1
|
Sohail A, Nicoll O, Bendall AJ. Assessing candidate DLX-regulated genes in the first pharyngeal arch of chick embryos. Dev Dyn 2025. [PMID: 39810614 DOI: 10.1002/dvdy.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Insights into the development and evolution of asymmetrical jaws will require an understanding of the gene regulatory networks that underpin the differential morphogenesis of the maxillary and mandibular domains of the first pharyngeal arch in a variety of gnathostomes. While a robust relationship has been demonstrated between jaw patterning and the Endothelin-Dlx gene axis, much less is known of the next level of genes in the jaw patterning hierarchy. RESULTS Several genes, whose expression depends on Dlx5 and/or Dlx6, have been identified in mice. Here, we examined the expression patterns of the chick orthologues of some of those genes, namely GSC, PITX1, HAND2, and GBX2, and tested their dependence on endothelin signaling to assess whether there is a conserved regulatory relationship between those genes in the chick embryo. To further validate these genes as direct DLX targets, we identified conserved non-coding sequences containing candidate DLX binding motifs and demonstrated DLX-responsiveness in vitro. CONCLUSIONS The evidence presented in this study combines to support the hypothesis that these four genes are direct targets of DLX transcription factors in the lower jaw-forming tissue.
Collapse
Affiliation(s)
- Afshan Sohail
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Olivia Nicoll
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Sohail A, Bendall AJ. DLX gene expression in the developing chick pharyngeal arches and relationship to endothelin signaling and avian jaw patterning. Dev Dyn 2024; 253:255-271. [PMID: 37706631 DOI: 10.1002/dvdy.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND A hinged jaw that articulates with the skull base is a striking feature of the vertebrate head and has been greatly modified between, and within, vertebrate classes. Genes belonging to the DLX homeobox family are conserved mediators of local signaling pathways that distinguish the dorsal and ventral aspects of the first pharyngeal arch. Specifically, a subset of DLX genes are expressed in the cranial neural crest-derived mandibular ectomesenchyme in response to ventral endothelin signaling, an important step that confers the first arch with maxillary and mandibular identities. Downstream targets of DLX genes then execute the morphogenetic processes that lead to functional jaws. Identifying lineage-specific variations in DLX gene expression and the regulatory networks downstream of DLX action is necessary to understand how different kinds of jaws evolved. RESULTS Here, we describe and compare the expression of all six DLX genes in the chick pharyngeal arches, focusing on the period of active patterning in the first arch. Disruption of endothelin signaling results in the down-regulation of ventral-specific DLX genes and confirms their functional role in avian jaw patterning. CONCLUSIONS This expression resource will be important for comparative embryology and for identifying synexpression groups of DLX-regulated genes in the chick.
Collapse
Affiliation(s)
- Afshan Sohail
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Ray L, Medeiros D. Linking Vertebrate Gene Duplications to the New Head Hypothesis. BIOLOGY 2023; 12:1213. [PMID: 37759612 PMCID: PMC10525774 DOI: 10.3390/biology12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Vertebrates have diverse morphologies and various anatomical novelties that set them apart from their closest invertebrate relatives. A conspicuous head housing a large brain, paired sense organs, and protected by a skeleton of cartilage and bone is unique to vertebrates and is a defining feature of this taxon. Gans and Northcutt (1980s) proposed that the evolution of this "new head" was dependent on two key developmental innovations: neural crest cells (NCCs) and ectodermal placodes. NCCs are migratory embryonic cells that form bone, cartilage, and neurons in the new head. Based on genome size, Ohno (1970s) proposed a separate hypothesis, stating that vertebrate genome content was quadrupled via two rounds (2R) of whole genome duplications (WGDs), and the surplus of genetic material potentiated vertebrate morphological diversification. While both hypotheses offer explanations for vertebrate success, it is unclear if, and how, the "new head" and "2R" hypotheses are linked. Here, we consider both hypotheses and evaluate the experimental evidence connecting the two. Overall, evidence suggests that while the origin of the NC GRN predates the vertebrate WGDs, these genomic events may have potentiated the evolution of distinct genetic subnetworks in different neural crest subpopulations. We describe the general composition of the NC GRN and posit that its increased developmental modularity facilitated the independent evolution of NC derivatives and the diversification of the vertebrate head skeleton. Lastly, we discuss experimental strategies needed to test whether gene duplications drove the diversification of neural crest derivatives and the "new head".
Collapse
Affiliation(s)
- Lindsey Ray
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Daniel Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Root ZD, Jandzik D, Gould C, Allen C, Brewer M, Medeiros DM. Cartilage diversification and modularity drove the evolution of the ancestral vertebrate head skeleton. EvoDevo 2023; 14:8. [PMID: 37147719 PMCID: PMC10161429 DOI: 10.1186/s13227-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
The vertebrate head skeleton has evolved a myriad of forms since their divergence from invertebrate chordates. The connection between novel gene expression and cell types is therefore of importance in this process. The transformation of the jawed vertebrate (gnathostome) head skeleton from oral cirri to jointed jaw elements required a diversity of cartilages as well as changes in the patterning of these tissues. Although lampreys are a sister clade to gnathostomes, they display skeletal diversity with distinct gene expression and histologies, a useful model for addressing joint evolution. Specifically, the lamprey tissue known as mucocartilage has noted similarities with the jointed elements of the mandibular arch in jawed vertebrates. We thus asked whether the cells in lamprey mucocartilage and gnathostome joint tissue could be considered homologous. To do this, we characterized new genes that are involved in gnathostome joint formation and characterized the histochemical properties of lamprey skeletal types. We find that most of these genes are minimally found in mucocartilage and are likely later innovations, but we do identify new activity for gdf5/6/7b in both hyaline and mucocartilage, supporting its role as a chondrogenic regulator. Contrary to previous works, our histological assays do not find any perichondrial fibroblasts surrounding mucocartilage, suggesting that mucocartilage is non-skeletogenic tissue that is partially chondrified. Interestingly, we also identify new histochemical features of the lamprey otic capsule that diverge from normal hyaline. Paired with our new insights into lamprey mucocartilage, we propose a broader framework for skeletal evolution in which an ancestral soxD/E and gdf5/6/7 network directs mesenchyme along a spectrum of cartilage-like features.
