1
|
Pascual A, Taibo C, Rivera-Pomar R. Central role of squid gene during oocyte development in the Hemiptera Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104719. [PMID: 39489393 DOI: 10.1016/j.jinsphys.2024.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Oocyte polarity establishment is a conserved and crucial phenomenon for embryonic development. It relies on the precise spatial localization of maternal factors deposited during oocyte development, which is essential for establishing and maintaining cell polarity and subsequently specifying embryonic axes. The heterogeneous nuclear ribonucleoprotein (hnRNP) encoded by the squid (sqd) gene has been implicated in mRNA localization and embryonic axis establishment in Drosophila melanogaster. Comparative genomics allowed for the identification of a homologue in Rhodnius prolixus. In this study, we investigated the function of Rp-sqd during oogenesis and early embryonic development. We observed persistent expression of Rp-sqd during oocyte development, with localization in the cytoplasm of ovary germarium and growing oocytes in previtellogenic and vitellogenic stages. A Parental RNA interference (RNAi) experiment targeting Rp-sqd resulted in female sterility. The ovaries showed disrupted oocyte development, disarray of follicular epithelium, and affected nurse cells integrity. Immunostaining and microscopic techniques revealed microtubule disarray and a reduction in the presence of organelles in the trophic cords that connect the germarium with the oocytes. The Rp-sqd depletion impacted the transcript expression of maternal mRNAs involved in apoptosis, axis formation, oogenesis, and cytoskeleton maintenance, indicating a pleiotropic function of Rp-sqd during oogenesis. This study provides new insights into the genetic basis of R. prolixus oogenesis, highlighting the crucial role of Rp-sqd in oocyte development, fertility, and germarium integrity. These findings contribute to our understanding of insect developmental processes, provide a foundation for future investigations into reproduction, and reveal the regulatory mechanisms governing the process.
Collapse
Affiliation(s)
- Agustina Pascual
- Centro de BioInvestigaciones (CeBio‑CICBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CITNOBA‑CONICET), Pergamino, Argentina
| | - Catalina Taibo
- Laboratorio de Microscopia Integral (LIM), (CICVyA, INTA), Hurlingham, Argentina
| | - Rolando Rivera-Pomar
- Centro de BioInvestigaciones (CeBio‑CICBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CITNOBA‑CONICET), Pergamino, Argentina; Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, Argentina; Max Planck Institute for Multidisciplinary Sciences, Dept. Tissue Dynamics and Regeneration, Göttingen, Germany.
| |
Collapse
|
2
|
Dalaisón-Fuentes LI, Pascual A, Crespo M, Andrada NL, Welchen E, Catalano MI. Knockdown of double-stranded RNases (dsRNases) enhances oral RNA interference (RNAi) in the corn leafhopper, Dalbulus maidis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105618. [PMID: 37945254 DOI: 10.1016/j.pestbp.2023.105618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023]
Abstract
The leafhopper Dalbulus maidis is a harmful pest that causes severe damage to corn crops. Conventional chemical pesticides have negative environmental impacts, emphasizing the need for alternative solutions. RNA interference (RNAi) is a more specific and environmentally friendly method for controlling pests and reducing the negative impacts of current pest management practices. Previous studies have shown that orally administered double-stranded RNA (dsRNA) is less effective than injection protocols in silencing genes. This study focuses on identifying and understanding the role of double-stranded ribonucleases (dsRNases) in limiting the efficiency of oral RNAi in D. maidis. Three dsRNases were identified and characterized, with Dmai-dsRNase-2 being highly expressed in the midgut and salivary glands. An ex vivo degradation assay revealed significant nuclease activity, resulting in high instability of dsRNA when exposed to tissue homogenates. Silencing Dmai-dsRNase-2 improved the insects' response to the dsRNA targeting the gene of interest, providing evidence of dsRNases involvement in oral RNAi efficiency. Therefore, administering both dsRNase-specific and target gene-specific-dsRNAs simultaneously is a promising approach to increase the efficiency of oral RNAi and should be considered in future control strategies.
