1
|
Rerkamnuaychoke W, Sreevidya VS, Svoboda KR. Chloroxylenol and benzethonium chloride exposure alters spinal neuron development and behavior in developing zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:117993. [PMID: 40209347 DOI: 10.1016/j.ecoenv.2025.117993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/12/2025]
Abstract
Chloroxylenol (CHX) and benzethonium chloride (BEC) are replacement compounds being used after the ban (U.S. FDA) of triclosan and triclocarban in 2016 from personal care products. These two compounds are also recommended by the World Health Organization (WHO) as disinfectants against COVID-19. Toxicity data for both CHX and BEC are available, however, neurotoxicity studies for both compounds are still limited. Here, we determined the consequences of CHX and BEC exposure in a static exposure paradigm during embryogenesis on neurodevelopment using the zebrafish model (Danio rerio). CHX exposure (1-5 mg/L) dramatically impacted nervous system development without increasing mortality. The exposure altered embryonic motor output, primary motoneuron cell size, spinal interneuron cell size, primary motoneuron (PMN) axon pathfinding and secondary motoneuron (SMN) axon pathfinding. CHX exposure also altered slow muscle fiber development. Changes in neural activity as revealed by the induced changes in embryonic motor output (spontaneous coiling) may underlie the errors in PMN axon pathfinding as well as the changes in spinal interneuron morphology. Errors in SMN axon pathfinding resulting from CHX exposure were directly linked to errors in PMN axon pathfinding. Similar to CHX, BEC exposure (1-5 mg/L) altered embryonic motor output, spinal interneuron development, and slow muscle fiber development. In contrast to CHX, BEC exposure did not alter PMN or SMN axon pathfinding. Moreover, we found that BEC exposure (5 mg/L) from 5 to 96 hpf was lethal, resulting in almost 100 % mortality. Thus, these two triclosan replacement compounds exhibited markedly different modes of toxicity.
Collapse
Affiliation(s)
- Wuttiporn Rerkamnuaychoke
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Virinchipuram S Sreevidya
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
2
|
Akiyama C, Sakata S, Ono F. Normal locomotion in zebrafish lacking the sodium channel NaV1.4 suggests that the need for muscle action potentials is not universal. PLoS Biol 2025; 23:e3003137. [PMID: 40273189 PMCID: PMC12021243 DOI: 10.1371/journal.pbio.3003137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Extensive studies over decades have firmly established the concept that action potentials (APs) in muscles are indispensable for muscle contraction. To re-examine the significance of APs, we generated zebrafish lacking APs by editing the scn4aa and scn4ab genes, which together encode NaV1.4 (NaVDKO), using the CRISPR-Cas9 system. Surprisingly, the escape response of NaVDKOs to tactile stimuli, both in the embryonic and adult stages, was indistinguishable from that of wild-type (WT) fish. Ca2+ imaging using the calcium indicator protein GCaMP revealed that myofibers isolated from WT fish could be excited by the application of acetylcholine (ACh), even in the presence of tetrodotoxin (TTX) indicating that NaVs are dispensable for skeletal muscle contraction in zebrafish. Mathematical simulations showed that the end-plate potential was able to elicit a change in membrane potential large enough to activate the dihydropyridine receptors of the entire muscle fiber owing to the small fiber size and the disseminated distribution of neuromuscular synapses in both adults and embryos. Our data demonstrate that NaVs are not essential for muscle contraction in zebrafish and that the physiological significance of NaV1.4 in muscle is not uniform across vertebrates.
Collapse
Affiliation(s)
- Chifumi Akiyama
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Souhei Sakata
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Fumihito Ono
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
3
|
Zhao F, Shen Y, Ma Z, Tian H, Duan B, Xiao Y, Liu C, Shi X, Chen D, Wei W, Jiang R, Wei P. Transgenerational toxicity assessment of [C 8mim]Br: Focus on early development, antioxidant defense, and transcriptome profiles in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117884. [PMID: 39951882 DOI: 10.1016/j.ecoenv.2025.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
1-Methyl-3-octylimidazolium bromide ([C8mim]Br), one of the most widely used and studied ionic liquids, is a contaminant of emerging concern. Acute exposure to high doses of [C8mim]Br has been shown to induce a variety of toxicity effects in exposed animals. However, the detrimental effects of chronic parental exposure to low doses of [C8mim]Br on unexposed offspring and the underlying mechanisms remain largely unknown. To this end, spawning-capable female and male zebrafish (F0 generation) were separately exposed to 25, 250, and 2500 μg/L of [C8mim]Br for eight weeks and were then mated to spawn. The resulting eggs (F1 generation) were collected and cultured in [C8mim]Br-free media for 96 h. We found that the early growth and development of F1 embryo-larvae, which were not directly exposed to [C8mim]Br, were significantly inhibited. This was evidenced by delayed hatching, increased mortality, reduced body weight, slowed heartbeat, poor motility (decreased spontaneous tail-coiling movements and diminished escape responses to touch stimuli and water swirling), and uninflated swim bladders. Furthermore, fluorescent probe labeling and biochemical analyses revealed an accumulation of reactive oxygen species and impairment of the antioxidant defense system in F1 larvae from [C8mim]Br-exposed F0 parents, indicating the induction of oxidative stress. Finally, transcriptomic sequencing demonstrated that the differentially expressed genes in F1 larvae were primarily involved in muscle development and contraction performance, offering mechanistic insights into the poor motility and associated developmental defects observed in F1 embryo-larvae. Overall, this transgenerational toxicity assessment underscores the adverse outcomes of parental [C8mim]Br exposure on unexposed offspring, providing a crucial aspect of the ecological risks of [C8mim]Br.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ying Shen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhongjun Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huiqing Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bingkun Duan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Wei Wei
- Wushan County Ecological Environmental Monitoring Station, Chongqing 404700, China
| | - Rui Jiang
- Wushan County Ecological Environmental Monitoring Station, Chongqing 404700, China
| | - Penghao Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
4
|