Collapse
Affiliation(s)
- Zachary D. Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
- Department of Zoology, Comenius University in Bratislava, Bratislava, 84215 Slovakia
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Daniel M. Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
6
|
Hirschberger C, Gillis JA. The pseudobranch of jawed vertebrates is a mandibular arch-derived gill. Development 2022; 149:275947. [PMID: 35762641 PMCID: PMC9340550 DOI: 10.1242/dev.200184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/14/2022] [Indexed: 12/16/2022]
Abstract
The pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill arch-like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate in the skate (Leucoraja erinacea) that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the skate mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays, which support the respiratory lamellae of the gills, are patterned by a shh-expressing gill arch epithelial ridge. Together with similar discoveries in zebrafish, our findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch. Summary: The skate pseudobranch is a gill serial homologue and reveals the ancestral gill arch-like nature of the jawed vertebrate mandibular arch.
Collapse
Affiliation(s)
- Christine Hirschberger
- University of Cambridge 1 Department of Zoology , , Downing Street, Cambridge CB2 3EJ , UK
| | - J. Andrew Gillis
- University of Cambridge 1 Department of Zoology , , Downing Street, Cambridge CB2 3EJ , UK
- Marine Biological Laboratory 2 , 7 MBL Street, Woods Hole, MA 02543 , USA
| |
Collapse
|
7
|
Waldmann L, Leyhr J, Zhang H, Öhman-Mägi C, Allalou A, Haitina T. The broad role of Nkx3.2 in the development of the zebrafish axial skeleton. PLoS One 2021; 16:e0255953. [PMID: 34411150 PMCID: PMC8376051 DOI: 10.1371/journal.pone.0255953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Nkx3.2 (Bapx1) is an important chondrocyte maturation inhibitor. Previous Nkx3.2 knockdown and overexpression studies in non-mammalian gnathostomes have focused on its role in primary jaw joint development, while the function of this gene in broader skeletal development is not fully described. We generated a mutant allele of nkx3.2 in zebrafish with CRISPR/Cas9 and applied a range of techniques to characterize skeletal phenotypes at developmental stages from larva to adult, revealing loss of the jaw joint, fusions in bones of the occiput, morphological changes in the Weberian apparatus, and the loss or deformation of bony elements derived from basiventral cartilages of the vertebrae. Axial phenotypes are reminiscent of Nkx3.2 knockout in mammals, suggesting that the function of this gene in axial skeletal development is ancestral to osteichthyans. Our results highlight the broad role of nkx3.2 in zebrafish skeletal development and its context-specific functions in different skeletal elements.
Collapse
Affiliation(s)
- Laura Waldmann
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Jake Leyhr
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hanqing Zhang
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Amin Allalou
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Hirschberger C, Sleight VA, Criswell KE, Clark SJ, Gillis JA. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw. Mol Biol Evol 2021; 38:4187-4204. [PMID: 33905525 PMCID: PMC8476176 DOI: 10.1093/molbev/msab123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral (DV) patterning mechanisms within the developing mandibular, hyoid, and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralizing BMP and endothelin signaling pathways and their effectors, the joint markers nkx3.2 and gdf5 and prochondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, whereas differences in notch signaling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the DV axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.
Collapse
Affiliation(s)
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | | | | | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| |
Collapse
|
9
|
Kuratani S. Evo-devo studies of cyclostomes and the origin and evolution of jawed vertebrates. Curr Top Dev Biol 2020; 141:207-239. [PMID: 33602489 DOI: 10.1016/bs.ctdb.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modern vertebrates consist of two sister groups: cyclostomes and gnathostomes. Cyclostomes are a monophyletic jawless group that can be further divided into hagfishes and lampreys, which show conspicuously different developmental and morphological patterns. However, during early pharyngula development, there appears to be a stage when the embryos of hagfishes and lampreys resemble each other by showing an "ancestral" craniofacial pattern; this pattern enables morphological comparison of hagfish and lamprey craniofacial development at late stages. This cyclostome developmental pattern, or more accurately, this developmental pattern of the jawless grade of vertebrates in early pharyngula was very likely shared by the gnathostome stem before the division of the nasohypophyseal placode led to the jaw and paired nostrils. The craniofacial pattern of the modern jawed vertebrates seems to have begun in fossil ostracoderms (including galeaspids), and was completed by the early placoderm lineages. The transition from jawless to jawed vertebrates was thus driven by heterotopy of development, mainly caused by separation and shift of ectodermal placodes and resultant ectomesenchymal distribution, and shifts of the epithelial-mesenchymal interactions that underlie craniofacial differentiation. Thus, the evolution of the jaw was not a simple modification of the mandibular arch, but a heterotopic shift of the developmental interactions involving not only the mandibular arch, but also the premandibular region rostral to the mandibular arch.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan; Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Hyogo, Japan.
| |
Collapse
|
10
|
Square TA, Jandzik D, Massey JL, Romášek M, Stein HP, Hansen AW, Purkayastha A, Cattell MV, Medeiros DM. Evolution of the endothelin pathway drove neural crest cell diversification. Nature 2020; 585:563-568. [PMID: 32939088 DOI: 10.1038/s41586-020-2720-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA. .,Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA.
