circadian changes are observed in the dorsal axonal projections of the sLNvs, but their physiological importance and the underlying mechanism are unclear. Here, we identified miR-263b as an important regulator of circadian rhythms and structural plasticity of sLNvs in Drosophila. Depletion of miR-263b (miR-263bKO) in flies dramatically impaired locomotor rhythms under constant darkness. Indeed, miR-263b is required for the structural plasticity of sLNvs. miR-263b regulates circadian rhythms through inhibition of expression of the LIM-only protein Beadex (Bx). Consistently, overexpression of Bx or loss-of-function mutation (BxhdpR26) phenocopied miR-263bKO and miR-263b overexpression in behavior and molecular characteristics. In addition, mutating the miR-263b binding sites in the Bx 3' UTR using CRISPR/Cas9 recapitulated the circadian phenotypes of miR-263bKO flies. Together, these results establish miR-263b as an important regulator of circadian locomotor behavior and structural plasticity.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Wenfeng Chen
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Weiwei Bai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
14
|
Kittelmann S, McGregor AP. Modulation and Evolution of Animal Development through microRNA Regulation of Gene Expression. Genes (Basel) 2019; 10:genes10040321. [PMID: 31027314 PMCID: PMC6523689 DOI: 10.3390/genes10040321] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs regulate gene expression by blocking the translation of mRNAs and/or promoting their degradation. They, therefore, play important roles in gene regulatory networks (GRNs) by modulating the expression levels of specific genes and can tune GRN outputs more broadly as part of feedback loops. These roles for microRNAs provide developmental buffering on one hand but can facilitate evolution of development on the other. Here we review how microRNAs can modulate GRNs during animal development as part of feedback loops and through their individual or combinatorial targeting of multiple different genes in the same network. We then explore how changes in the expression of microRNAs and consequently targets can facilitate changes in GRNs that alter development and lead to phenotypic evolution. The reviewed studies exemplify the key roles played by microRNAs in the regulation and evolution of gene expression during developmental processes in animals.
Collapse
Affiliation(s)
- Sebastian Kittelmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
15
|
Abstract
Many insects are capable of developing into either long-winged or short-winged (or wingless) morphs, which enables them to rapidly match heterogeneous environments. Thus, the wing polymorphism is an adaptation at the root of their ecological success. Wing polymorphism is orchestrated at various levels, starting with the insect's perception of environmental cues, then signal transduction and signal execution, and ultimately the transmitting of signals into physiological adaption in accordance with the particular morph produced. Juvenile hormone and ecdysteroid pathways have long been proposed to regulate wing polymorphism in insects, but rigorous experimental evidence is lacking. The breakthrough findings of ecdysone receptor regulation on transgenerational wing dimorphism in the aphid Acyrthosiphon pisum and of insulin signaling in the planthopper Nilaparvata lugens greatly broaden our understanding of wing polymorphism at the molecular level. Recently, the advent of high-throughput sequencing coupled with functional genomics provides powerful genetic tools for future insights into the molecular bases underlying wing polymorphism in insects.
Collapse
Affiliation(s)
- Chuan-Xi Zhang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; ,
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, New York 14627, USA;
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; ,
| |
Collapse
|
16
|
Volin M, Zohar-Fux M, Gonen O, Porat-Kuperstein L, Toledano H. microRNAs selectively protect hub cells of the germline stem cell niche from apoptosis. J Cell Biol 2018; 217:3829-3838. [PMID: 30093492 PMCID: PMC6219711 DOI: 10.1083/jcb.201711098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/10/2017] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Genotoxic stress such as irradiation causes a temporary halt in tissue regeneration. The ability to regain regeneration depends on the type of cells that survived the assault. Previous studies showed that this propensity is usually held by the tissue-specific stem cells. However, stem cells cannot maintain their unique properties without the support of their surrounding niche cells. In this study, we show that exposure of Drosophila melanogaster to extremely high levels of irradiation temporarily arrests spermatogenesis and kills half of the stem cells. In marked contrast, the hub cells that constitute a major component of the niche remain completely intact. We further show that this atypical resistance to cell death relies on the expression of certain antiapoptotic microRNAs (miRNAs) that are selectively expressed in the hub and keep the cells inert to apoptotic stress signals. We propose that at the tissue level, protection of a specific group of niche cells from apoptosis underlies ongoing stem cell turnover and tissue regeneration.
Collapse
Affiliation(s)
- Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Oren Gonen
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
17
|
Understanding microRNA Regulation Involved in the Metamorphosis of the Veined Rapa Whelk ( Rapana venosa). G3-GENES GENOMES GENETICS 2017; 7:3999-4008. [PMID: 29079680 PMCID: PMC5714496 DOI: 10.1534/g3.117.300210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The veined rapa whelk (Rapana venosa) is widely consumed in China. Nevertheless, it preys on oceanic bivalves, thereby reducing this resource worldwide. Its larval metamorphosis comprises a transition from pelagic to benthic form, which involves considerable physiological and structural changes and has vital roles in its natural populations and commercial breeding. Thus, understanding the endogenous microRNAs (miRNAs) that drive metamorphosis is of great interest. This is the first study to use high-throughput sequencing to examine the alterations in miRNA expression that occur during metamorphosis in a marine gastropod. A total of 195 differentially expressed miRNAs were obtained. Sixty-five of these were expressed during the transition from precompetent to competent larvae. Thirty-three of these were upregulated and the others were downregulated. Another 123 miRNAs were expressed during the transition from competent to postlarvae. Ninety-six of these were upregulated and the remaining 27 were downregulated. The expression of miR-276-y, miR-100-x, miR-183-x, and miR-263-x showed a >100-fold change during development, while the miR-242-x and novel-m0052-3p expression levels changed over 3000-fold. Putative target gene coexpression, gene ontology, and pathway analyses suggest that these miRNAs play important parts in cell proliferation, migration, apoptosis, metabolic regulation, and energy absorption. Twenty miRNAs and their target genes involved in ingestion, digestion, cytoskeleton, cell adhesion, and apoptosis were identified. Nine of them were analyzed with real-time polymerase chain reaction (PCR), which showed an inverse correlation between the miRNAs and their relative expression levels. Our data elucidate the role of miRNAs in R. venosa metamorphic transition and serve as a solid basis for further investigations into regulatory mechanisms of gastropod metamorphosis.