Amin MR, Khara L, Szaszkiewicz J, Kim AM, Hamilton TJ, Ali DW. Brief exposure to (-) THC affects zebrafish embryonic locomotion with effects that persist into the next generation. Sci Rep 2025; 15:2203. [PMID: 39820507 PMCID: PMC11739600 DOI: 10.1038/s41598-024-82353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common. Prenatal exposure to THC can alter neural and behavioral development, but it is unknown how exposure to (-) trans-THC ((-)THC) during very early stages of development impacts fetal growth and movement, and whether effects persist to adulthood, or into the next generation. Here we exposed zebrafish (Danio rerio) to a single exposure of (-)THC (0.001 mg/L (3.2 nM) to 20 mg/L (63.6 µM), for 5 h) during gastrulation (5.25 hpf to 10.75 hpf) when key neurons involved in locomotion such as the primary motor neurons and Mauthner cell first appear. We then examined the impact on embryo morphology and locomotion, adult behavior, and locomotion in the next (F1) generation. Embryos treated with (-)THC experienced changes in morphology, were shorter in length and experienced altered hatching and survival. Spontaneous coiling of 1 dpf embryos was reduced, swimming after touch-evoked responses was reduced and basal swimming in 5 dpf larvae was also reduced. Adult zebrafish tested in the open field test and novel object approach test demonstrated no differences in locomotion, anxiety-like behavior, nor boldness, compared to controls. The (-)THC F1 generation embryos at 1 dpf showed reduced coiling activity, while swimming after touch-evoked responses was reduced in 2 dpf animals but basal swimming at 5 dpf remained similar to controls. Taken together, exposure to (-)THC only once for 5 h during gastrulation has a significant impact on locomotion in embryos and larvae, a minimal impact on adult behavior, and effects that persist into the next generation.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Lakhan Khara
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | | | - Andrew M Kim
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, T5J 4S2, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Declan W Ali
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
5
|
Ranasinghe T, Seo Y, Park HC, Choe SK, Cha SH. Rotenone exposure causes features of Parkinson`s disease pathology linked with muscle atrophy in developing zebrafish embryo. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136215. [PMID: 39461288 DOI: 10.1016/j.jhazmat.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Parkinson's disease (PD) is associated with both genetic and environmental factors; however, sporadic forms of PD account for > 90 % of cases, and PD prevalence has doubled in the past 25 years. Depending on the importance of the environmental factors, various neurotoxins are used to induce PD both in vivo and in vitro. Unlike other neurodegenerative diseases, PD can be induced in vivo using specific neurotoxic chemicals. However, no chemically induced PD model is available because of the sporadic nature of PD. Rotenone is a pesticide that accelerates the induction of PD and exhibits the highest toxicity in fish, unlike other pesticides. Therefore, in this study, we aimed to establish a model exhibiting PD pathologies such as dysfunction of DArgic neuron, aggregation of ɑ-synuclein, and behavioral abnormalities, which are known features of PD pathology, by rotenone exposure at an environmentally relevant concentration (30 nM) in developing zebrafish embryos. Our results provide direct evidence for the association between PD and muscle degeneration by confirming rotenone-induced muscle atrophy. Therefore, we conclude that the rotenone-induced model presents non-motor and motor defects with extensive studies related to muscle atrophy.
Collapse
Affiliation(s)
- Thilini Ranasinghe
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; Sacopenia Total Solution Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea; Department of Aquatic Life Medicine, Hanseo University, Seosan-si 31962, Republic of Korea; Institute for International Fisheries Science, Hanseo University, Seosan-si 31962, Republic of Korea.
| |
Collapse
|
6
|
Adekeye TE, Teets EM, Tomak EA, Waterman SL, Sprague KA, White A, Coffin ML, Varga SM, Easterbrooks TE, Shepherd SJ, Austin JD, Krivorotko D, Hupper TE, Kelley JB, Amacher SL, Talbot JC. Fast-twitch myofibrils grow in proportion to Mylpf dosage in the zebrafish embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613721. [PMID: 39345555 PMCID: PMC11429778 DOI: 10.1101/2024.09.18.613721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Muscle cells become stronger by expanding myofibrils, the chains of sarcomeres that produce contraction. Here we investigate how Mylpf (Myosin Light Chain Phosphorylatable Fast) abundance impacts myofibril assembly in fast-twitch muscle. The two zebrafish Mylpf genes (mylpfa and mylpfb) are exclusively expressed in fast-twitch muscle. We show that these cells initially produce six times more mylpfa mRNA and protein than mylpfb. The combined Mylpf protein dosage is necessary for and proportionate to fast-twitch myofibril growth in the embryo. Fast-twitch myofibrils are severely reduced in the mylpfa -/- mutant, leading to loss of high-speed movement; however, by persistent slow movement this mutant swims as far through time as its wild-type sibling. Although the mylpfb -/- mutant has normal myofibrils, myofibril formation fails entirely in the mylpfa -/- ;mylpfb -/- double mutant, indicating that the two genes are collectively essential to myofibril formation. Fast-twitch myofibril width is restored in the mylpfa -/- mutant by transgenic expression of mylpfa-GFP, mylpfb-GFP, and by human MYLPF-GFP to a degree corresponding linearly with GFP brightness. This correlate is inverted by expression of MYLPF alleles that cause Distal Arthrogryposis, which reduce myofibril size in proportion to protein abundance. These effects indicate that Mylpf dosage controls myofibril growth, impacting embryonic development and lifelong health.
Collapse
Affiliation(s)
- Tayo E Adekeye
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Emily M Teets
- Molecular Genetics, The Ohio State University, 43210, USA
| | - Emily A Tomak
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Sadie L Waterman
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Kailee A Sprague
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Angelina White
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | - Sabrina M Varga
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | | | - Jared D Austin
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | - Troy E Hupper
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Joshua B Kelley
- Molecular and Biomedical Sciences, the University of Maine, 04469, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, 43210, USA
| | - Jared C Talbot
- School of Biology and Ecology, the University of Maine, 04469, USA
| |
Collapse
|
7
|
Dill H, Liewald JF, Becker M, Seidenthal M, Gottschalk A. Neuropeptidergic regulation of neuromuscular signaling in larval zebrafish alters swimming behavior and synaptic transmission. iScience 2024; 27:110687. [PMID: 39252958 PMCID: PMC11381845 DOI: 10.1016/j.isci.2024.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Chemical synaptic transmission is modulated to accommodate different activity levels, thus enabling homeostatic scaling in pre- and postsynaptic compartments. In nematodes, cholinergic neurons use neuropeptide signaling to modulate synaptic vesicle content. To explore if this mechanism is conserved in vertebrates, we studied the involvement of neuropeptides in cholinergic transmission at the neuromuscular junction of larval zebrafish. Optogenetic stimulation by photoactivated adenylyl cyclase evoked locomotion. We generated mutants lacking the neuropeptide-processing enzyme carboxypeptidase E (cpe), and the most abundant neuropeptide precursor in motor neurons, tachykinin (tac1). Both mutants showed exaggerated locomotion after photostimulation. Recording excitatory postsynaptic currents demonstrated overall larger amplitudes in the wild type. Exaggerated locomotion in the mutants thus reflected upscaling of postsynaptic excitability. Both mutant muscles expressed more nicotinic acetylcholine receptors (nAChRs) on their surface; thus, neuropeptide signaling regulates synaptic transmitter output in zebrafish motor neurons, and muscle cells homeostatically regulate nAChR surface expression, compensating reduced presynaptic input.