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA. .,Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia. .,Department of Zoology, Charles University in Prague, Prague, Czech Republic.
| | - James L Massey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Marek Romášek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Gymnázium Jiřího Wolkera, Prostějov, Czech Republic
| | - Haley P Stein
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew W Hansen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Amrita Purkayastha
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Biology, Metropolitan State University, Denver, CO, USA
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
11
|
Yokoyama H, Yoshimura M, Suzuki DG, Higashiyama H, Wada H. Development of the lamprey velum and implications for the evolution of the vertebrate jaw. Dev Dyn 2020; 250:88-98. [PMID: 32865292 DOI: 10.1002/dvdy.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The vertebrate jaw is thought to have evolved through developmental modification of the mandibular arch. An extant jawless vertebrate, the lamprey, possesses a structure called "velum"-a mandibular arch derivative-in addition to the oral apparatus. This leads us to assess the velum's possible contribution to the evolution of jaws. RESULTS The velar muscles develop from progenitor cells distinct from those from which the oral muscles develop. In addition, the oral and velar regions originate from the different sub-population of the trigeminal neural crest cells (NCCs): the former region receives NCCs from the midbrain, whereas the latter region receives NCCs from the anterior hindbrain. The expression of patterning genes (eg, DlxA and MsxA) is activated at a later developmental stage in the velum compared to the oral region, and more importantly, in different cells from those in the oral region. CONCLUSION The lamprey mandibular arch consists of two developmental units: the anterior oral unit and the posterior velar unit. Because structural elements of the lamprey velum may be homologous to the jaw, the evolution of vertebrate jaws may have occurred by the velum being released from its functional roles in feeding or respiration in jawless vertebrates.
Collapse
Affiliation(s)
- Hiromasa Yokoyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Miho Yoshimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Daichi G Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
13
|
Prummel KD, Hess C, Nieuwenhuize S, Parker HJ, Rogers KW, Kozmikova I, Racioppi C, Brombacher EC, Czarkwiani A, Knapp D, Burger S, Chiavacci E, Shah G, Burger A, Huisken J, Yun MH, Christiaen L, Kozmik Z, Müller P, Bronner M, Krumlauf R, Mosimann C. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat Commun 2019; 10:3857. [PMID: 31451684 PMCID: PMC6710290 DOI: 10.1038/s41467-019-11561-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo. Numerous tissues are derived from the lateral plate mesoderm (LPM) but how this is specified is unclear. Here, the authors identify a pan-LPM reporter activity found in the zebrafish draculin (drl) gene that also shows transgenic activity in LPM-corresponding territories of several chordates, including chicken, axolotl, lamprey, Ciona, and amphioxus.
Collapse
Affiliation(s)
- Karin D Prummel
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Christopher Hess
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Susan Nieuwenhuize
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Hugo J Parker
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Eline C Brombacher
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Anna Czarkwiani
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Dunja Knapp
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Maximina H Yun
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
14
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
15
|
Ahi EP, Singh P, Duenser A, Gessl W, Sturmbauer C. Divergence in larval jaw gene expression reflects differential trophic adaptation in haplochromine cichlids prior to foraging. BMC Evol Biol 2019; 19:150. [PMID: 31340758 PMCID: PMC6657104 DOI: 10.1186/s12862-019-1483-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Understanding how variation in gene expression contributes to morphological diversity is a major goal in evolutionary biology. Cichlid fishes from the East African Great lakes exhibit striking diversity in trophic adaptations predicated on the functional modularity of their two sets of jaws (oral and pharyngeal). However, the transcriptional basis of this modularity is not so well understood, as no studies thus far have directly compared the expression of genes in the oral and pharyngeal jaws. Nor is it well understood how gene expression may have contributed to the parallel evolution of trophic morphologies across the replicate cichlid adaptive radiations in Lake Tanganyika, Malawi and Victoria. Results We set out to investigate the role of gene expression divergence in cichlid fishes from these three lakes adapted to herbivorous and carnivorous trophic niches. We focused on the development stage prior to the onset of exogenous feeding that is critical for understanding patterns of gene expression after oral and pharyngeal jaw skeletogenesis, anticipating environmental cues. This framework permitted us for the first time to test for signatures of gene expression underlying jaw modularity in convergent eco-morphologies across three independent adaptive radiations. We validated a set of reference genes, with stable expression between the two jaw types and across species, which can be important for future studies of gene expression in cichlid jaws. Next we found evidence of modular and non-modular gene expression between the two jaws, across different trophic niches and lakes. For instance, prdm1a, a skeletogenic gene with modular anterior-posterior expression, displayed higher pharyngeal jaw expression and modular expression pattern only in carnivorous species. Furthermore, we found the expression of genes in cichlids jaws from the youngest Lake Victoria to exhibit low modularity compared to the older lakes. Conclusion Overall, our results provide cross-species transcriptional comparisons of modularly-regulated skeletogenic genes in the two jaw types, implicating expression differences which might contribute to the formation of divergent trophic morphologies at the stage of larval independence prior to foraging. Electronic supplementary material The online version of this article (10.1186/s12862-019-1483-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria. .,Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden.