Collapse
|
18
|
Kavaler J, Duan H, Aradhya R, de Navas LF, Joseph B, Shklyar B, Lai EC. miRNA suppression of a Notch repressor directs non-neuronal fate in Drosophila mechanosensory organs. J Cell Biol 2017; 217:571-583. [PMID: 29196461 PMCID: PMC5800810 DOI: 10.1083/jcb.201706101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/12/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Large-scale knockout studies suggest that most miRNAs are phenotypically dispensable. However, Kavaler et al. show here that developmental specification toward a non-neuronal fate in the Drosophila melanogaster peripheral sensory organ lineage depends critically on mir-279/996 repression of the Notch repressor Insensible. Although there is abundant evidence that individual microRNA (miRNA) loci repress large cohorts of targets, large-scale knockout studies suggest that most miRNAs are phenotypically dispensable. Here, we identify a rare case of developmental cell specification that is highly dependent on miRNA control of an individual target. We observe that binary cell fate choice in the Drosophila melanogaster peripheral sensory organ lineage is controlled by the non-neuronally expressed mir-279/996 cluster, with a majority of notum sensory organs exhibiting transformation of sheath cells into ectopic neurons. The mir-279/996 defect phenocopies Notch loss of function during the sheath–neuron cell fate decision, suggesting the miRNAs facilitate Notch signaling. Consistent with this, mir-279/996 knockouts are strongly enhanced by Notch heterozygosity, and activated nuclear Notch is impaired in the miRNA mutant. Although Hairless (H) is the canonical nuclear Notch pathway inhibitor, and H heterozygotes exhibit bristle cell fate phenotypes reflecting gain-of-Notch signaling, H/+ does not rescue mir-279/996 mutants. Instead, we identify Insensible (Insb), another neural nuclear Notch pathway inhibitor, as a critical direct miR-279/996 target. Insb is posttranscriptionally restricted to neurons by these miRNAs, and its heterozygosity strongly suppresses ectopic peripheral nervous system neurons in mir-279/996 mutants. Thus, proper assembly of multicellular mechanosensory organs requires a double-negative circuit involving miRNA-mediated suppression of a Notch repressor to assign non-neuronal cell fate.
Collapse
Affiliation(s)
| | - Hong Duan
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Rajaguru Aradhya
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Luis F de Navas
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Brian Joseph
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY.,Gerstner Sloan-Kettering Graduate Program of Biomedical Sciences, New York, NY
| | - Boris Shklyar
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY .,Gerstner Sloan-Kettering Graduate Program of Biomedical Sciences, New York, NY
| |
Collapse
|
19
|
Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in Drosophila melanogaster Indirect Flight Muscles. G3-GENES GENOMES GENETICS 2017; 7:3521-3531. [PMID: 28866639 PMCID: PMC5633399 DOI: 10.1534/g3.117.300232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding endogenous RNAs, typically 21-23 nucleotides long, that regulate gene expression, usually post-transcriptionally, by binding to the 3'-UTR of target mRNA, thus blocking translation. The expression of several miRNAs is significantly altered during cardiac hypertrophy, myocardial ischemia, fibrosis, heart failure, and other cardiac myopathies. Recent studies have implicated miRNA-9 (miR-9) in myocardial hypertrophy. However, a detailed mechanism remains obscure. In this study, we have addressed the roles of miR-9 in muscle development and function using a genetically tractable model system, the indirect flight muscles (IFMs) of Drosophila melanogaster Bioinformatics analysis identified 135 potential miR-9a targets, of which 27 genes were associated with Drosophila muscle development. Troponin-T (TnT) was identified as major structural gene target of miR-9a. We show that flies overexpressing miR-9a in the IFMs have abnormal wing position and are flightless. These flies also exhibit a loss of muscle integrity and sarcomeric organization causing an abnormal muscle condition known as "hypercontraction." Additionally, miR-9a overexpression resulted in the reduction of TnT protein levels while transcript levels were unaffected. Furthermore, muscle abnormalities associated with miR-9a overexpression were completely rescued by overexpression of TnT transgenes which lacked the miR-9a binding site. These findings indicate that miR-9a interacts with the 3'-UTR of the TnT mRNA and downregulates the TnT protein levels by translational repression. The reduction in TnT levels leads to a cooperative downregulation of other thin filament structural proteins. Our findings have implications for understanding the cellular pathophysiology of cardiomyopathies associated with miR-9 overexpression.