Collapse
Affiliation(s)
- Holger Dill
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Michelle Becker
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
8
|
Lukowicz-Bedford RM, Eisen JS, Miller AC. Gap-junction-mediated bioelectric signaling required for slow muscle development and function in zebrafish. Curr Biol 2024; 34:3116-3132.e5. [PMID: 38936363 PMCID: PMC11265983 DOI: 10.1016/j.cub.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Bioelectric signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the connexins. The connexin gene family is large and complex, creating challenges in identifying specific connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for slow muscle development and function. Through mutant analysis and in vivo imaging, we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging, we find that spinal-cord-generated neural activity is transmitted to developing slow muscle cells, and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization and that disruption leads to defects in behavior. Our work reveals a molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role of GJ communication in coordinating bioelectric signaling during development.
Collapse
Affiliation(s)
| | - Judith S Eisen
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA
| | - Adam C Miller
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA.
| |
Collapse
|
9
|
Barraza-Flores P, Moghadaszadeh B, Lee W, Isaac B, Sun L, Troiano EC, Rockowitz S, Sliz P, Beggs AH. Zebrafish and cellular models of SELENON-Related Myopathy exhibit novel embryonic and metabolic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.581979. [PMID: 38464009 PMCID: PMC10925121 DOI: 10.1101/2024.02.26.581979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
SELENON-Related Myopathy (SELENON-RM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology commonly includes multiminicores or a dystrophic pattern but is often non-specific. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency causes SELENON-RM are undetermined. A hurdle is the lack of cellular and animal models that show assayable phenotypes. Here we report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression between selenon and genes involved in glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit changes in glutathione and redox homeostasis, suggesting a direct relationship with SelN function. We report changes in metabolic function abnormalities in SelN-null myotubes when compared to WT. These results suggest that SelN has functional roles during zebrafish early development and myoblast metabolism.
Collapse
Affiliation(s)
- Pamela Barraza-Flores
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Won Lee
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Biju Isaac
- Research Computing, Information Technology Department, Boston Children’s Hospital, Boston, MA, USA
| | - Liang Sun
- Research Computing, Information Technology Department, Boston Children’s Hospital, Boston, MA, USA
| | - Emily C. Troiano
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shira Rockowitz
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Research Computing, Information Technology Department, Boston Children’s Hospital, Boston, MA, USA
| | - Piotr Sliz
- Research Computing, Information Technology Department, Boston Children’s Hospital, Boston, MA, USA
- Division of Molecular Medicine, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Ruijmbeek CW, Housley F, Idrees H, Housley MP, Pestel J, Keller L, Lai JK, van der Linde HC, Willemsen R, Piesker J, Al-Hassnan ZN, Almesned A, Dalinghaus M, van den Bersselaar LM, van Slegtenhorst MA, Tessadori F, Bakkers J, van Ham TJ, Stainier DY, Verhagen JM, Reischauer S. Biallelic variants in FLII cause pediatric cardiomyopathy by disrupting cardiomyocyte cell adhesion and myofibril organization. JCI Insight 2023; 8:e168247. [PMID: 37561591 PMCID: PMC10544232 DOI: 10.1172/jci.insight.168247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.
Collapse
Affiliation(s)
- Claudine W.B. Ruijmbeek
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Filomena Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hafiza Idrees
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
| | - Michael P. Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jenny Pestel
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Leonie Keller
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jason K.H. Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zuhair N. Al-Hassnan
- Department of Medical Genetics, and
- Cardiovascular Genetics Program, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lisa M. van den Bersselaar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjon A. van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| | - Judith M.A. Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| |
Collapse
|
11
|
Widrick JJ, Lambert MR, Kunkel LM, Beggs AH. Optimizing assays of zebrafish larvae swimming performance for drug discovery. Expert Opin Drug Discov 2023; 18:629-641. [PMID: 37183669 PMCID: PMC10485652 DOI: 10.1080/17460441.2023.2211802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Zebrafish larvae are one of the few vertebrates amenable to large-scale drug discovery screens. Larval swimming behavior is often used as an outcome variable and many fields of study have developed assays for evaluating swimming performance. An unintended consequence of this wide interest is that details related to assay methodology and interpretation become scattered across the literature. The aim of this review is to consolidate this information, particularly as it relates to high-throughput approaches. AREAS COVERED The authors describe larval swimming behaviors as this forms the basis for understanding their experimentally evoked swimming or spontaneous activity. Next, they detail how swimming activity can serve as an outcome variable, particularly in the multi-well formats used in large-scale screening studies. They also highlight biological and technical factors that can impact the sensitivity and variability of these measurements. EXPERT OPINION Careful attention to animal husbandry, experimental design, data acquisition, and interpretation of results can improve screen outcomes by maximizing swimming activity while minimizing intra- and inter-larval variability. The development of more sensitive, quantitative methods of assessing swimming performance that can be incorporated into high-throughput workflows will be important in order to take full advantage of the zebrafish model.