Collapse
Affiliation(s)
- Lucía I Dalaisón-Fuentes
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Agustina Pascual
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina.
| | - Mariana Crespo
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Nicolás L Andrada
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María I Catalano
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| |
Collapse
|
3
|
Nazar AP, Delgado MJ, Lavore A. Empty-spiracles is maternally expressed and essential for neurodevelopment and early embryo determination in Rhodnius prolixus. Dev Biol 2022; 490:144-154. [PMID: 35988717 DOI: 10.1016/j.ydbio.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/10/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
Since empty-spiracles (ems) was identified and characterized in Drosophila melanogaster as a head-gap gene, several studies have been carried out in other insect orders to confirm its evolutionary conserved function. Using the blood-sucking bug Rhodnius prolixus as biological model, we found an ems transcript with three highly conserved regions: Box-A, Box-B, and the homeodomain. R. prolixus embryos silenced by parental RNAi for two of these ems conserved regions showed both maternal and zygotic defects. Rp-emsB fragment results in early lethal embryogenesis, with eggs without any embryonic structure inside. Rp-emsB expression pattern is only maternally expressed and localized in the ovary tropharium, follicular cells, and in the unfertilized female pronucleus. Rp-emsA fragment is zygotically expressed during early blastoderm formation until late developmental stages in two main patterns: anterior in the antennal segment, and in a segmentary in the neuroblast and tracheal pits. R. prolixus knockdown embryos for Rp-emsA showed an incomplete larval hatching, reduced heads, and severe neuromotor defects. Furthermore, in situ hybridization revealed a spatial and temporal expression pattern that highly correlates with Rp-ems observed function. Here,Rp-ems function in R. prolixus development was validated, showing that empty-spiracles does not act as a true head-gap gene, but it is necessary for proper head development and crucial for early embryo determination and neurodevelopment.
Collapse
Affiliation(s)
- Ada Paula Nazar
- Hospital Interzonal de Agudos "San José" de Pergamino, Argentina.
| | - María José Delgado
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.
| | - Andrés Lavore
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.
| |
Collapse
|
4
|
Dalaisón-Fuentes LI, Pascual A, Gazza E, Welchen E, Rivera-Pomar R, Catalano MI. Development of efficient RNAi methods in the corn leafhopper Dalbulus maidis, a promising application for pest control. PEST MANAGEMENT SCIENCE 2022; 78:3108-3116. [PMID: 35442515 DOI: 10.1002/ps.6937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The corn leafhopper Dalbulus maidis is the main vector of important stunting pathogens that affect maize production. Currently, there are no effective methods available to manage this pest without adverse impact on the environment. In this context, genomic-based technologies such as RNA interference (RNAi) provide a more environmentally friendly pest control strategy. Therefore, we aimed to assess the application of RNAi in D. maidis and determine the function of a candidate gene related to insect reproduction and propagation. RESULTS We have characterized the core RNAi genes and evaluated the functionality of the RNAi machinery. We assessed the potential of RNAi technology in D. maidis via injection or ingestion of double-stranded RNA (dsRNA) to adult females. We chose Bicaudal C (BicC) as a target gene due to its important role during insect oogenesis. Administration of dsRNABicC caused significant reductions in the transcript levels (fold changes up to 170 times) and ovipositions. Phenotypic analysis of the ovaries revealed alterations in oocyte development, providing additional confirmation for our results and supporting the idea that Dmai-BicC is a key player of D. maidis oogenesis. CONCLUSION This is, to our knowledge, the first report of efficient RNAi in D. maidis. We believe our findings provide a starting point for future control strategies against one of the most important maize pests in the Americas. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lucía Inés Dalaisón-Fuentes
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| | - Agustina Pascual
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| | - Elías Gazza
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rolando Rivera-Pomar
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
- Centro Regional de Estudios Genómicos (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - María Inés Catalano
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| |
Collapse
|
5
|
Souza D, Christensen SA, Wu K, Buss L, Kleckner K, Darrisaw C, Shirk PD, Siegfried BD. RNAi-induced knockdown of white gene in the southern green stink bug (Nezara viridula L.). Sci Rep 2022; 12:10396. [PMID: 35729244 PMCID: PMC9213411 DOI: 10.1038/s41598-022-14620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
The southern green stink bug (SGSB) Nezara viridula L. is one of the most common stink bug species in the United States and can cause significant yield loss in a variety of crops. A suitable marker for the assessment of gene-editing tools in SGSB has yet to be characterized. The white gene, first documented in Drosophila, has been a useful target to assess the efficiency of introduced mutations in many species as it controls pigmentation processes and mutants display readily identifiable phenotypes. In this study we used the RNAi technique to investigate functions and phenotypes associated with the white ortholog in the SGSB and to validate white as a marker for genetic transformation in this species. This study revealed that white may be a suitable marker for germline transformation in the SGSB as white transcript knockdown was not lethal, did not impair embryo development and provided a distinguishable phenotype. Our results demonstrated that the white ortholog in SGSB is involved in the pathway for ommochrome synthesis and suggested additional functions of this gene such as in the integument composition, management of hemolymph compounds and riboflavin mobilization.