Collapse
|
20
|
Liufu Z, Zhao Y, Guo L, Miao G, Xiao J, Lyu Y, Chen Y, Shi S, Tang T, Wu CI. Redundant and incoherent regulations of multiple phenotypes suggest microRNAs' role in stability control. Genome Res 2017; 27:1665-1673. [PMID: 28904014 PMCID: PMC5630030 DOI: 10.1101/gr.222505.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
Each microRNA (miRNA) represses a web of target genes and, through them, controls multiple phenotypes. The difficulties inherent in such controls cast doubt on how effective miRNAs are in driving phenotypic changes. A "simple regulation" model posits "one target-one phenotype" control under which most targeting is nonfunctional. In an alternative "coordinate regulation" model, multiple targets are assumed to control the same phenotypes coherently, and most targeting is functional. Both models have some empirical support but pose different conceptual challenges. Here, we concurrently analyze multiple targets and phenotypes associated with the miRNA-310 family (miR310s) of Drosophila Phenotypic rescue in the mir310s knockout background is achieved by promoter-directed RNA interference that restores wild-type expression. For one phenotype (eggshell morphology), we observed redundant regulation, hence rejecting "simple regulation" in favor of the "coordinate regulation" model. For other phenotypes (egg-hatching and male fertility), however, one gene shows full rescue, but three other rescues aggravate the phenotype. Overall, phenotypic controls by miR310s do not support either model. Like a thermostat that controls both heating and cooling elements to regulate temperature, redundancy and incoherence in regulation generally suggest some capacity in stability control. Our results therefore support the published view that miRNAs play a role in the canalization of transcriptome and, hence, phenotypes.
Collapse
Affiliation(s)
- Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Li Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Guangxia Miao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yang Lyu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuxin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
21
|
MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum. Genomics 2017. [DOI: 10.1016/j.ygeno.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Comparative profiling of microRNAs and their association with sexual dimorphism in the fig wasp Ceratosolen solmsi. Gene 2017; 633:54-60. [DOI: 10.1016/j.gene.2017.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
|
23
|
miR-9a modulates maintenance and ageing of Drosophila germline stem cells by limiting N-cadherin expression. Nat Commun 2017; 8:600. [PMID: 28928361 PMCID: PMC5605507 DOI: 10.1038/s41467-017-00485-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Ageing is characterized by a decline in stem cell functionality leading to dampened tissue regeneration. While the expression of microRNAs across multiple species is markedly altered with age, the mechanism by which they govern stem cell-sustained tissue regeneration is unknown. We report that in the Drosophila testis, the conserved miR-9a is expressed in germline stem cells and its levels are significantly elevated during ageing. Transcriptome and functional analyses show that miR-9a directly regulates the expression of the adhesion molecule N-cadherin (N-cad). miR-9a null mutants maintain a higher number of stem cells even in the aged tissue. Remarkably, this rise fails to improve tissue regeneration and results in reduced male fertility. Similarly, overexpression of N-cad also results in elevated stem cell number and decreased regeneration. We propose that miR-9a downregulates N-cad to enable adequate detachment of stem cells toward differentiation, thus providing the necessary directionality toward terminal differentiation and spermatogenesis.In the Drosophila testis, ageing leads to loss of germline stem cells. Here, the authors show that, during ageing in Drosophila, miR-9a is upregulated in male germline stem cells and regulates their proliferation by targeting N-cadherin.
Collapse
|
24
|
MicroRNAs That Contribute to Coordinating the Immune Response in Drosophila melanogaster. Genetics 2017; 207:163-178. [PMID: 28706002 PMCID: PMC5586370 DOI: 10.1534/genetics.116.196584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Small noncoding RNAs called microRNAs (miRNAs) have emerged as post-transcriptional regulators of gene expression related to host defenses. Here, we have used Drosophila melanogaster to explore the contribution of individual or clusters of miRNAs in countering systemic Candida albicans infection. From a total of 72 tested, we identify 6 miRNA allelic mutant backgrounds that modulate the survival response to infection and the ability to control pathogen number. These mutants also exhibit dysregulation of the Toll pathway target transcripts Drosomycin (Drs) and Immune-Induced Molecule 1 (IM1). These are characteristics of defects in Toll signaling, and consistent with this, we demonstrate dependency for one of the miRNA mutants on the NF-κΒ homolog Dif. We also quantify changes in the miRNA expression profile over time in response to three pathogen types, and identify 13 mature miRNA forms affected by pathogens that stimulate Toll signaling. To complement this, we provide a genome-wide map of potential NF-κB sites in proximity to miRNA genes. Finally, we demonstrate that systemic C. albicans infection contributes to a reduction in the total amount of branch-chained amino acids, which is miRNA-regulated. Overall, our data reveal a new layer of miRNA complexity regulating the fly response to systemic fungal infection.
Collapse
|
25
|
Zhu B, Li X, Liu Y, Gao X, Liang P. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). Sci Rep 2017; 7:40713. [PMID: 28098189 PMCID: PMC5241650 DOI: 10.1038/srep40713] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/08/2016] [Indexed: 01/10/2023] Open
Abstract
The diamondback moth (DBM), Plutella xylostella (L.), is one of the most serious cruciferous pests and has developed high resistance to most insecticides, including chlorantraniliprole. Previous studies have reported several protein-coding genes that involved in chlorantraniliprole resistance, but research on resistance mechanisms at the post-transcription level is still limited. In this study, a global screen of microRNAs (miRNAs) associated with chlorantraniliprole resistance in P. xylostella was performed. The small RNA libraries for a susceptible (CHS) and two chlorantraniliprole resistant strains (CHR, ZZ) were constructed and sequenced, and a total of 199 known and 30 novel miRNAs were identified. Among them, 23 miRNAs were differentially expressed between CHR and CHS, and 90 miRNAs were differentially expressed between ZZ and CHS, of which 11 differentially expressed miRNAs were identified in both CHR and ZZ. Using miRanda and RNAhybrid, a total of 1,411 target mRNAs from 102 differentially expressed miRNAs were predicted, including mRNAs in several groups of detoxification enzymes. The expression of several differentially expressed miRNAs and their potential targets was validated by qRT-PCR. The results may provide important clues for further study of the mechanisms of miRNA-mediated chlorantraniliprole resistance in DBM and other target insects.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiuxia Li
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
26
|
Lim MYT, Okamura K. Switches in Dicer Activity During Oogenesis and Early Development. Results Probl Cell Differ 2017; 63:325-351. [PMID: 28779324 DOI: 10.1007/978-3-319-60855-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dicer is a versatile protein regulating diverse biological processes via the production of multiple classes of small regulatory RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs). In this chapter, we will discuss roles for Dicer in driving temporal changes in activity of individual small RNA classes to support oogenesis and early embryogenesis. Genetic strategies that perturb particular functions of Dicer family proteins, such as ablation of individual Dicer paralogs or their binding partners as well as introduction of point mutations to individual domains, allowed the dissection of Dicer functions in diverse small RNA pathways. Evolutionary conservation and divergence of the mechanisms highlight the importance of Dicer versatility in supporting rapid changes in gene expression during oogenesis and early development. Furthermore, we will discuss potential roles of Dicer in transgenerational inheritance of small RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore.