Collapse
Affiliation(s)
- Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias R. Lambert
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Venditti M, Pedalino C, Rosello M, Fasano G, Serafini M, Revenu C, Del Bene F, Tartaglia M, Lauri A. A minimally invasive fin scratching protocol for fast genotyping and early selection of zebrafish embryos. Sci Rep 2022; 12:22597. [PMID: 36585409 PMCID: PMC9803660 DOI: 10.1038/s41598-022-26822-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Current genetic modification and phenotyping methods in teleost fish allow detailed investigation of vertebrate mechanisms of development, modeling of specific aspects of human diseases and efficient testing of drugs at an organ/organismal level in an unparalleled fast and large-scale mode. Fish-based experimental approaches have boosted the in vivo verification and implementation of scientific advances, offering the quality guaranteed by animal models that ultimately benefit human health, and are not yet fully replaceable by even the most sophisticated in vitro alternatives. Thanks to highly efficient and constantly advancing genetic engineering as well as non-invasive phenotyping methods, the small zebrafish is quickly becoming a popular alternative to large animals' experimentation. This approach is commonly associated to invasive procedures and increased burden. Here, we present a rapid and minimally invasive method to obtain sufficient genomic material from single zebrafish embryos by simple and precise tail fin scratching that can be robustly used for at least two rounds of genotyping already from embryos within 48 h of development. The described protocol betters currently available methods (such as fin clipping), by minimizing the relative animal distress associated with biopsy at later or adult stages. It allows early selection of embryos with desired genotypes for strategizing culturing or genotype-phenotype correlation experiments, resulting in a net reduction of "surplus" animals used for mutant line generation.
Collapse
Affiliation(s)
- Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Catia Pedalino
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Malo Serafini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
| | - Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
13
|
Yamashita M, Egashira Y, Nakamura S, Sakata S, Ono F. Receptor subunit compositions underly distinct potencies of a muscle relaxant in fast and slow muscle fibers. Front Physiol 2022; 13:1026646. [PMID: 36304584 PMCID: PMC9592714 DOI: 10.3389/fphys.2022.1026646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
A line of studies in the 1960s–1980s suggested that muscle relaxants do not work uniformly on all skeletal muscles, though its mechanism has not been clarified. We showed here that a classical non-depolarizing muscle relaxant pancuronium inhibits fast muscle fibers at lower concentration compared to slow muscle fibers in zebrafish. The difference of effective concentration was observed in locomotion caused by tactile stimulation as well as in synaptic currents of the neuromuscular junction induced by motor neuron excitation. We further showed that this difference arises from the different composition of acetylcholine receptors between slow and fast muscle fibers in the neuromuscular junction of zebrafish. It will be interesting to examine the difference of subunit composition and sensitivity to muscle relaxants in other species.
Collapse
|
14
|
Tonelotto V, Consorti C, Facchinello N, Trapani V, Sabatelli P, Giraudo C, Spizzotin M, Cescon M, Bertolucci C, Bonaldo P. Collagen VI ablation in zebrafish causes neuromuscular defects during developmental and adult stages. Matrix Biol 2022; 112:39-61. [PMID: 35961424 DOI: 10.1016/j.matbio.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Collagen VI (COL6) is an extracellular matrix protein exerting multiple functions in different tissues. In humans, mutations of COL6 genes cause rare inherited congenital disorders, primarily affecting skeletal muscles and collectively known as COL6-related myopathies, for which no cure is available yet. In order to get insights into the pathogenic mechanisms underlying COL6-related diseases, diverse animal models were produced. However, the roles exerted by COL6 during embryogenesis remain largely unknown. Here, we generated the first zebrafish COL6 knockout line through CRISPR/Cas9 site-specific mutagenesis of the col6a1 gene. Phenotypic characterization during embryonic and larval development revealed that lack of COL6 leads to neuromuscular defects and motor dysfunctions, together with distinctive alterations in the three-dimensional architecture of craniofacial cartilages. These phenotypic features were maintained in adult col6a1 null fish, which displayed defective muscle organization and impaired swimming capabilities. Moreover, col6a1 null fish showed autophagy defects and organelle abnormalities at both embryonic and adult stages, thus recapitulating the main features of patients affected by COL6-related myopathies. Mechanistically, lack of COL6 led to increased BMP signaling, and direct inhibition of BMP activity ameliorated the locomotor col6a1 null embryos. Finally performance of, treatment with salbutamol, a β2-adrenergic receptor agonist, elicited a significant amelioration of the neuromuscular and motility defects of col6a1 null fish embryos. Altogether, these findings indicate that this newly generated zebrafish col6a1 null line is a valuable in vivo tool to model COL6-related myopathies and suitable for drug screenings aimed at addressing the quest for effective therapeutic strategies for these disorders.
Collapse
Affiliation(s)
| | - Chiara Consorti
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Nicola Facchinello
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Giraudo
- Department of Medicine, Unit of Advanced Clinical and Translational Imaging, University of Padova, 35128 Padova, Italy
| | - Marianna Spizzotin
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
15
|
Könemann S, von Wyl M, Vom Berg C. Zebrafish Larvae Rapidly Recover from Locomotor Effects and Neuromuscular Alterations Induced by Cholinergic Insecticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8449-8462. [PMID: 35575681 DOI: 10.1021/acs.est.2c00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to the importance of acetylcholine as a neurotransmitter, many insecticides target the cholinergic system. Across phyla, cholinergic signaling is essential for many neuro-developmental processes including axonal pathfinding and synaptogenesis. Consequently, early-life exposure to such insecticides can disturb these processes, resulting in an impaired nervous system. One test frequently used to assess developmental neurotoxicity is the zebrafish light-dark transition test, which measures larval locomotion as a response to light changes. However, it is only poorly understood which structural alterations cause insecticide-induced locomotion defects and how persistent these alterations are. Therefore, this study aimed to link locomotion defects with effects on neuromuscular structures, including motorneurons, synapses, and muscles, and to investigate the longevity of the effects. The cholinergic insecticides diazinon and dimethoate (organophosphates), methomyl and pirimicarb (carbamates), and imidacloprid and thiacloprid (neonicotinoids) were used to induce hypoactivity. Our analyses revealed that some insecticides did not alter any of the structures assessed, while others affected axon branching (methomyl, imidacloprid) or muscle integrity (methomyl, thiacloprid). The majority of effects, even structural, were reversible within 24 to 72 h. Overall, we find that both neurodevelopmental and non-neurodevelopmental effects of different longevity can account for the reduced locomotion. These findings provide unprecedented insights into the underpinnings of insecticide-induced hypoactivity.
