1
|
Samrani LMM, Pennings JLA, Hallmark N, Bars R, Tinwell H, Pallardy M, Piersma AH. Dynamic regulation of gene expression and morphogenesis in the zebrafish embryo test after exposure to all-trans retinoic acid. Reprod Toxicol 2023; 115:8-16. [PMID: 36375755 DOI: 10.1016/j.reprotox.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
The zebrafish embryotoxicity test (ZET) is widely used in developmental toxicology. The analysis of gene expression regulation in ZET after chemical exposure provides mechanistic information about the effects of chemicals on morphogenesis in the test. The gene expression response magnitude has been shown to change with exposure duration. The objective of this work is to study the effect of the exposure duration on the magnitude of gene expression changes in the all-trans retinoic acid (ATRA) signaling pathway in the ZET. Retinoic acid regulation is a key driver of morphogenesis and is therefore employed here as an indicator for the regulation of developmental genes. A teratogenic concentration of 7.5 nM of ATRA was given at 3 hrs post fertilization (hpf) for a range of exposure durations until 120 hrs of development. The expression of a selection of genes related to ATRA signaling and downstream developmental genes was determined. The highest magnitudes of gene expression regulation were observed after 2-24 hrs exposure with an optimal response after 4 hrs. Longer exposures showed a decrease in the gene expression response, although continued exposure to 120 hpf caused malformations and lethality. This study shows that assessment of gene expression regulation at early time points after the onset of exposure in the ZET may be optimal for the prediction of developmental toxicity. We believe these results could help optimize sensitivity in future studies with ZET.
Collapse
Affiliation(s)
- Laura M M Samrani
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, Châtenay-Malabry 92296, France; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands.
| | - Jeroen L A Pennings
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | | | | | - Marc Pallardy
- Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, Châtenay-Malabry 92296, France
| | - Aldert H Piersma
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
2
|
Schulreich SM, Salamanca-Díaz DA, Zieger E, Calcino AD, Wanninger A. A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve. ORG DIVERS EVOL 2022; 22:893-913. [PMID: 36398106 PMCID: PMC9649484 DOI: 10.1007/s13127-022-00569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves. Supplementary information The online version contains supplementary material available at 10.1007/s13127-022-00569-5.
Collapse
Affiliation(s)
- Stephan M. Schulreich
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - David A. Salamanca-Díaz
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elisabeth Zieger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andrew D. Calcino
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andreas Wanninger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
3
|
Lin CY, Lu MYJ, Yue JX, Li KL, Le Pétillon Y, Yong LW, Chen YH, Tsai FY, Lyu YF, Chen CY, Hwang SPL, Su YH, Yu JK. Molecular asymmetry in the cephalochordate embryo revealed by single-blastomere transcriptome profiling. PLoS Genet 2021; 16:e1009294. [PMID: 33382716 PMCID: PMC7806126 DOI: 10.1371/journal.pgen.1009294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/13/2021] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Studies in various animals have shown that asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification in early embryos. However, comprehensive analyses of the maternal transcriptomes with spatial information are scarce and limited to a handful of model organisms. In cephalochordates (amphioxus), an early branching chordate group, maternal transcripts of germline determinants form a compact granule that is inherited by a single blastomere during cleavage stages. Further blastomere separation experiments suggest that other transcripts associated with the granule are likely responsible for organizing the posterior structure in amphioxus; however, the identities of these determinants remain unknown. In this study, we used high-throughput RNA sequencing of separated blastomeres to examine asymmetrically localized transcripts in two-cell and eight-cell stage embryos of the amphioxus Branchiostoma floridae. We identified 111 and 391 differentially enriched transcripts at the 2-cell stage and the 8-cell stage, respectively, and used in situ hybridization to validate the spatial distribution patterns for a subset of these transcripts. The identified transcripts could be categorized into two major groups: (1) vegetal tier/germ granule-enriched and (2) animal tier/anterior-enriched transcripts. Using zebrafish as a surrogate model system, we showed that overexpression of one animal tier/anterior-localized amphioxus transcript, zfp665, causes a dorsalization/anteriorization phenotype in zebrafish embryos by downregulating the expression of the ventral gene, eve1, suggesting a potential function of zfp665 in early axial patterning. Our results provide a global transcriptomic blueprint for early-stage amphioxus embryos. This dataset represents a rich platform to guide future characterization of molecular players in early amphioxus development and to elucidate conservation and divergence of developmental programs during chordate evolution.