Collapse
Affiliation(s)
- Dariane Souza
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA. .,Syngenta Crop Protection AG, WST-540.1.17 Schaffhauserstrasse, 4332, Stein, Switzerland.
| | - Shawn A Christensen
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Ke Wu
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Lyle Buss
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Kaylin Kleckner
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Constance Darrisaw
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Paul D Shirk
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
6
|
Abstract
The study of developmental processes in Rhodnius prolixus has recently advanced with the sequencing of the genome. In this work, we analyze the maternal gene expression driving oogenesis and early embryogenesis in R. prolixus. We examined the transcriptional profile of mRNAs to establish the genes expressed across the ovary, unfertilized eggs and different embryonic stages of R. prolixus until the formation of the germ band anlage (0, 12, 24, and 48 h post egg laying). We identified 81 putative maternal and ovary-related genes and validated their expression by qRT-PCR. We validate the function of the ortholog gene Bicaudal-D (Rp-BicD) by in situ hybridization and parental RNAi. Consistent with a role in oogenesis and early development of R. prolixus, we show that lack of Rp-BicD does not significantly affect oogenesis but impairs the formation of the blastoderm. Based on our findings, we propose three times of action for maternal genes during oogenesis and embryogenesis in R. prolixus.
Collapse
|
7
|
Hernandez-Castro LE, Villacís AG, Jacobs A, Cheaib B, Day CC, Ocaña-Mayorga S, Yumiseva CA, Bacigalupo A, Andersson B, Matthews L, Landguth EL, Costales JA, Llewellyn MS, Grijalva MJ. Population genomics and geographic dispersal in Chagas disease vectors: Landscape drivers and evidence of possible adaptation to the domestic setting. PLoS Genet 2022; 18:e1010019. [PMID: 35120121 PMCID: PMC8849464 DOI: 10.1371/journal.pgen.1010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/16/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches. Re-infestation of recently insecticide-treated houses by wild/secondary triatomine, their potential adaptation to this new environment and capabilities to geographically disperse across multiple human communities jeopardise sustainable Chagas disease control. This is the first study in Chagas disease vectors that identifies genomic regions possibly linked to adaptations to the built environment and describes landscape drivers for accurate prediction of geographic dispersal. We sampled multiple domestic and wild Rhodnius ecuadoriensis population pairs across a mountainous terrain in southern Ecuador. We evidenced that triatomine movement from forest to built enviroments does occur at a high rate. In these highly connected population pairs we detected loci possibly linked to local adaptation among the genomic makers we evaluated and in doing so we pave the way for future triatomine genomic research. We highlighted that current haphazardous vector control in the zone will be hindered by reinfestation of triatomines from the forest. Instead, we recommend frequent and spatially-targeted vector control and provided a landacape genomic model that identifies highly connected and isolated triatomine populations to facilitate efficient vector control.
Collapse
Affiliation(s)
- Luis E. Hernandez-Castro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- The Epidemiology, Economics and Risk Assessment Group, The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (LEH-C); (MSL)
| | - Anita G. Villacís
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, United States of America
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Casey C. Day
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Cesar A. Yumiseva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Antonella Bacigalupo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Erin L. Landguth
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (LEH-C); (MSL)
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
8
|
Pascual A, Vilardo ES, Taibo C, Sabio Y García J, Pomar RR. Bicaudal C is required for the function of the follicular epithelium during oogenesis in Rhodnius prolixus. Dev Genes Evol 2021; 231:33-45. [PMID: 33704576 DOI: 10.1007/s00427-021-00673-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022]
Abstract
The morphology and physiology of the oogenesis have been well studied in the vector of Chagas disease Rhodnius prolixus. However, the molecular interactions that regulate the process of egg formation, key for the reproductive cycle of the vector, is still largely unknown. In order to understand the molecular and cellular basis of the oogenesis, we examined the function of the gene Bicaudal C (BicC) during oogenesis and early development of R. prolixus. We show that R. prolixus BicC (Rp-BicC) gene is expressed in the germarium, with cytoplasmic distribution, as well as in the follicular epithelium of the developing oocytes. RNAi silencing of Rp-BicC resulted in sterile females that lay few, small, non-viable eggs. The ovaries are reduced in size and show a disarray of the follicular epithelium. This indicates that Rp-BicC has a central role in the regulation of oogenesis. Although the follicular cells are able to form the chorion, the uptake of vitelline by the oocytes is compromised. We show evidence that the polarity of the follicular epithelium and the endocytic pathway, which are crucial for the proper yolk deposition, are affected. This study provides insights into the molecular mechanisms underlying oocyte development and show that Rp-BicC is important for de developmental of the egg and, therefore, a key player in the reproduction of this insect.