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| |
Collapse
|
16
|
Kaucka M, Adameyko I. Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Semin Cell Dev Biol 2019; 91:2-12. [DOI: 10.1016/j.semcdb.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022]
|
17
|
Kuratani S. The neural crest and origin of the neurocranium in vertebrates. Genesis 2018; 56:e23213. [PMID: 30134067 DOI: 10.1002/dvg.23213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 01/20/2023]
Abstract
Cranium of jawed vertebrates is composed of dorsal moiety that encapsulates the brain, or the neurocranium, and the is called the neurocranium, and the ventral moiety, the viscerocranium, that supports the pharynx. In modern jawed vertebrates (crown gnathostomes), the viscerocranium is predominantly of neural crest origin, and for the neurocranium, the rostral part is derived from neural crest cells, whereas the posterior part from the mesoderm. In the cyclostome cranium, the mesoderm/neural crest boundary of the neurocranium used to be enigmatic, let alone the morphological comparison of neurocranial between two cyclostome groups, lampreys and hagfishes. By examining the hagfish development it has become clear that cyclostomes share a common craniofacial embryonic pattern that is not shared by modern gnathostomes, and cyclostome cranium can be compared among the group as developmental modular units with comparable mesoderm/neural crest boundary within the neuroranium. Also, the dual origin of the jawed vertebrate neurocranium has now turned out to represent a derived condition, and ancestrally, the neurocranium would likely have been predominantly of mesodermal origin. Enlargement of the forebrain and reorganization of the oral apparatus seem to have led to the involvement of the neural crest in the rostral neurocranium.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR) and RIKEN Cluster for Pioneering Research (CPR), Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
18
|
DeLaurier A. Evolution and development of the fish jaw skeleton. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e337. [PMID: 30378758 DOI: 10.1002/wdev.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina
| |
Collapse
|
19
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
20
|
Adachi N, Pascual-Anaya J, Hirai T, Higuchi S, Kuratani S. Development of hypobranchial muscles with special reference to the evolution of the vertebrate neck. ZOOLOGICAL LETTERS 2018; 4:5. [PMID: 29468087 PMCID: PMC5816939 DOI: 10.1186/s40851-018-0087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The extant vertebrates include cyclostomes (lamprey and hagfish) and crown gnathostomes (jawed vertebrates), but there are various anatomical disparities between these two groups. Conspicuous in the gnathostomes is the neck, which occupies the interfacial domain between the head and trunk, including the occipital part of the cranium, the shoulder girdle, and the cucullaris and hypobranchial muscles (HBMs). Of these, HBMs originate from occipital somites to form the ventral pharyngeal and neck musculature in gnathostomes. Cyclostomes also have HBMs on the ventral pharynx, but lack the other neck elements, including the occipital region, the pectoral girdle, and cucullaris muscles. These anatomical differences raise questions about the evolution of the neck in vertebrates. RESULTS In this study, we observed developing HBMs as a basis for comparison between the two groups and show that the arrangement of the head-trunk interface in gnathostomes is distinct from that of lampreys. Our comparative analyses reveal that, although HBM precursors initially pass through the lateral side of the pericardium in both groups, the relative positions of the pericardium withrespect to the pharyngeal arches differ between the two, resulting in diverse trajectories of HBMs in gnathostomes and lampreys. CONCLUSIONS We suggest that a heterotopic rearrangement of early embryonic components, including the pericardium and pharyngeal arches, may have played a fundamental role in establishing the gnathostome HBMs, which would also have served as the basis for neck formation in the jawed vertebrate lineage.
Collapse
Affiliation(s)
- Noritaka Adachi
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Shinnosuke Higuchi
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
21
|
Fish JL. Evolvability of the vertebrate craniofacial skeleton. Semin Cell Dev Biol 2017; 91:13-22. [PMID: 29248471 DOI: 10.1016/j.semcdb.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
The skull is a vertebrate novelty. Morphological adaptations of the skull are associated with major evolutionary transitions, including the shift to a predatory lifestyle and the ability to masticate while breathing. These adaptations include the chondrocranium, dermatocranium, articulated jaws, primary and secondary palates, internal choanae, the middle ear, and temporomandibular joint. The incredible adaptive diversity of the vertebrate skull indicates an underlying bauplan that promotes evolvability. Comparative studies in craniofacial development suggest that the craniofacial bauplan includes three secondary organizers, two that are bilaterally placed at the Hinge of the developing jaw, and one situated in the midline of the developing face (the FEZ). These organizers regulate tissue interactions between the cranial neural crest, the neuroepithelium, and facial and pharyngeal epithelia that regulate the development and evolvability of the craniofacial skeleton.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of Massachusetts Lowell, Department of Biological Sciences, 198 Riverside St., Olsen Hall 619, Lowell, MA 01854, U.S.A..