| |
Collapse
|
27
|
Comparative profiling of microRNAs in the winged and wingless English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae). Sci Rep 2016; 6:35668. [PMID: 27762301 PMCID: PMC5071838 DOI: 10.1038/srep35668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNAs that regulate gene expression, particularly during development. In this study, 345 miRNAs were identified from the English green aphid, Sitobion avenae (F.), of which 168 were conserved and 177 were S. avenae-specific. Quantitative comparison of miRNA expression levels indicated that 16 and 12 miRNAs were significantly up-regulated in winged and wingless S. avenae small RNA libraries, respectively. Differential expression of these miRNAs was confirmed by real-time quantitative RT-PCR validation. The putative transcript targets for these candidate miRNAs were predicted based on sequences from a model species Drosophila melanogaster and four aphid species Acyrthosiphon pisum, Myzus persicae, Toxoptera citricida, and Aphis gosspii. Gene Ontology and KEGG pathway analyses shed light on the potential functions of these miRNAs in the regulation of genes involved in the metabolism, development and wing polyphenism of S. avenae.
Collapse
|
28
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Carthew RW, Agbu P, Giri R. MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol 2016; 65:29-37. [PMID: 27000418 DOI: 10.1016/j.semcdb.2016.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes.
Collapse
Affiliation(s)
- Richard W Carthew
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | - Pamela Agbu
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| | - Ritika Giri
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| |
Collapse
|
30
|
Abstract
MicroRNAs are short noncoding, ~22-nucleotide RNAs that regulate protein abundance. The growth in our understanding of this class of RNAs has been rapid since their discovery just over a decade ago. We now appreciate that miRNAs are deeply embedded within the genetic networks that control basic features of metazoan cells including their identity, metabolism, and reproduction. The Drosophila melanogaster model system has made and will continue to make important contributions to this analysis. Intended as an introductory overview, here we review the current methods and resources available for functional analysis of fly miRNAs for those interested in performing this type of analysis.
Collapse
Affiliation(s)
- Geetanjali Chawla
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA
| | - Nicholas Sokol
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA.
| |
Collapse
|
31
|
Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. Nat Commun 2015; 6:7693. [PMID: 26138755 PMCID: PMC4506552 DOI: 10.1038/ncomms8693] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/02/2015] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) regulate many physiological processes including body growth. Insulin/IGF signalling is the primary regulator of animal body growth, but the extent to which miRNAs act in insulin-producing cells (IPCs) is unclear. Here we generate a UAS-miRNA library of Drosophila stocks and perform a genetic screen to identify miRNAs whose overexpression in the IPCs inhibits body growth in Drosophila. Through this screen, we identify miR-9a as an evolutionarily conserved regulator of insulin signalling and body growth. IPC-specific miR-9a overexpression reduces insulin signalling and body size. Of the predicted targets of miR-9a, we find that loss of miR-9a enhances the level of sNPFR1. We show via an in vitro binding assay that miR-9a binds to sNPFR1 mRNA in insect cells and to the mammalian orthologue NPY2R in rat insulinoma cells. These findings indicate that the conserved miR-9a regulates body growth by controlling sNPFR1/NPYR-mediated modulation of insulin signalling. Insulin signaling governs many physiological processes but the molecular and neural mechanisms of its regulation are largely unknown. Here the authors describe a novel molecular pathway controlling sNPF regulation of insulin signalling in the fruit fly, which is mediated by the evolutionary conserved miR-9a.
Collapse
|
32
|
A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. Nat Commun 2015; 6:7279. [PMID: 26081261 PMCID: PMC4471878 DOI: 10.1038/ncomms8279] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4-8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes.