Collapse
Affiliation(s)
- Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yann Le Pétillon
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Fu-Yu Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Feng Lyu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yi Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (Y-HS); (J-KY)
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
- * E-mail: (Y-HS); (J-KY)
| |
Collapse
|
4
|
Li W, Yuan M, Wu Y, Liu X. Bixafen exposure induces developmental toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2020; 189:109923. [PMID: 32980012 DOI: 10.1016/j.envres.2020.109923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Bixafen (BIX), a new generation succinate dehydrogenase inhibitor (SDHI) fungicide commonly used in agriculture, is regarded as a potential aquatic pollutant because of its lethal and teratogenic effects on Xenopus tropicalis embryos. To evaluate the threat of BIX to aquatic environments, information concerning BIX's embryonic toxicity to aquatic organisms (especially fish) is important, yet such information remains scarce. The present study aimed to fill this knowledge gap by employing zebrafish embryos as model animals in exposure to 0.1, 0.3 and 0.9 μM BIX. Our results showed that BIX caused severe developmental abnormalities (hypopigmentation, tail deformity, spinal curvature and yolk sac absorption anomaly) and hatching delay in zebrafish embryos. The expression levels of early embryogenesis-related genes (gh, crx, sox2 and neuroD) were downregulated after BIX exposure, except for nkx2.4b, which was upregulated. Furthermore, transcriptome sequencing analysis showed that all the downregulated differentially expressed genes were enriched in cell cycle processes. Taken together, these results demonstrated that BIX has strong developmental toxicity to zebrafish that may be due to the downregulated expression of genes involved in embryonic development. These findings provide valuable reference for evaluating BIX's potential adverse effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| | - Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Xuan Liu
- Amoy Diagnostics Co., Ltd, Xiamen, 361027, PR China.
| |
Collapse
|
5
|
Organization of Embryonic Morphogenesis via Mechanical Information. Dev Cell 2019; 49:829-839.e5. [PMID: 31178400 DOI: 10.1016/j.devcel.2019.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 01/19/2023]
Abstract
Embryonic organizers establish gradients of diffusible signaling molecules to pattern the surrounding cells. Here, we elucidate an additional mechanism of embryonic organizers that is a secondary consequence of morphogen signaling. Using pharmacological and localized transgenic perturbations, 4D imaging of the zebrafish embryo, systematic analysis of cell motion, and computational modeling, we find that the vertebrate tail organizer orchestrates morphogenesis over distances beyond the range of morphogen signaling. The organizer regulates the rate and coherence of cell motion in the elongating embryo using mechanical information that is transmitted via relay between neighboring cells. This mechanism is similar to a pressure front in granular media and other jammed systems, but in the embryo the mechanical information emerges from self-propelled cell movement and not force transfer between cells. The propagation likely relies upon local biochemical signaling that affects cell contractility, cell adhesion, and/or cell polarity but is independent of transcription and translation.
Collapse
|
6
|
Nelson AC, Cutty SJ, Gasiunas SN, Deplae I, Stemple DL, Wardle FC. In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors. Cell Rep 2018; 19:2782-2795. [PMID: 28658625 PMCID: PMC5494305 DOI: 10.1016/j.celrep.2017.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023] Open
Abstract
T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Stephen J Cutty
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Saule N Gasiunas
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Isabella Deplae
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
7
|
The genome of the Gulf pipefish enables understanding of evolutionary innovations. Genome Biol 2016; 17:258. [PMID: 27993155 PMCID: PMC5168715 DOI: 10.1186/s13059-016-1126-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1126-6) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Bell CC, Amaral PP, Kalsbeek A, Magor GW, Gillinder KR, Tangermann P, di Lisio L, Cheetham SW, Gruhl F, Frith J, Tallack MR, Ru KL, Crawford J, Mattick JS, Dinger ME, Perkins AC. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation. Sci Rep 2016; 6:26657. [PMID: 27226347 PMCID: PMC4880930 DOI: 10.1038/srep26657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis.