| |
Collapse
|
22
|
Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev Biol 2017; 427:219-229. [DOI: 10.1016/j.ydbio.2016.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 11/20/2016] [Indexed: 01/30/2023]
|
23
|
Square T, Jandzik D, Cattell M, Hansen A, Medeiros DM. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling. Sci Rep 2016; 6:34282. [PMID: 27677704 PMCID: PMC5039696 DOI: 10.1038/srep34282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84215, Slovakia
| | - Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Andrew Hansen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
24
|
Hu Y, Ghigliotti L, Vacchi M, Pisano E, Detrich HW, Albertson RC. Evolution in an extreme environment: developmental biases and phenotypic integration in the adaptive radiation of antarctic notothenioids. BMC Evol Biol 2016; 16:142. [PMID: 27356756 PMCID: PMC4928320 DOI: 10.1186/s12862-016-0704-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022] Open
Abstract
Background Over the past 40 million years water temperatures have dramatically dropped in the Southern Ocean, which has led to the local extinction of most nearshore fish lineages. The evolution of antifreeze glycoproteins in notothenioids, however, enabled these ancestrally benthic fishes to survive and adapt as temperatures reached the freezing point of seawater (−1.86 °C). Antarctic notothenioids now represent the primary teleost lineage in the Southern Ocean and are of fundamental importance to the local ecosystem. The radiation of notothenioids has been fostered by the evolution of “secondary pelagicism”, the invasion of pelagic habitats, as the group diversified to fill newly available foraging niches in the water column. While elaborate craniofacial modifications have accompanied this adaptive radiation, little is known about how these morphological changes have contributed to the evolutionary success of notothenioids. Results We used a 3D-morphometrics approach to investigate patterns of morphological variation in the craniofacial skeleton among notothenioids, and show that variation in head shape is best explained by divergent selection with respect to foraging niche. We document further an accelerated rate of morphological evolution in the icefish family Channichthyidae, and show that their rapid diversification was accompanied by the evolution of relatively high levels of morphological integration. Whereas most studies suggest that extensive integration should constrain phenotypic evolution, icefish stand out as a rare example of increased integration possibly facilitating evolutionary potential. Finally, we show that the unique feeding apparatus in notothenioids in general, and icefish in particular, can be traced to shifts in early developmental patterning mechanisms and ongoing growth of the pharyngeal skeleton. Conclusion Our work suggests that ecological opportunity is a major factor driving craniofacial variation in this group. Further, the observation that closely related lineages can differ dramatically in integration suggests that this trait can evolve quickly. We propose that the evolution of high levels of phenotypic integration in icefishes may be considered a key innovation that facilitated their morphological evolution and subsequent ecological expansion. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0704-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinan Hu
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA. .,Present Address: Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Laura Ghigliotti
- Institute of Marine Sciences (ISMAR), CNR, Via De Marini 6, 16149, Genoa, Italy
| | - Marino Vacchi
- Institute of Marine Sciences (ISMAR), CNR, Via De Marini 6, 16149, Genoa, Italy
| | - Eva Pisano
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, 01908, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
25
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
26
|
Kuratani S, Oisi Y, Ota KG. Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies. Zoolog Sci 2016; 33:229-38. [DOI: 10.2108/zs150187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458-2906, USA
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| |
Collapse
|
27
|
Fish JL. Developmental mechanisms underlying variation in craniofacial disease and evolution. Dev Biol 2015; 415:188-197. [PMID: 26724698 DOI: 10.1016/j.ydbio.2015.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 01/14/2023]
Abstract
Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of Massachusetts Lowell, Department of Biological Sciences, 198 Riverside Street, Olsen Hall, Room 619, Lowell, MA 01854, United States.
| |
Collapse
|
28
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
29
|
Gordon C, Weaver K, Zechi-Ceide R, Madsen E, Tavares A, Oufadem M, Kurihara Y, Adameyko I, Picard A, Breton S, Pierrot S, Biosse-Duplan M, Voisin N, Masson C, Bole-Feysot C, Nitschké P, Delrue MA, Lacombe D, Guion-Almeida M, Moura P, Garib D, Munnich A, Ernfors P, Hufnagel R, Hopkin R, Kurihara H, Saal H, Weaver D, Katsanis N, Lyonnet S, Golzio C, Clouthier D, Amiel J. Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia. Am J Hum Genet 2015; 96:519-31. [PMID: 25772936 DOI: 10.1016/j.ajhg.2015.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022] Open
Abstract
The endothelin receptor type A (EDNRA) signaling pathway is essential for the establishment of mandibular identity during development of the first pharyngeal arch. We report four unrelated individuals with the syndrome mandibulofacial dysostosis with alopecia (MFDA) who have de novo missense variants in EDNRA. Three of the four individuals have the same substitution, p.Tyr129Phe. Tyr129 is known to determine the selective affinity of EDNRA for endothelin 1 (EDN1), its major physiological ligand, and the p.Tyr129Phe variant increases the affinity of the receptor for EDN3, its non-preferred ligand, by two orders of magnitude. The fourth individual has a somatic mosaic substitution, p.Glu303Lys, and was previously described as having Johnson-McMillin syndrome. The zygomatic arch of individuals with MFDA resembles that of mice in which EDNRA is ectopically activated in the maxillary prominence, resulting in a maxillary to mandibular transformation, suggesting that the p.Tyr129Phe variant causes an EDNRA gain of function in the developing upper jaw. Our in vitro and in vivo assays suggested complex, context-dependent effects of the EDNRA variants on downstream signaling. Our findings highlight the importance of finely tuned regulation of EDNRA signaling during human craniofacial development and suggest that modification of endothelin receptor-ligand specificity was a key step in the evolution of vertebrate jaws.