Collapse
Affiliation(s)
- Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- École Polytechnique Fédéral de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Melissa von Wyl
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- University of Zurich, UZH, Rämistrassse 71, 8006 Zurich, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
16
|
Haigis AC, Ottermanns R, Schiwy A, Hollert H, Legradi J. Getting more out of the zebrafish light dark transition test. CHEMOSPHERE 2022; 295:133863. [PMID: 35124091 DOI: 10.1016/j.chemosphere.2022.133863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In (eco-)toxicological studies the light/dark transition (LDT) test is one of the most frequently used behaviour assays with zebrafish eleutheroembryos. However, study results vary regarding data presentation and analysis and mostly focus on a limited amount of the recorded data. In this study, we investigated whether monitoring two behavioural outcomes (time and distance moved) together with analysing multiple parameters can improve test sensitivity and data interpretation. As a proof of principle 5-day old zebrafish (Danio rerio) eleutheroembryos exposed to either endocrine disruptors (EDs) or acetylcholine esterase (AChE) inhibitors were investigated. We analysed conventional parameters such as mean and sum and implemented additional endpoints such as minimum or maximum distance moved and new parameters assessing the bursting response of eleutheroembryos. Furthermore, changes in eleutheroembryonic behaviour during the moment of the light to dark transition were added. To improve data presentation control-normalised results were displayed in radar charts, enabling the simultaneous presentation of different parameters in relation to each other. This enabled us to identify parameters most relevant to a certain behavioural response. A cut off threshold using control data was applied to identify parameters that were altered in a biological relevant manner. Our approach was able to detect effects on different parameters that remained undetected when analysis was done using conventional bar graphs on - in most cases analysed - averaged, mean distance moved values. By combining the radar charts with additional parameters and by using control-based thresholds, we were able to increase the test sensitivity and promote a deeper understanding of the behaviour response of zebrafish eleutheroembryos in the LDT test and thereby increased its usability for behavioural toxicity studies.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Richard Ottermanns
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| | - Andreas Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Jessica Legradi
- Environment & Health, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Zempo B, Yamamoto Y, Williams T, Ono F. Synaptic silencing of fast muscle is compensated by rewired innervation of slow muscle. SCIENCE ADVANCES 2020; 6:eaax8382. [PMID: 32284992 PMCID: PMC7141830 DOI: 10.1126/sciadv.aax8382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/09/2020] [Indexed: 05/09/2023]
Abstract
For decades, numerous studies have proposed that fast muscles contribute to quick movement, while slow muscles underlie locomotion requiring endurance. By generating mutant zebrafish whose fast muscles are synaptically silenced, we examined the contribution of fast muscles in both larval and adult zebrafish. In the larval stage, mutants lacked the characteristic startle response to tactile stimuli: bending of the trunk (C-bend) followed by robust forward propulsion. Unexpectedly, adult mutants with silenced fast muscles showed robust C-bends and forward propulsion upon stimulation. Retrograde labeling revealed that motor neurons genetically programmed to form synapses on fast muscles are instead rerouted and innervate slow muscles, which led to partial conversion of slow and intermediate muscles to fast muscles. Thus, extended silencing of fast muscle synapses changed motor neuron innervation and caused muscle cell type conversion, revealing an unexpected mechanism of locomotory adaptation.
Collapse
Affiliation(s)
- Buntaro Zempo
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Yasuhiro Yamamoto
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Tory Williams
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892, USA
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892, USA
- Corresponding author.
| |
Collapse
|
18
|
Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep 2019; 9:13647. [PMID: 31541136 PMCID: PMC6754443 DOI: 10.1038/s41598-019-49614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae’s response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.
Collapse
|
19
|
Garcia de la serrana D, Wreggelsworth K, Johnston IA. Duplication of a Single myhz1.1 Gene Facilitated the Ability of Goldfish ( Carassius auratus) to Alter Fast Muscle Contractile Properties With Seasonal Temperature Change. Front Physiol 2018; 9:1724. [PMID: 30568597 PMCID: PMC6290348 DOI: 10.3389/fphys.2018.01724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Seasonal temperature changes markedly effect the swimming performance of some cyprinid fish acutely tested at different temperatures, involving a restructuring of skeletal muscle phenotype including changes in contractile properties and myosin heavy chain expression. We analyzed the transcriptome of fast myotomal muscle from goldfish (Carassius auratus L.) acclimated to either 8 or 25°C for 4 weeks (12 h light: 12 h dark) and identified 10 myosin heavy chains (myh) and 13 myosin light chain (myl) transcripts. Goldfish orthologs were classified based on zebrafish nomenclature as myhz1.1α, myhz1.1β, myhz1.1γ, myha, myhb, embryo_myh1, myh9b, smyh2, symh3, and myh11 (myosin heavy chains) and myl1a, myl1b, myl2, myl9a, myl9b, myl3, myl13, myl6, myl12.1a, myl12.1b, myl12.2a, myl12.2b, and myl10 (myosin light chains). The most abundantly expressed transcripts myhz1.1α, myhz1.1β, myhz1.1γ, myha, myl1a, myl1b, myl2, and myl3) were further investigated in fast skeletal muscle of goldfish acclimated to either 4, 8, 15, or 30°C for 12 weeks (12 h light:12 h dark). Total copy number for the myosin heavy chains showed a distinct optimum at 15°C (P < 0.01). Together myhz1.1α and myhz1.1β comprised 90 to 97% of myhc transcripts below 15°C, but only 62% at 30°C. Whereas myhz1.1α and myhz1.1β were equally abundant at 4 and 8°C, myhz1.1β transcripts were 17 and 12 times higher than myhz1.1α at 15 and 30°C, respectively, (P < 0.01). Myhz1.1γ expression was at least nine-fold higher at 30°C than at cooler temperatures (P < 0.01). In contrast, the expression of myha and myosin light chains showed no consistent pattern with acclimation temperature. A phylogenetic analysis indicated that the previously reported ability of goldfish and common carp to alter contractile properties and myofibrillar ATPase activity with temperature acclimation was related to the duplication of a single myhz1.1 fast muscle myosin heavy chain found in basal cyprinids such as the zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Daniel Garcia de la serrana
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
- Serra Húnter Fellow, Cell Biology Physiology and Immunology Department, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Kristin Wreggelsworth
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| | - Ian A. Johnston
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| |