Collapse
Affiliation(s)
- Charles C Bell
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Paulo P Amaral
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anton Kalsbeek
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,Garvan Institute of Medical Research, Sydney, Australia
| | - Graham W Magor
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Kevin R Gillinder
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Pierre Tangermann
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Lorena di Lisio
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Seth W Cheetham
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Franziska Gruhl
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Jessica Frith
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Michael R Tallack
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Ke-Lin Ru
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Joanna Crawford
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Sydney, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Andrew C Perkins
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
9
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
10
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
11
|
Moreno-Ayala R, Schnabel D, Salas-Vidal E, Lomelí H. PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development. Dev Biol 2015; 403:89-100. [PMID: 25912688 DOI: 10.1016/j.ydbio.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/16/2022]
Abstract
The Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/β-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes. In this work, we analyze the role of zygotic Zimp7 in zebrafish development. We describe evidence indicating that Zimp7 is required for mesoderm development and dorsoventral patterning. Morpholino-mediated reduction of zygotic Zimp7 produced axial mesodermal defects that were preceded by up-regulation of organizer genes such as bozozok, goosecoid and floating head at the onset of gastrulation and by down-regulation of the ventral markers vox, vent and eve1 indicating loss of the ventrolateral mesoderm. Consistently, embryos overexpressing zimp7 RNA exhibited midline defects such as loss of forebrain and cyclopia accompanied by transcriptional changes directly opposite of those found in the morphants. In addition, the patterning of ventralized embryos produced by the overexpression of vox and vent was restored by a reduction of Zimp7 activity. Altogether, our findings indicate that Zimp7 is involved in transcriptional regulation of factors that are essential for patterning in the dorsoventral axis.
Collapse
Affiliation(s)
- Roberto Moreno-Ayala
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Denhí Schnabel
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Enrique Salas-Vidal
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
12
|
Chen SY, Shih HY, Lin SJ, Hsiao CD, Li ZC, Cheng YC. Etv5a regulates the proliferation of ventral mesoderm cells and the formation of hemato-vascular derivatives. J Cell Sci 2013; 126:5626-34. [PMID: 24101720 DOI: 10.1242/jcs.132613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hematopoietic and vascular endothelial cells constitute the circulatory system and are both generated from the ventral mesoderm. However, the molecules and signaling pathways involved in ventral mesoderm formation and specification remain unclear. We found that zebrafish etv5a was expressed in the ventral mesoderm during gastrulation. Knockdown of Etv5a using morpholinos increased the proliferation of ventral mesoderm cells and caused defects in hematopoietic derivatives and in vascular formation. By contrast, the formation of other mesodermal derivatives, such as pronephros, somites and the gut wall, was not affected. Knockdown specificity was further confirmed by overexpression of an etv5a construct lacking its acidic domain. In conclusion, our data reveal that etv5a is essential for the inhibition of ventral mesoderm cell proliferation and for the formation of the hemato-vascular lineage.
Collapse
Affiliation(s)
- Shin-Yi Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan 33383, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Seaver EC, Yamaguchi E, Richards GS, Meyer NP. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation. EvoDevo 2012; 3:8. [PMID: 22510249 PMCID: PMC3359188 DOI: 10.1186/2041-9139-3-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/18/2012] [Indexed: 02/07/2023] Open
Abstract
Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods.
Collapse
Affiliation(s)
- Elaine C Seaver
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI, USA.
| | | | | | | |
Collapse
|
14
|
Nesan D, Kamkar M, Burrows J, Scott IC, Marsden M, Vijayan MM. Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development in zebrafish. Endocrinology 2012; 153:1288-300. [PMID: 22234471 DOI: 10.1210/en.2011-1559] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid receptor (GR) signaling is thought to play a key role in embryogenesis, but its specific developmental effects remain unclear. Cortisol is the primary ligand for GR activation in teleosts, and in zebrafish (Danio rerio), the prehatch embryo content of this steroid is of maternal origin. Using early zebrafish developmental stages, we tested the hypothesis that GR signaling is critical for embryo growth and hatching. In zebrafish, maternal GR mRNA is degraded quickly, followed by zygotic synthesis of the receptor. GR protein is widely expressed throughout early development, and we were able to knockdown this protein using morpholino oligonucleotides. This led to a more than 70% reduction in mRNA abundance of matrix metalloproteinase-13 (mmp13), a glucocorticoid-responsive gene. The GR morphants displayed delayed somitogenesis, defects in somite and tail morphogenesis, reduced embryo size, and rarely survived after hatch. This correlated with altered expression of myogenic markers, including myogenin, myostatin, and muscle-specific myosin heavy chain and troponin genes. A key finding was a 70-90% reduction in the mRNA abundance of bone morphogenetic proteins (BMP), including bmp2a, bmp2b, and bmp4 in GR morphants. Bioinformatics analysis confirmed multiple putative glucocorticoid response elements upstream of these BMP genes. GR morphants displayed reduced expression of BMP-modulated genes, including eve1 and pax3. Zebrafish GR mRNA injection rescued the GR morphant phenotype and reversed the disrupted expression of BMP and myogenic genes. Our results for the first time indicate that GR signaling is essential for zebrafish muscle development, and we hypothesize a role for BMP morphogens in this process.
Collapse
Affiliation(s)
- Dinushan Nesan
- University of Waterloo, Department of Biology, 200 University Avenue West, Waterloo, Ontario, Canada
| | | | | | | | | | | |
Collapse
|