Collapse
|
30
|
Craniofacial modularity, character analysis, and the evolution of the premaxilla in early African hominins. J Hum Evol 2014; 77:143-54. [DOI: 10.1016/j.jhevol.2014.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 03/21/2014] [Accepted: 06/26/2014] [Indexed: 01/08/2023]
|
31
|
Braasch I, Schartl M. Evolution of endothelin receptors in vertebrates. Gen Comp Endocrinol 2014; 209:21-34. [PMID: 25010382 DOI: 10.1016/j.ygcen.2014.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/07/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023]
Abstract
Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of newly available genome assemblies from phylogenetically informative taxa. Our assessment further highlights the diversity of the vertebrate endothelin system and calls for detailed functional and pharmacological analyses of the endothelin system beyond tetrapods.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA.
| | - Manfred Schartl
- Department of Physiological Chemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
32
|
Ziermann JM, Miyashita T, Diogo R. Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| | - Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton AB T6E 2N4 Canada
| | - Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| |
Collapse
|
33
|
Oisi Y, Ota KG, Fujimoto S, Kuratani S. Development of the Chondrocranium in Hagfishes, with Special Reference to the Early Evolution of Vertebrates. Zoolog Sci 2013; 30:944-61. [DOI: 10.2108/zsj.30.944] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yasuhiro Oisi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Satoko Fujimoto
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
34
|
Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins. Proc Natl Acad Sci U S A 2013; 110:11899-904. [PMID: 23818600 DOI: 10.1073/pnas.1304210110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Classical hypotheses regarding the evolutionary origin of paired appendages propose transformation of precursor structures (gill arches and lateral fin folds) into paired fins. During development, gnathostome paired appendages form as outgrowths of body wall somatopleure, a tissue composed of somatic lateral plate mesoderm (LPM) and overlying ectoderm. In amniotes, LPM contributes connective tissue to abaxial musculature and forms ventrolateral dermis of the interlimb body wall. The phylogenetic distribution of this character is uncertain because lineage analyses of LPM have not been generated in anamniotes. We focus on the evolutionary history of the somatopleure to gain insight into the tissue context in which paired fins first appeared. Lampreys diverged from other vertebrates before the acquisition of paired fins and provide a model for investigating the preappendicular condition. We present vital dye fate maps that suggest the somatopleure is eliminated in lamprey as the LPM is separated from the ectoderm and sequestered to the coelomic linings during myotome extension. We also examine the distribution of postcranial mesoderm in catshark and axolotl. In contrast to lamprey, our findings support an LPM contribution to the trunk body wall of these taxa, which is similar to published data for amniotes. Collectively, these data lead us to hypothesize that a persistent somatopleure in the lateral body wall is a gnathostome synapomorphy, and the redistribution of LPM was a key step in generating the novel developmental module that ultimately produced paired fins. These embryological criteria can refocus arguments on paired fin origins and generate hypotheses testable by comparative studies on the source, sequence, and extent of genetic redeployment.
Collapse
|
35
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
36
|
Gillis JA, Modrell MS, Baker CVH. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton. Nat Commun 2013; 4:1436. [PMID: 23385581 PMCID: PMC3600657 DOI: 10.1038/ncomms2429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/02/2013] [Indexed: 12/02/2022] Open
Abstract
Gegenbaur’s classical hypothesis of jaw-gill arch serial homology is widely cited, but remains unsupported by either paleontological evidence (e.g. a series of fossils reflecting the stepwise transformation of a gill arch into a jaw) or developmental genetic data (e.g. shared molecular mechanisms underlying segment identity in the mandibular, hyoid and gill arch endoskeletons). Here we show that nested expression of Dlx genes – the “Dlx code” that specifies upper and lower jaw identity in mammals and teleosts – is a primitive feature of the mandibular, hyoid and gill arches of jawed vertebrates. Using fate-mapping techniques, we demonstrate that the principal dorsal and ventral endoskeletal segments of the jaw, hyoid and gill arches of the skate Leucoraja erinacea derive from molecularly equivalent mesenchymal domains of combinatorial Dlx gene expression. Our data suggest that vertebrate jaw, hyoid and gill arch cartilages are serially homologous, and were primitively patterned dorsoventrally by a common Dlx blueprint.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK.
| | | | | |
Collapse
|
37
|
Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 2013; 377:428-48. [PMID: 23473983 DOI: 10.1016/j.ydbio.2013.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/26/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fujimoto S, Oisi Y, Kuraku S, Ota KG, Kuratani S. Non-parsimonious evolution of hagfish Dlx genes. BMC Evol Biol 2013; 13:15. [PMID: 23331926 PMCID: PMC3552724 DOI: 10.1186/1471-2148-13-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background The number of members of the Dlx gene family increased during the two rounds of whole-genome duplication that occurred in the common ancestor of the vertebrates. Because the Dlx genes are involved in the development of the cranial skeleton, brain, and sensory organs, their expression patterns have been analysed in various organisms in the context of evolutionary developmental biology. Six Dlx genes have been isolated in the lampreys, a group of living jawless vertebrates (cyclostomes), and their expression patterns analysed. However, little is known about the Dlx genes in the hagfish, the other cyclostome group, mainly because the embryological analysis of this animal is difficult. Results To identify the hagfish Dlx genes and describe their expression patterns, we cloned the cDNA from embryos of the Japanese inshore hagfish Eptatretus burgeri. Our results show that the hagfish has at least six Dlx genes and one pseudogene. In a phylogenetic analysis, the hagfish Dlx genes and those of the lampreys tended to be excluded from the clade of the gnathostome Dlx genes. In several cases, the lamprey Dlx genes clustered with the clade consisting of two hagfish genes, suggesting that independent gene duplications have occurred in the hagfish lineage. Analysis of the expression of these genes showed distinctive overlapping expression patterns in the cranial mesenchymal cells and the inner ear. Conclusions Independent duplication, pseudogenization, and loss of the Dlx genes probably occurred in the hagfish lineage after its split from the other vertebrate lineages. This pattern is reminiscent of the non-parsimonious evolution of its morphological traits, including its inner ear and vertebrae, which indicate that this group is an early-branching lineage that diverged before those characters evolved.