Collapse
|
33
|
Wang Y, Wang H, Li X, Li Y. Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling inDrosophilasensory neurons. Dev Neurobiol 2015; 76:225-37. [DOI: 10.1002/dneu.22309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/15/2015] [Accepted: 05/24/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Wang
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
- Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing 100101 China
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaoting Li
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
34
|
Higashi S, Fournier C, Gautier C, Gaspin C, Sagot MF. Mirinho: An efficient and general plant and animal pre-miRNA predictor for genomic and deep sequencing data. BMC Bioinformatics 2015; 16:179. [PMID: 26022464 PMCID: PMC4448272 DOI: 10.1186/s12859-015-0594-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/23/2015] [Indexed: 12/13/2022] Open
Abstract
Background Several methods exist for the prediction of precursor miRNAs (pre-miRNAs) in genomic or sRNA-seq (small RNA sequences) data produced by NGS (Next Generation Sequencing). One key information used for this task is the characteristic hairpin structure adopted by pre-miRNAs, that in general are identified using RNA folders whose complexity is cubic in the size of the input. The vast majority of pre-miRNA predictors then rely on further information learned from previously validated miRNAs from the same or a closely related genome for the final prediction of new miRNAs. With this paper, we wished to address three main issues. The first was methodological and aimed at obtaining a more time-efficient predictor, however without losing in accuracy which represented a second issue. We indeed aimed at better predicting miRNAs at a genome scale, but also from sRNAseq data where in some cases, notably of plants, the current folding methods often infer the wrong structure. The third issue is related to the fact that it is important to rely as little as possible on previously recorded examples of miRNAs. We therefore also sought a method that is less dependent on previous miRNA records. Results As concerns the first and second issues, we present a novel alternative to a classical folder based on a thermodynamic Nearest-Neighbour (NN) model for computing the free energy and predicting the classical hairpin structure of a pre-miRNA. We show that the free energies thus computed correlate well with those of RNAfold. This novel method, called Mirinho, has quadratic instead of cubic complexity and is much more efficient also in practice. When applied to sRNAseq data of plants, it gives in general better results than classical folders. On the third issue, we show that Mirinho, which uses as only knowledge the length of the loops and stem-arms and the free energy of the pre-miRNA hairpin, compares well with algorithms that require more information. The results, obtained with different datasets, are indeed similar to those of other approaches with which such a comparison was possible. These needed to be publicly available softwares that could be used on a large input. In some cases, Mirinho is even better in terms of sensitivity or precision. Conclusion We provide a simpler and much faster method with very reasonable sensitivity and precision, which can be applied without special adaptation to the prediction of both animal and plant pre-miRNAs, using as input either genomic sequences or sRNA-seq data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0594-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susan Higashi
- ERABLE team, Inria Grenoble Rhône-Alpes, Montbonnot Saint-Martin, 38330, France. .,Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622, France.
| | - Cyril Fournier
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622, France.
| | - Christian Gautier
- ERABLE team, Inria Grenoble Rhône-Alpes, Montbonnot Saint-Martin, 38330, France. .,Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622, France.
| | - Christine Gaspin
- INRA, UBIA & Plateforme Bioinformatique, 24 Chemin de Borde Rouge, Auzeville, POBOX 5627, Castanet Tolosan, 31326, France.
| | - Marie-France Sagot
- ERABLE team, Inria Grenoble Rhône-Alpes, Montbonnot Saint-Martin, 38330, France. .,Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622, France.
| |
Collapse
|
35
|
Waldron JA, Jones CI, Towler BP, Pashler AL, Grima DP, Hebbes S, Crossman SH, Zabolotskaya MV, Newbury SF. Xrn1/Pacman affects apoptosis and regulates expression of hid and reaper. Biol Open 2015; 4:649-60. [PMID: 25836675 PMCID: PMC4434816 DOI: 10.1242/bio.201410199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death, or apoptosis, is a highly conserved cellular process that is crucial for tissue homeostasis under normal development as well as environmental stress. Misregulation of apoptosis is linked to many developmental defects and diseases such as tumour formation, autoimmune diseases and neurological disorders. In this paper, we show a novel role for the exoribonuclease Pacman/Xrn1 in regulating apoptosis. Using Drosophila wing imaginal discs as a model system, we demonstrate that a null mutation in pacman results in small imaginal discs as well as lethality during pupation. Mutant wing discs show an increase in the number of cells undergoing apoptosis, especially in the wing pouch area. Compensatory proliferation also occurs in these mutant discs, but this is insufficient to compensate for the concurrent increase in apoptosis. The phenotypic effects of the pacman null mutation are rescued by a deletion that removes one copy of each of the pro-apoptotic genes reaper, hid and grim, demonstrating that pacman acts through this pathway. The null pacman mutation also results in a significant increase in the expression of the pro-apoptotic mRNAs, hid and reaper, with this increase mostly occurring at the post-transcriptional level, suggesting that Pacman normally targets these mRNAs for degradation. Our results uncover a novel function for the conserved exoribonuclease Pacman and suggest that this exoribonuclease is important in the regulation of apoptosis in other organisms.
Collapse
Affiliation(s)
- Joseph A Waldron
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Christopher I Jones
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Amy L Pashler
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Dominic P Grima
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Stephen Hebbes
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Samuel H Crossman
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | | | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| |
Collapse
|
36
|
Matamoro-Vidal A, Salazar-Ciudad I, Houle D. Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Dev Dyn 2015; 244:1058-1073. [PMID: 25619644 DOI: 10.1002/dvdy.24255] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. Developmental Dynamics 244:1058-1073, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.,Center of Excellence in Experimental and Computational Developmental Biology, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
37
|
Jain S, Rana V, Tridibes A, Sunil S, Bhatnagar RK. Dynamic expression of miRNAs across immature and adult stages of the malaria mosquito Anopheles stephensi. Parasit Vectors 2015; 8:179. [PMID: 25888742 PMCID: PMC4418096 DOI: 10.1186/s13071-015-0772-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/26/2015] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs are small non-coding RNAs that are involved in various biological processes including insect development. Anopheles stephensi serves as primary vector of malaria parasite in Asia and exhibits holometabolous life cycle that involves four different stages of development. Regulation and role of mosquito miRNAs during various stages of mosquito development remain largely unknown. Methods High throughput small RNA sequencing was employed for identification and profiling of miRNAs across immature and adult stages of malaria vector, which were further validated using Northern hybridization and real time PCR. Target prediction and pathway analysis was carried out to understand the role of regulated miRNAs in insect development. Degradome sequencing was employed to identify cleaved targets of some regulated miRNAs. Loss of function strategy was employed for miR-989 to understand its probable role in female reproductive process. Results Small RNA sequencing and data analysis revealed 111 and 14 known and novel miRNAs respectively across all stages of Anopheles stephensi. Nine miRNAs showed gender specific regulation across different stages of mosquito development. Analysis of miRNAs revealed regulation of 24 and 26 miRNAs across different stages of male and female mosquito development respectively. mRNA targets and significant pathways targeted by regulated miRNAs were identified for each stage of mosquito development. Degradome sequencing revealed twenty nine cleaved targets of insect miRNAs. MicroRNA-989 showed significant up-regulation in the adult female as compared to adult male mosquito. Knockdown of miR-989 expression in adult female using miRNA specific antagomir affected targets playing roles in protein binding, proteolysis and nucleic acid binding in ovary tissue of female mosquito post blood feeding. Conclusions This is the first comprehensive effort to understand regulation of Anopheles stephensi miRNAs across developmental stages of male and female mosquito. Preliminary role of regulated miRNAs in mosquito development was revealed by target prediction and pathway analysis. MicroRNA-989 emerged to have important roles in adult female mosquitoes showing significant up-regulation which was further studied using miR-989 specific antagomir. This study provides insights into mosquito development and reproductive process and has implications for effective control of mosquito population required for reducing spread of mosquito-borne infectious diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0772-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanu Jain
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Vandita Rana
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Adak Tridibes
- National Institute of Malaria Research, Dwarka, New Delhi, India.