Collapse
|
20
|
Kelu JJ, Webb SE, Galione A, Miller AL. TPC2-mediated Ca 2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Dev Biol 2018; 438:57-68. [PMID: 29577882 DOI: 10.1016/j.ydbio.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
During the development of the early spinal circuitry in zebrafish, spontaneous Ca2+ transients in the primary motor neurons (PMNs) are reported to transform from being slow and uncorrelated, to being rapid, synchronized and patterned. In this study, we demonstrated that in intact zebrafish, Ca2+ release via two-pore channel type 2 (TPC2) from acidic stores/endolysosomes is required for the establishment of synchronized activity in the PMNs. Using the SAIGFF213A;UAS:GCaMP7a double-transgenic zebrafish line, Ca2+ transients were visualized in the caudal PMNs (CaPs). TPC2 inhibition via molecular, genetic or pharmacological means attenuated the CaP Ca2+ transients, and decreased the normal ipsilateral correlation and contralateral anti-correlation, indicating a disruption in normal spinal circuitry maturation. Furthermore, treatment with MS-222 resulted in a complete (but reversible) inhibition of the CaP Ca2+ transients, as well as a significant decrease in the concentration of the Ca2+ mobilizing messenger, nicotinic acid adenine diphosphate (NAADP) in whole embryo extract. Together, our new data suggest a novel function for NAADP/TPC2-mediated Ca2+ signaling in the development, coordination, and maturation of the spinal network in zebrafish embryos.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
21
|
Paone C, Rudeck S, Etard C, Strähle U, Rottbauer W, Just S. Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Biochem Biophys Res Commun 2018; 496:339-345. [PMID: 29331378 DOI: 10.1016/j.bbrc.2018.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Sarcomeric protein turnover needs to be tightly balanced to assure proper assembly and renewal of sarcomeric units within muscle tissues. The mechanisms regulating these fundamental processes are only poorly understood, but of great clinical importance since many cardiac and skeletal muscle diseases are associated with defective sarcomeric organization. The SET- and MYND domain containing protein 1b (Smyd1b) is known to play a crucial role in myofibrillogenesis by functionally interacting with the myosin chaperones Unc45b and Hsp90α1. In zebrafish, Smyd1b, Unc45b and Hsp90α1 are part of the misfolded myosin response (MMR), a regulatory transcriptional response that is activated by disturbed myosin homeostasis. Genome duplication in zebrafish led to a second smyd1 gene, termed smyd1a. Morpholino- and CRISPR/Cas9-mediated knockdown of smyd1a led to significant perturbations in sarcomere structure resulting in decreased cardiac as well as skeletal muscle function. Similar to Smyd1b, we found Smyd1a to localize to the sarcomeric M-band in skeletal and cardiac muscles. Overexpression of smyd1a efficiently compensated for the loss of Smyd1b in flatline (fla) mutant zebrafish embryos, rescued the myopathic phenotype and suppressed the MMR in Smyd1b-deficient embryos, suggesting overlapping functions of both Smyd1 paralogs. Interestingly, Smyd1a is not transcriptionally activated in Smyd1b-deficient fla mutants, demonstrating lack of genetic compensation despite the functional redundancy of both zebrafish Smyd1 paralogs.
Collapse
Affiliation(s)
- Christoph Paone
- Molecular Cardiology, Department of Inner Medicine II, University of Ulm, Ulm, Germany
| | - Steven Rudeck
- Molecular Cardiology, Department of Inner Medicine II, University of Ulm, Ulm, Germany
| | - Christelle Etard
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Inner Medicine II, University of Ulm, Ulm, Germany.
| |
Collapse
|
22
|
Zhang W, Roy S. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Dev Biol 2017; 423:24-33. [DOI: 10.1016/j.ydbio.2017.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
|
23
|
A novel early onset phenotype in a zebrafish model of merosin deficient congenital muscular dystrophy. PLoS One 2017; 12:e0172648. [PMID: 28241031 PMCID: PMC5328290 DOI: 10.1371/journal.pone.0172648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease. The zebrafish has emerged as a powerful model system for the identification of novel therapies. However, drug discovery in the zebrafish is largely dependent on the identification of phenotypes suitable for chemical screening. Our goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf) zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing.
Collapse
|
24
|
|
25
|
Liu M, Liu M, Li B, Zhou Y, Huang Y, Lan X, Qu W, Qi X, Bai Y, Chen H. Polymorphisms of FLII implicate gene expressions and growth traits in Chinese cattle. Mol Cell Probes 2016; 30:266-272. [DOI: 10.1016/j.mcp.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 01/23/2023]
|
26
|
Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, Rudnik-Schöneborn S, Orgeur M, Zerres K, Vogt S, van Riesen A, Gill E, Seifert F, Zwirner A, Kirschner J, Goebel HH, Hübner C, Stricker S, Meierhofer D, Stenzel W, Schuelke M. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. Am J Hum Genet 2016; 98:473-489. [PMID: 26924529 DOI: 10.1016/j.ajhg.2016.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.
Collapse
Affiliation(s)
- Ellen Knierim
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan; Center for Frontier Research, National Institute of Genetics, Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Mishima 411-8540, Japan.
| | - Nicole I Wolf
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Susanne Morales-Gonzalez
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gudrun Schottmann
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Tanaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Sabine Rudnik-Schöneborn
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany; Division of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Mickael Orgeur
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Klaus Zerres
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Stefanie Vogt
- Medizinisches Versorgungszentrum Dr. Eberhard & Partner, 44137 Dortmund, Germany
| | - Anne van Riesen
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Esther Gill
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Franziska Seifert
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Angelika Zwirner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Hans Hilmar Goebel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Hübner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
27
|
Luna VM, Daikoku E, Ono F. "Slow" skeletal muscles across vertebrate species. Cell Biosci 2015; 5:62. [PMID: 26568818 PMCID: PMC4644285 DOI: 10.1186/s13578-015-0054-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle fibers are generally classified into two groups: slow (type I) and fast (type II). Fibers in each group are uniquely designed for specific locomotory needs based on their intrinsic cellular properties and the types of motor neurons that innervate them. In this review, we will focus on the current concept of slow muscle fibers which, unlike the originally proposed version based purely on amphibian muscles, varies widely depending on the animal model system studied. We will discuss recent findings from zebrafish neuromuscular junction synapses that may provide the framework for establishing a more unified view of slow muscles across mammalian and non-mammalian species.