Collapse
Affiliation(s)
- Satoko Fujimoto
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
40
|
New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev Biol 2012; 371:121-35. [PMID: 22960284 DOI: 10.1016/j.ydbio.2012.08.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022]
Abstract
Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program.
Collapse
|
41
|
Shimeld SM, Donoghue PCJ. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 2012; 139:2091-9. [DOI: 10.1242/dev.074716] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lampreys and hagfish, which together are known as the cyclostomes or ‘agnathans’, are the only surviving lineages of jawless fish. They diverged early in vertebrate evolution, before the origin of the hinged jaws that are characteristic of gnathostome (jawed) vertebrates and before the evolution of paired appendages. However, they do share numerous characteristics with jawed vertebrates. Studies of cyclostome development can thus help us to understand when, and how, key aspects of the vertebrate body evolved. Here, we summarise the development of cyclostomes, highlighting the key species studied and experimental methods available. We then discuss how studies of cyclostomes have provided important insight into the evolution of fins, jaws, skeleton and neural crest.
Collapse
Affiliation(s)
- Sebastian M. Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Phillip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
42
|
Gillis JA, Modrell MS, Baker CVH. A timeline of pharyngeal endoskeletal condensation and differentiation in the shark, Scyliorhinus canicula, and the paddlefish, Polyodon spathula. ZEITSCHRIFT FUR ANGEWANDTE ICHTHYOLOGIE = JOURNAL OF APPLIED ICHTHYOLOGY 2012; 28:341-345. [PMID: 26566297 PMCID: PMC4640176 DOI: 10.1111/j.1439-0426.2012.01976.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lesser-spotted dogfish (Scyliorhinus canicula) and the North American paddlefish (Polyodon spathula) are two emerging model systems for the study of vertebrate craniofacial development. Notably, both of these taxa have retained plesiomorphic aspects of pharyngeal endoskeletal organization, relative to more commonly used models of vertebrate craniofacial development (e.g. zebrafish, chick and mouse), and are therefore well suited to inform the pharyngeal endoskeletal patterning mechanisms that functioned in the last common ancestor of jawed vertebrates. Here, we present a histological overview of the condensation and chondrogenesis of the most prominent endoskeletal elements of the jaw, hyoid and gill arches - the palatoquadrate/Meckel's cartilage, the hyomandibula/ceratohyal, and the epi-/ceratobranchial cartilages, respectively - in embryonic series of S. canicula and P. spathula. Our observations provide a provisional timeline and anatomical framework for further molecular developmental and functional investigations of pharyngeal endoskeletal differentiation and patterning in these phylogenetically informative taxa.
Collapse
Affiliation(s)
- J A Gillis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - M S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - C V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Iklé JM, Artinger KB, Clouthier DE. Identification and characterization of the zebrafish pharyngeal arch-specific enhancer for the basic helix-loop-helix transcription factor Hand2. Dev Biol 2012; 368:118-26. [PMID: 22595513 DOI: 10.1016/j.ydbio.2012.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 12/27/2022]
Abstract
The development of the vertebrate jaw relies on a network of transcription factors that patterns the dorsal-ventral axis of the pharyngeal arches. Recent findings in both mouse and zebrafish illustrate that the basic-helix-loop-helix transcription factor, Hand2, is crucial in this patterning process. While Hand2 has functionally similar roles in these two species, little is known about the regulatory sequences controlling hand2 expression in zebrafish. Using bioinformatics and Tol2-mediated transgenesis, we have generated zebrafish transgenic reporter lines in which either the mouse or zebrafish arch-specific hand2 enhancer direct expression of a fluorescent reporter. We find that both the mouse and zebrafish enhancers drive early reporter expression in a hand2-specific pattern in the ventral pharyngeal arches of zebrafish embryos. These lines provide useful tools to follow ventral arch cells during vertebrate jaw development while also allowing dissection of hand2 transcriptional regulation during this process.
Collapse
Affiliation(s)
- Jennifer M Iklé
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
44
|
Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 2012; 222:41-55. [PMID: 22500853 DOI: 10.1111/j.1469-7580.2012.01505.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cephalic neural crest produces streams of migrating cells that populate pharyngeal arches and a more rostral, premandibular domain, to give rise to an extensive ectomesenchyme in the embryonic vertebrate head. The crest cells forming the trigeminal stream are the major source of the craniofacial skeleton; however, there is no clear distinction between the mandibular arch and the premandibular domain in this ectomesenchyme. The question regarding the evolution of the gnathostome jaw is, in part, a question about the differentiation of the mandibular arch, the rostralmost component of the pharynx, and in part a question about the developmental fate of the premandibular domain. We address the developmental definition of the mandibular arch in connection with the developmental origin of the trabeculae, paired cartilaginous elements generally believed to develop in the premandibular domain, and also of enigmatic cartilaginous elements called polar cartilages. Based on comparative embryology, we propose that the mandibular arch ectomesenchyme in gnathostomes can be defined as a Dlx1-positive domain, and that the polar cartilages, which develop from the Dlx1-negative premandibular ectomesenchyme, would represent merely posterior parts of the trabeculae. We also show, in the lamprey embryo, early migration of mandibular arch mesenchyme into the premandibular domain, and propose an updated version of the heterotopy theory on the origin of the jaw.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
46
|
Kuraku S, Meyer A. Detection and phylogenetic assessment of conserved synteny derived from whole genome duplications. Methods Mol Biol 2012; 855:385-95. [PMID: 22407717 DOI: 10.1007/978-1-61779-582-4_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of intragenomic conservation of gene compositions in multiple chromosomal segments led to evidence of whole genome (WGDs) duplications. The process by which WGDs have been maintained and decayed provides us with clues for understanding how the genome evolves. In this chapter, we summarize current understanding of phylogenetic distribution and evolutionary impact of WGDs, introduce basic procedures to detect conserved synteny, and discuss typical pitfalls, as well as biological insights.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan.