| | - Sujatha Sunil
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
38
|
Systematic Study of Drosophila MicroRNA Functions Using a Collection of Targeted Knockout Mutations. Dev Cell 2014; 31:784-800. [DOI: 10.1016/j.devcel.2014.11.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 08/30/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
|
39
|
Jain S, Rana V, Shrinet J, Sharma A, Tridibes A, Sunil S, Bhatnagar RK. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi. PLoS One 2014; 9:e98402. [PMID: 24866389 PMCID: PMC4035286 DOI: 10.1371/journal.pone.0098402] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022] Open
Abstract
Blood feeding is an integral process required for physiological functions and propagation of the malaria vector Anopheles. During blood feeding, presence of the malaria parasite, Plasmodium in the blood induces several host effector molecules including microRNAs which play important roles in the development and maturation of the parasite within the mosquito. The present study was undertaken to elucidate the dynamic expression of miRNAs during gonotrophic cycle and parasite development in Anopheles stephensi. Using next generation sequencing technology, we identified 126 miRNAs of which 17 were novel miRNAs. The miRNAs were further validated by northern hybridization and cloning. Blood feeding and parasitized blood feeding in the mosquitoes revealed regulation of 13 and 16 miRNAs respectively. Expression profiling of these miRNAs revealed that significant miRNAs were down-regulated upon parasitized blood feeding with a repertoire of miRNAs showing stage specific up-regulation. Expression profiles of significantly modulated miRNAs were further validated by real time PCR. Target prediction of regulated miRNAs revealed overlapping targeting by different miRNAs. These targets included several metabolic pathways including metabolic, redox homeostasis and protein processing machinery components. Our analysis revealed tight regulation of specific miRNAs post blood feeding and parasite infection in An. stephensi. Such regulated expression suggests possible role of these miRNAs during gonotrophic cycle in mosquito. Another set of miRNAs were also significantly regulated at 42 h and 5 days post infection indicating parasite stage-specific role of host miRNAs. This study will result in better understanding of the role of miRNAs during gonotrophic cycle and parasite development in mosquito and can probably facilitate in devising novel malaria control strategies at vector level.
Collapse
Affiliation(s)
- Shanu Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vandita Rana
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Jatin Shrinet
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anil Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Adak Tridibes
- National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (RKB); (SS)
| | - Raj K. Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (RKB); (SS)
| |
Collapse
|
40
|
Yatsenko AS, Shcherbata HR. Drosophila miR-9a targets the ECM receptor Dystroglycan to canalize myotendinous junction formation. Dev Cell 2014; 28:335-48. [PMID: 24525189 DOI: 10.1016/j.devcel.2014.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 01/12/2023]
Abstract
Establishment of intercellular interactions between various cell types of different origin is vital for organism development and tissue maintenance. Therefore, precise timing, expression pattern, and amounts of extracellular matrix (ECM) proteins must be tightly regulated. Particularly, the ECM is important for the development and function of myotendinous junctions (MTJs). We find that precise levels of the ECM receptor Dystroglycan (Dg) are required for MTJ formation in Drosophila and that Dg levels in this process are controlled by miR-9a. In the embryo, Dg is enriched at the termini of the growing muscles facing the tendon matrix and absent from miR-9a-expressing tendons. This gradient of Dg expression is crucial for proper muscle-tendon attachments and is adjusted by miR-9a. In addition to Dg, miR-9a regulates the expression of several other critical muscle genes, and we therefore propose that during embryogenesis, miR-9a specifically controls the expression of mesodermal genes to canalize MTJ morphogenesis.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
41
|
Genini S, Guziewicz KE, Beltran WA, Aguirre GD. Altered miRNA expression in canine retinas during normal development and in models of retinal degeneration. BMC Genomics 2014; 15:172. [PMID: 24581223 PMCID: PMC4029133 DOI: 10.1186/1471-2164-15-172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background Although more than 246 loci/genes are associated with inherited retinal diseases, the mechanistic events that link genetic mutations to photoreceptor cell death are poorly understood. miRNAs play a relevant role during retinal development and disease. Thus, as a first step in characterizing miRNA involvement during disease expression and progression, we examined miRNAs expression changes in normal retinal development and in four canine models of retinal degenerative disease. Results The initial microarray analysis showed that 50 miRNAs were differentially expressed (DE) early (3 vs. 7 wks) in normal retina development, while only 2 were DE between 7 and 16 wks, when the dog retina is fully mature. miRNA expression profiles were similar between dogs affected with xlpra2, an early-onset retinal disease caused by a microdeletion in RPGRORF15, and normal dogs early in development (3 wks) and at the peak of photoreceptor death (7 wks), when only 2 miRNAs were DE. However, the expression varied much more markedly during the chronic cell death stage at 16 wks (118 up-/55 down-regulated miRNAs). Functional analyses indicated that these DE miRNAs are associated with an increased inflammatory response, as well as cell death/survival. qRT-PCR of selected apoptosis-related miRNAs (“apoptomirs”) confirmed the microarray results in xlpra2, and extended the analysis to the early-onset retinal diseases rcd1 (PDE6B-mutation) and erd (STK38L-mutation), as well as the slowly progressing prcd (PRCD-mutation). The results showed up-regulation of anti-apoptotic (miR-9, -19a, -20, -21, -29b, -146a, -155, -221) and down-regulation of pro-apoptotic (miR-122, -129) apoptomirs in the early-onset diseases and, with few exceptions, also in the prcd-mutants. Conclusions Our results suggest that apoptomirs might be expressed by diseased retinas in an attempt to counteract the degenerative process. The pattern of expression in diseased retinas mirrored the morphology and cell death kinetics previously described for these diseases. This study suggests that common miRNA regulatory mechanisms may be involved in retinal degeneration processes and provides attractive opportunities for the development of novel miRNA-based therapies to delay the progression of the degenerative process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-172) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sem Genini