Collapse
Affiliation(s)
- Victor M Luna
- Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032 USA
| | - Eriko Daikoku
- Department of Molecular Physiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Fumihito Ono
- Department of Molecular Physiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan.,Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
28
|
Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213. Sci Rep 2015; 5:16161. [PMID: 26530008 PMCID: PMC4632019 DOI: 10.1038/srep16161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023] Open
Abstract
Mysterin (also known as RNF213) is a huge intracellular protein with two AAA+ ATPase modules and a RING finger ubiquitin ligase domain. Mysterin was originally isolated as a significant risk factor for the cryptogenic cerebrovascular disorder moyamoya disease, and was found to be involved in physiological angiogenesis in zebrafish. However, the function and the physiological significance of mysterin in other than blood vessels remain largely unknown, although mysterin is ubiquitously expressed in animal tissues. In this study, we performed antisense-mediated suppression of a mysterin orthologue in zebrafish larvae and revealed that mysterin-deficient larvae showed significant reduction in fast myofibrils and immature projection of primary motoneurons, leading to severe motor deficits. Fast muscle-specific restoration of mysterin expression cancelled these phenotypes, and interestingly both AAA+ ATPase and ubiquitin ligase activities of mysterin were indispensable for proper fast muscle formation, demonstrating an essential role of mysterin and its enzymatic activities in the neuromuscular regulation in zebrafish.
Collapse
|
29
|
Godoy R, Noble S, Yoon K, Anisman H, Ekker M. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae. J Neurochem 2015; 135:249-60. [PMID: 26118896 DOI: 10.1111/jnc.13214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Rafael Godoy
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Sandra Noble
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Kevin Yoon
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, K1S-5B6, Canada
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| |
Collapse
|
30
|
Kim HH, Kim JG, Jeong J, Han SY, Kim KW. Akap12 is essential for the morphogenesis of muscles involved in zebrafish locomotion. Differentiation 2014; 88:106-16. [PMID: 25534553 DOI: 10.1016/j.diff.2014.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/20/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Swimming behavior in fish is driven by coordinated contractions of muscle fibers. In zebrafish, slow muscle cell migration is crucial for the formation of the muscle network; slow myoblasts, which arise from medial adaxial cells, migrate radially to the lateral surface of the trunk and tail during embryogenesis. This study found that the zebrafish A-kinase anchoring protein (akap)12 isoforms akap12α and akap12β are required for muscle morphogenesis and locomotor activity. Embryos deficient in akap12 exhibited reduced spontaneous coiling, touch response, and free swimming. Akap12-depleted slow but not fast muscle cells were misaligned, suggesting that the behavioral abnormalities resulted from specific defects in slow muscle patterning; indeed, slow muscle cells and muscle pioneers in these embryos showed abnormal migration in a cell-autonomous manner. Taken together, these results suggest that akap12 plays a critical role in the development of zebrafish locomotion by regulating the normal morphogenesis of muscles.
Collapse
Affiliation(s)
- Hyun-Ho Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeong-gyun Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Jinkyung Jeong
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Song-Yi Han
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
31
|
A single mutation in the acetylcholine receptor δ-subunit causes distinct effects in two types of neuromuscular synapses. J Neurosci 2014; 34:10211-8. [PMID: 25080583 DOI: 10.1523/jneurosci.0426-14.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in AChR subunits, expressed as pentamers in neuromuscular junctions (NMJs), cause various types of congenital myasthenic syndromes. In AChR pentamers, the adult ε subunit gradually replaces the embryonic γ subunit as the animal develops. Because of this switch in subunit composition, mutations in specific subunits result in synaptic phenotypes that change with developmental age. However, a mutation in any AChR subunit is considered to affect the NMJs of all muscle fibers equally. Here, we report a zebrafish mutant of the AChR δ subunit that exhibits two distinct NMJ phenotypes specific to two muscle fiber types: slow or fast. Homozygous fish harboring a point mutation in the δ subunit form functional AChRs in slow muscles, whereas receptors in fast muscles are nonfunctional. To test the hypothesis that different subunit compositions in slow and fast muscles underlie distinct phenotypes, we examined the presence of ε/γ subunits in NMJs using specific antibodies. Both wild-type and mutant larvae lacked ε/γ subunits in slow muscle synapses. These findings in zebrafish suggest that some mutations in human congenital myasthenic syndromes may affect slow and fast muscle fibers differently.
Collapse
|
32
|
Chuang HN, Hsiao KM, Chang HY, Wu CC, Pan H. The homeobox transcription factor Irxl1 negatively regulates MyoD expression and myoblast differentiation. FEBS J 2014; 281:2990-3003. [PMID: 24814716 DOI: 10.1111/febs.12837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/07/2014] [Accepted: 04/30/2014] [Indexed: 11/29/2022]
Abstract
Irxl1/Mkx (Iroquois homeobox-like 1/Mohawk) encodes a member of the TALE subfamily of homeodomain proteins. It is expressed in multiple mesoderm-derived tissues and has recently been shown to regulate tendon differentiation during mouse embryonic development. Previously we showed that knockdown of Irxl1 in zebrafish caused a deficit in neural crest cells which consequently resulted in deformation of craniofacial muscles and arch cartilages. Here, we further demonstrate that loss of Irxl1 function results in deformed somites with disordered muscle fibers and myotendinous junctions. Because expression of myoD is increased in the somites of Irxl1 knockdown morphants, we test whether Irxl1 negatively regulates myoD expression. When stable C2C12 myoblasts overexpressing Irxl1/Mkx were induced to differentiate, myotube formation was inhibited and protein levels of myoD and myosin heavy chain were decreased accordingly. A series of deletion constructs of myoD promoter fragments were tested by luciferase reporter assays, which identified a promoter fragment that is necessary and sufficient for Irxl1-mediated repression. Direct interaction of Irxl1 and myoD promoter was subsequently elucidated by yeast one-hybrid assays, electrophoretic mobility shift assays and chromatin immunoprecipitation analysis. Furthermore, mouse Mkx also binds to and represses myoD promoter. These results indicate that Irxl1/Mkx can repress myoD expression through direct binding to its promoter and may thus play a negative regulatory role in muscle differentiation.