Collapse
Affiliation(s)
- Agustina Pascual
- Centro de Bioinvestigaciones (UNNOBA-CICBA), CITNOBA (UNNOBA-CONICET), 2700, Pergamino, Buenos Aires, Argentina.
| | - Emiliano S Vilardo
- Centro Regional de Estudios Genómicos (Facultad de Ciencias Exactas, CREG-UNLP), 1900, La Plata, Buenos Aires, Argentina
| | - Catalina Taibo
- Laboratorio de Microscopia Integral (LIM), (CICVyA, INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Julia Sabio Y García
- Laboratorio de Microscopia Integral (LIM), (CICVyA, INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Rolando Rivera Pomar
- Centro de Bioinvestigaciones (UNNOBA-CICBA), CITNOBA (UNNOBA-CONICET), 2700, Pergamino, Buenos Aires, Argentina.
- Centro Regional de Estudios Genómicos (Facultad de Ciencias Exactas, CREG-UNLP), 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Shakeel M, Du J, Li SW, Zhou YJ, Sarwar N, Bukhari SAH. Characterization, Knockdown and Parental Effect of Hexokinase Gene of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) Revealed by RNA Interference. Genes (Basel) 2020; 11:genes11111258. [PMID: 33114530 PMCID: PMC7693289 DOI: 10.3390/genes11111258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Hexokinase (HK) is a key enzyme in chitin biosynthesis in insects and plays an important role in development and energy regulation. It also performs a crucial role in the synthesis of Glucose-6-phosphate and its putative functions are studied via injection of dsRNA corresponding to the hexokinase gene from Cnaphalocrocis medinalis (CmHK). This study was designed to analyze the characteristics and expression patterns of HK-related genes in various tissues of C. medinalis at different developmental stages. The CmHK ORF is a 1359 bp in length, encoding a protein of 452 amino acids, with homology and cluster analysis showing that CmHK shares an 85.11% sequence similarity with hexokinase from Ostrinia furnacalis.CmHK was highly expressed in the ovary and in the fifth instar larvae. Injection of dsCmHK significantly suppressed mRNA expression (73.6%) 120 h post-dsRNA injection as compared to a control group. The results demonstrated an increased incidence of larval and pupal mortality of 80% and 78%, respectively, with significant variation in the sex ratio between males (68.33%) and females (35%), overt larval deformities, and a reduction in average weight gain observed 120 h post-dsRNA injection. In addition, dsCmHK-injected C. medinalis showed a significant reduction in ovulation per female and larval hatching rate, along with increased larval and pupal mortality and variation in male and female emergence over three generations (G1, G2, and G3). Taken together, the outcomes of the study provide a foundation to study gene function and a new dimension to control C. medinalis by transgenic RNAi technology.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Juan Du
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Shang-Wei Li
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
- Correspondence: ; Tel.: +86-137-6506-6957
| | - Yuan-Jin Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Naeem Sarwar
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.S.); (S.A.H.B.)
| | | |
Collapse
|
10
|
Tobias-Santos V, Guerra-Almeida D, Mury F, Ribeiro L, Berni M, Araujo H, Logullo C, Feitosa NM, de Souza-Menezes J, Pessoa Costa E, Nunes-da-Fonseca R. Multiple Roles of the Polycistronic Gene Tarsal-less/Mille-Pattes/Polished-Rice During Embryogenesis of the Kissing Bug Rhodnius prolixus. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Auman T, Chipman AD. The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans. Integr Comp Biol 2018; 57:523-532. [PMID: 28957519 DOI: 10.1093/icb/icx035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the genetics of arthropod body plan development originally stems from work on Drosophila melanogaster from the late 1970s and onward. In Drosophila, there is a relatively detailed model for the network of gene interactions that proceeds in a sequential-hierarchical fashion to define the main features of the body plan. Over the years, we have a growing understanding of the networks involved in defining the body plan in an increasing number of arthropod species. It is now becoming possible to tease out the conserved aspects of these networks and to try to reconstruct their evolution. In this contribution, we focus on several key nodes of these networks, starting from early patterning in which the main axes are determined and the broad morphological domains of the embryo are defined, and on to later stage wherein the growth zone network is active in sequential addition of posterior segments. The pattern of conservation of networks is very patchy, with some key aspects being highly conserved in all arthropods and others being very labile. Many aspects of early axis patterning are highly conserved, as are some aspects of sequential segment generation. In contrast, regional patterning varies among different taxa, and some networks, such as the terminal patterning network, are only found in a limited range of taxa. The growth zone segmentation network is ancient and is probably plesiomorphic to all arthropods. In some insects, it has undergone significant modification to give rise to a more hardwired network that generates individual segments separately. In other insects and in most arthropods, the sequential segmentation network has undergone a significant amount of systems drift, wherein many of the genes have changed. However, it maintains a conserved underlying logic and function.