- Department of Clinical Studies-Philadelphia, Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, 19104 Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
42
|
MicroRNA-9 promotes the switch from early-born to late-born motor neuron populations by regulating Onecut transcription factor expression. Dev Biol 2013; 386:358-70. [PMID: 24374159 DOI: 10.1016/j.ydbio.2013.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022]
Abstract
Motor neurons in the vertebrate spinal cord are stereotypically organized along the rostro-caudal axis in discrete columns that specifically innervate peripheral muscle domains. Originating from the same progenitor domain, the generation of spinal motor neurons is orchestrated by a spatially and temporally tightly regulated set of secreted molecules and transcription factors such as retinoic acid and the Lim homeodomain transcription factors Isl1 and Lhx1. However, the molecular interactions between these factors remained unclear. In this study we examined the role of the microRNA 9 (miR-9) in the specification of spinal motor neurons and identified Onecut1 (OC1) as one of its targets. miR-9 and OC1 are expressed in mutually exclusive patterns in the developing chick spinal cord, with high OC1 levels in early-born motor neurons and high miR-9 levels in late-born motor neurons. miR-9 efficiently represses OC1 expression in vitro and in vivo. Overexpression of miR-9 leads to an increase in late-born neurons, while miR-9 loss-of-function induces additional OC1(+) motor neurons that display a transcriptional profile typical of early-born neurons. These results demonstrate that regulation of OC1 by miR-9 is a crucial step in the specification of spinal motor neurons and support a model in which miR-9 expression in late-born LMCl neurons downregulates Isl1 expression through inhibition of OC1. In conclusion, our study contributes essential factors to the molecular network specifying spinal motor neurons and emphasizes the importance of microRNAs as key players in the generation of neuronal diversity.
Collapse
|
43
|
Coolen M, Bally-Cuif L. [miR-9: a key factor of the physiopathological regulation of the neural progenitor state]. Med Sci (Paris) 2013; 29:1010-7. [PMID: 24280505 DOI: 10.1051/medsci/20132911018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
microRNA are small non-coding RNA that modulate gene expression post-transcriptionally. Discovered 20 years ago, their individual functions start to be unraveled. Collectively, functional studies point to an important functional plasticity of microRNA, along the course of evolution, and across different cellular contexts. This is the case in particular for one of them, miR-9, a key factor of the regulation of the neural progenitor state in Vertebrates.
Collapse
Affiliation(s)
- Marion Coolen
- Laboratoire de neurobiologie et développement, UPR3294, Institut de neurobiologie Alfred Fessard, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
44
|
Coolen M, Katz S, Bally-Cuif L. miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 2013; 7:220. [PMID: 24312010 PMCID: PMC3834235 DOI: 10.3389/fncel.2013.00220] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
Soon after its discovery, microRNA-9 (miR-9) attracted the attention of neurobiologists, since it is one of the most highly expressed microRNAs in the developing and adult vertebrate brain. Functional analyses in different vertebrate species have revealed a prominent role of this microRNA in balancing proliferation in embryonic neural progenitor populations. Key transcriptional regulators such as FoxG1, Hes1 or Tlx, were identified as direct targets of miR-9, placing it at the core of the gene network controlling the progenitor state. Recent data also suggest that this function could extend to adult neural stem cells. Other studies point to a role of miR-9 in differentiated neurons. Moreover miR-9 has been implicated in human brain pathologies, either displaying a protective role, such as in Progeria, or participating in disease progression in brain cancers. Altogether functional studies highlight a prominent feature of this highly conserved microRNA, its functional versatility, both along its evolutionary history and across cellular contexts.
Collapse
Affiliation(s)
- Marion Coolen
- Zebrafish Neurogenetics Team, Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS Gif-sur-Yvette, France
| | | | | |
Collapse
|
45
|
Wu P, Han S, Chen T, Qin G, Li L, Guo X. Involvement of microRNAs in infection of silkworm with bombyx mori cytoplasmic polyhedrosis virus (BmCPV). PLoS One 2013; 8:e68209. [PMID: 23844171 PMCID: PMC3699532 DOI: 10.1371/journal.pone.0068209] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the most important pathogens of silkworm. MicroRNAs (miRNAs) have been demonstrated to play key roles in regulating host-pathogen interaction. However, there are limited reports on the miRNAs expression profiles during insect pathogen challenges. In this study, four small RNA libraries from BmCPV-infected midgut of silkworm at 72 h post-inoculation and 96 h post-inoculation and their corresponding control midguts were constructed and deep sequenced. A total of 316 known miRNAs (including miRNA*) and 90 novel miRNAs were identified. Fifty-eight miRNAs displayed significant differential expression between the infected and normal midgut (P value < = 0.01 and fold change > = 2.0 or < = 0.5), among which ten differentially expressed miRNA were validated by qRT-PCR method. Further bioinformatics analysis of predicted target genes of differentially expressed miRNAs showed that the miRNA targets were involved in stimulus and immune system process in silkworm.