Collapse
Affiliation(s)
- Han-Ni Chuang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan; Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Heijlen M, Houbrechts AM, Bagci E, Van Herck SLJ, Kersseboom S, Esguerra CV, Blust R, Visser TJ, Knapen D, Darras VM. Knockdown of type 3 iodothyronine deiodinase severely perturbs both embryonic and early larval development in zebrafish. Endocrinology 2014; 155:1547-59. [PMID: 24467742 DOI: 10.1210/en.2013-1660] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to appropriate levels of thyroid hormones (THs) at the right time is of key importance for normal development in all vertebrates. Type 3 iodothyronine deiodinase (D3) is the prime TH-inactivating enzyme, and its expression is highest in the early stages of vertebrate development, implying that it may be necessary to shield developing tissues from overexposure to THs. We used antisense morpholino knockdown to examine the role of D3 during early development in zebrafish. Zebrafish possess 2 D3 genes, dio3a and dio3b. Here, we show that both genes are expressed during development and both contribute to in vivo D3 activity. However, dio3b mRNA levels in embryos are higher, and the effects of dio3b knockdown on D3 activity and on the resulting phenotype are more severe. D3 knockdown induced an overall delay in development, as determined by measurements of otic vesicle length, eye and ear size, and body length. The time of hatching was also severely delayed in D3-knockdown embryos. Importantly, we also observed a severe disturbance of several aspects of development. Swim bladder development and inflation was aberrant as was the development of liver and intestine. Furthermore, D3-knockdown larvae spent significantly less time moving, and both embryos and larvae exhibited perturbed escape responses, suggesting that D3 knockdown affects muscle development and/or functioning. These data indicate that D3 is essential for normal zebrafish embryonic and early larval development and show the value of morpholino knockdown in this model to further elucidate the specific role of D3 in some aspects of vertebrate development.
Collapse
Affiliation(s)
- Marjolein Heijlen
- Laboratory of Comparative Endocrinology (M.H., A.M.H., S.L.J.V.H., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (C.V.E.), Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium; Systemic Physiological and Ecotoxicological Research (E.B., R.B., D.K.), Department of Biology, and Zebrafishlab (D.K.), Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; and University of Antwerp, 2610 Wilrijk, Belgium; Department of Internal Medicine (S.K., T.J.V.), Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients.
Collapse
|
35
|
Expression of a Mutant kcnj2 Gene Transcript in Zebrafish. ISRN MOLECULAR BIOLOGY 2013; 2013:324839. [PMID: 27335675 PMCID: PMC4890933 DOI: 10.1155/2013/324839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/20/2013] [Indexed: 11/22/2022]
Abstract
Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients.
Collapse
|
36
|
Ha K, Buchan JG, Alvarado DM, McCall K, Vydyanath A, Luther PK, Goldsmith MI, Dobbs MB, Gurnett CA. MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum Mol Genet 2013; 22:4967-77. [PMID: 23873045 DOI: 10.1093/hmg/ddt344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.
Collapse
|
37
|
Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013; 130:447-57. [PMID: 23811405 DOI: 10.1016/j.mod.2013.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 01/01/2023]
Abstract
Vertebrate skeletal muscle is composed of distinct types of fibre that are functionally adapted through differences in their physiological and metabolic properties. An understanding of the molecular basis of fibre-type specification is of relevance to human health and fitness. The zebrafish provides an attractive model for investigating fibre type specification; not only are their rapidly developing embryos optically transparent, but in contrast to amniotes, the embryonic myotome shows a discrete temporal and spatial separation of fibre type ontogeny that simplifies its analysis. Here we review the current state of understanding of muscle fibre type specification and differentiation during embryonic development of the zebrafish, with a particular focus on the roles of the Prdm1a and Sox6 transcription factors, and consider the relevance of these findings to higher vertebrate muscle biology.
Collapse
Affiliation(s)
- Harriet E Jackson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | |
Collapse
|
38
|
Horstick EJ, Linsley JW, Dowling JJ, Hauser MA, McDonald KK, Ashley-Koch A, Saint-Amant L, Satish A, Cui WW, Zhou W, Sprague SM, Stamm DS, Powell CM, Speer MC, Franzini-Armstrong C, Hirata H, Kuwada JY. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun 2013; 4:1952. [PMID: 23736855 PMCID: PMC4056023 DOI: 10.1038/ncomms2952] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/30/2013] [Indexed: 11/09/2022] Open
Abstract
Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca(2+) from internal stores to initiate muscle contraction. Defects in excitation-contraction coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the excitation-contraction coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca(2+) imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 is the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies.
Collapse
Affiliation(s)
- Eric J. Horstick
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeremy W. Linsley
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J. Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Michael A. Hauser
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristin K. McDonald
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Allison Ashley-Koch
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Louis Saint-Amant
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Departement de Pathologie et Biologie Cellulaire, Universite de Montreal, Montreal, Canada H3T 1J4
| | - Akhila Satish
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wilson W. Cui
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weibin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawn M. Sprague
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Demetra S. Stamm
- Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cynthia M. Powell
- Departments of Pediatrics and Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcy C. Speer
- Center for Human Genetics, Duke University, Durham, NC 27710, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Hiromi Hirata
- National Institute of Genetics, Mishima 411-8540, Japan
| | - John Y. Kuwada
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Blaker-Lee A, Gupta S, McCammon JM, De Rienzo G, Sive H. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech 2012; 5:834-51. [PMID: 22566537 PMCID: PMC3484866 DOI: 10.1242/dmm.009944] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/25/2012] [Indexed: 01/19/2023] Open
Abstract
Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.
Collapse
Affiliation(s)
- Alicia Blaker-Lee
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Sunny Gupta
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Jasmine M. McCammon
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Gianluca De Rienzo
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Hirata H, Wen H, Kawakami Y, Naganawa Y, Ogino K, Yamada K, Saint-Amant L, Low SE, Cui WW, Zhou W, Sprague SM, Asakawa K, Muto A, Kawakami K, Kuwada JY. Connexin 39.9 protein is necessary for coordinated activation of slow-twitch muscle and normal behavior in zebrafish. J Biol Chem 2011; 287:1080-9. [PMID: 22075003 DOI: 10.1074/jbc.m111.308205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.
Collapse
Affiliation(s)
- Hiromi Hirata
- Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|