| | | |
Collapse
|
47
|
Fish JL, Villmoare B, Köbernick K, Compagnucci C, Britanova O, Tarabykin V, Depew MJ. Satb2, modularity, and the evolvability of the vertebrate jaw. Evol Dev 2011; 13:549-64. [DOI: 10.1111/j.1525-142x.2011.00511.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer L. Fish
- Department of Craniofacial Development; King's College, London, Guy's Hospital; Floor 27, London Bridge; London; SE1 9RT; UK
| | - Brian Villmoare
- Department of Anthropology; University College London; 14 Taviton Street; London; WC1H 0BW; UK
| | - Katja Köbernick
- Department of Molecular Biology of Neuronal Signals; Max-Planck-Institute for Experimental Medicine; Hermann-Rein-Str. 3; 37075 Göttingen; Germany
| | - Claudia Compagnucci
- Department of Craniofacial Development; King's College, London, Guy's Hospital; Floor 27, London Bridge; London; SE1 9RT; UK
| | - Olga Britanova
- Department of Molecular Biology of Neuronal Signals; Max-Planck-Institute for Experimental Medicine; Hermann-Rein-Str. 3; 37075 Göttingen; Germany
| | - Victor Tarabykin
- Department of Molecular Biology of Neuronal Signals; Max-Planck-Institute for Experimental Medicine; Hermann-Rein-Str. 3; 37075 Göttingen; Germany
| | - Michael J. Depew
- Department of Craniofacial Development; King's College, London, Guy's Hospital; Floor 27, London Bridge; London; SE1 9RT; UK
| |
Collapse
|
48
|
Alexander C, Zuniga E, Blitz IL, Wada N, Le Pabic P, Javidan Y, Zhang T, Cho KW, Crump JG, Schilling TF. Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 2011; 138:5135-46. [PMID: 22031543 DOI: 10.1242/dev.067801] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) play crucial roles in craniofacial development but little is known about their interactions with other signals, such as Endothelin 1 (Edn1) and Jagged/Notch, which pattern the dorsal-ventral (DV) axis of the pharyngeal arches. Here, we use transgenic zebrafish to monitor and perturb BMP signaling during arch formation. With a BMP-responsive transgene, Tg(Bre:GFP), we show active BMP signaling in neural crest (NC)-derived skeletal precursors of the ventral arches, and in surrounding epithelia. Loss-of-function studies using a heat shock-inducible, dominant-negative BMP receptor 1a [Tg(hs70I:dnBmpr1a-GFP)] to bypass early roles show that BMP signaling is required for ventral arch development just after NC migration, the same stages at which we detect Tg(Bre:GFP). Inhibition of BMP signaling at these stages reduces expression of the ventral signal Edn1, as well as ventral-specific genes such as hand2 and dlx6a in the arches, and expands expression of the dorsal signal jag1b. This results in a loss or reduction of ventral and intermediate skeletal elements and a mis-shapen dorsal arch skeleton. Conversely, ectopic BMP causes dorsal expansion of ventral-specific gene expression and corresponding reductions/transformations of dorsal cartilages. Soon after NC migration, BMP is required to induce Edn1 and overexpression of either signal partially rescues ventral skeletal defects in embryos deficient for the other. However, once arch primordia are established the effects of BMPs become restricted to more ventral and anterior (palate) domains, which do not depend on Edn1. This suggests that BMPs act upstream and in parallel to Edn1 to promote ventral fates in the arches during early DV patterning, but later acquire distinct roles that further subdivide the identities of NC cells to pattern the craniofacial skeleton.
Collapse
Affiliation(s)
- Courtney Alexander
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Johnston P. Cranial muscles of the anurans Leiopelma hochstetteri and Ascaphus truei and the homologies of the mandibular adductors in Lissamphibia and other gnathostomes. J Morphol 2011; 272:1492-512. [PMID: 21845732 DOI: 10.1002/jmor.10998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/08/2011] [Accepted: 05/07/2011] [Indexed: 11/09/2022]
Abstract
The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and "adductor mandibulae" is preferred to "levator mandibulae" to align with usage in other gnathostomes.
Collapse
Affiliation(s)
- Peter Johnston
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
50
|
Onimaru K, Shoguchi E, Kuratani S, Tanaka M. Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev Biol 2011; 359:124-136. [PMID: 21864524 DOI: 10.1016/j.ydbio.2011.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022]
Abstract
Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior-posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.
Collapse
Affiliation(s)
- Koh Onimaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan.
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, Riken, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|