Collapse
Affiliation(s)
- Ping Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Quality Inspection Center for Sericulture Products, Ministry of Agriculture, Zhenjiang Jiangsu, China
| | - Shaohua Han
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
| | - Tao Chen
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Quality Inspection Center for Sericulture Products, Ministry of Agriculture, Zhenjiang Jiangsu, China
| | - Guangxing Qin
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
| | - Long Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Quality Inspection Center for Sericulture Products, Ministry of Agriculture, Zhenjiang Jiangsu, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Quality Inspection Center for Sericulture Products, Ministry of Agriculture, Zhenjiang Jiangsu, China
- * E-mail:
| |
Collapse
|
46
|
Abstract
Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
47
|
Asgari S. MicroRNA functions in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:388-97. [PMID: 23103375 DOI: 10.1016/j.ibmb.2012.10.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are generated in all eukaryotes and viruses. Their role as master regulators of gene expression in various biological processes has only been fully appreciated over the last decade. Accumulating evidence suggests that alterations in the expression of miRNAs may lead to disorders, including developmental defects, diseases and cancer. Here, I review what is currently known about miRNA functions in insects to provide an insight into their diverse roles in insect biology.
Collapse
Affiliation(s)
- Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia.
| |
Collapse
|
48
|
Abstract
During development, it is essential for gene expression to occur in a very precise spatial and temporal manner. There are many levels at which regulation of gene expression can occur, and recent evidence demonstrates the importance of mRNA stability in governing the amount of mRNA that can be translated into functional protein. One of the most important discoveries in this field has been miRNAs (microRNAs) and their function in targeting specific mRNAs for repression. The wing imaginal discs of Drosophila are an excellent model system to study the roles of miRNAs during development and illustrate their importance in gene regulation. This review aims at discussing the developmental processes where control of gene expression by miRNAs is required, together with the known mechanisms of this regulation. These developmental processes include Hox gene regulation, developmental timing, growth control, specification of SOPs (sensory organ precursors) and the regulation of signalling pathways.
Collapse
|
49
|
Li Z, Lu Y, Xu XL, Gao FB. The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila. Hum Mol Genet 2012; 22:218-25. [PMID: 23042786 DOI: 10.1093/hmg/dds420] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is an evolutionarily conserved RNA-binding protein currently under intense investigation for its involvement in the molecular pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is normally localized in the nucleus, but translocated to the cytoplasm in diseased neurons. The endogenous functions of TDP-43 in the nervous system remain poorly understood. Here, we show that the loss of Drosophila TDP-43 (dTDP-43) results in an increased production of sensory bristles and sensory organ precursor (SOP) cells on the notum of some but not all flies. The location of ectopic SOPs varies among mutant flies. The penetrance of this novel phenotype is dependent on the gender and sensitive to environmental influences. A similar SOP phenotype was also observed on the wing and in the embryos. Overexpression of dTDP-43 causes both loss and ectopic production of SOPs. Ectopic expression of ALS-associated mutant human TDP-43 (hTDP-43(M337V) and hTDP-43(Q331K)) produces a less severe SOP phenotype than hTDP-43(WT), indicating a partial loss of function of mutant hTDP-43. In dTDP-43 mutants, miR-9a expression is significantly reduced. Genetic interaction studies further support the notion that dTDP-43 acts through miR-9a to control the precision of SOP specification. These findings reveal a novel role for endogenous TDP-43 in neuronal specification and suggest that the FTD/ALS-associated RNA-binding protein TDP-43 functions to ensure the robustness of genetic control programs.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
50
|
Bejarano F, Bortolamiol-Becet D, Dai Q, Sun K, Saj A, Chou YT, Raleigh DR, Kim K, Ni JQ, Duan H, Yang JS, Fulga TA, Van Vactor D, Perrimon N, Lai EC. A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 2012; 139:2821-31. [PMID: 22745315 DOI: 10.1242/dev.079939] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are endogenous short RNAs that mediate vast networks of post-transcriptional gene regulation. Although computational searches and experimental profiling provide evidence for hundreds of functional targets for individual miRNAs, such data rarely provide clear insight into the phenotypic consequences of manipulating miRNAs in vivo. We describe a genome-wide collection of 165 Drosophila miRNA transgenes and find that a majority induced specific developmental defects, including phenocopies of mutants in myriad cell-signaling and patterning genes. Such connections allowed us to validate several likely targets for miRNA-induced phenotypes. Importantly, few of these phenotypes could be predicted from computationally predicted target lists, thus highlighting the value of whole-animal readouts of miRNA activities. Finally, we provide an example of the relevance of these data to miRNA loss-of-function conditions. Whereas misexpression of several K box miRNAs inhibited Notch pathway activity, reciprocal genetic interaction tests with miRNA sponges demonstrated endogenous roles of the K box miRNA family in restricting Notch signaling. In summary, we provide extensive evidence that misexpression of individual miRNAs often induces specific mutant phenotypes that can guide their functional study. By extension, these data suggest that the deregulation of individual miRNAs in other animals may frequently yield relatively specific phenotypes during disease conditions.
Collapse
Affiliation(s)
- Fernando Bejarano
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|