Collapse
Affiliation(s)
- Tzach Auman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| |
Collapse
|
12
|
Bomfim L, Vieira P, Fonseca A, Ramos I. Eggshell ultrastructure and delivery of pharmacological inhibitors to the early embryo of R. prolixus by ethanol permeabilization of the extraembryonic layers. PLoS One 2017; 12:e0185770. [PMID: 28961275 PMCID: PMC5621698 DOI: 10.1371/journal.pone.0185770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Most vectors of arthropod-borne diseases produce large eggs with hard and opaque eggshells. In several species, it is still not possible to induce molecular perturbations to the embryo by delivery of molecules using microinjections or eggshell permeabilization without losing embryo viability, which impairs basic studies regarding development and population control. Here we tested the properties and permeability of the eggshell of R. prolixus, a Chagas disease vector, with the aim to deliver pharmacological inhibitors to the egg cytoplasm and allow controlled molecular changes to the embryo. Using field emission scanning and transmission electron microscopy we found that R. prolixus egg is coated by three main layers: exochorion, vitelline layer and the plasma membrane, and that the pores that allow gas exchange (aeropiles) have an average diameter of 10 μm and are found in the rim of the operculum at the anterior pole of the egg. We tested if different solvents could permeate through the aeropiles and reach the egg cytoplasm/embryo and found that immersions of the eggs in ethanol lead to its prompt penetration through the aeropiles. A single five minute-immersion of the eggs/embryos in pharmacological inhibitors, such as azide, cyanide and cycloheximide, solubilized in ethanol resulted in impairment of embryogenesis in a dose dependent manner and DAPI-ethanol solutions were also able to label the embryo cells, showing that ethanol penetration was able to deliver those molecules to the embryo cells. Multiple immersions of the embryo in the same solutions increased the effect and tests using bafilomycin A1 and Pepstatin A, known inhibitors of the yolk proteolysis, were also able to impair embryogenesis and the yolk protein degradation. Additionally, we found that ethanol pre-treatments of the egg make the aeropiles more permeable to aqueous solutions, so drugs diluted in water can be carried after the eggs are pre-treated with ethanol. Thus, we found that delivery of pharmacological inhibitors to the embryo of R. prolixus can be performed simply by submersing the fertilized eggs in ethanol with no need for additional methods such as microinjections or electroporation. We discuss the potential importance of this methodology to the study of this vector developmental biology and population control.
Collapse
Affiliation(s)
- Larissa Bomfim
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| | - Priscila Vieira
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| | - Ariene Fonseca
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ribeiro L, Tobias-Santos V, Santos D, Antunes F, Feltran G, de Souza Menezes J, Aravind L, Venancio TM, Nunes da Fonseca R. Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects. PLoS Genet 2017; 13:e1006868. [PMID: 28671979 PMCID: PMC5515446 DOI: 10.1371/journal.pgen.1006868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/18/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023] Open
Abstract
Gene regulatory networks (GRNs) evolve as a result of the coevolutionary processes acting on transcription factors (TFs) and the cis-regulatory modules they bind. The zinc-finger TF zelda (zld) is essential for the maternal-to-zygotic transition (MZT) in Drosophila melanogaster, where it directly binds over thousand cis-regulatory modules to regulate chromatin accessibility. D. melanogaster displays a long germ type of embryonic development, where all segments are simultaneously generated along the whole egg. However, it remains unclear if zld is also involved in the MZT of short-germ insects (including those from basal lineages) or in other biological processes. Here we show that zld is an innovation of the Pancrustacea lineage, being absent in more distant arthropods (e.g. chelicerates) and other organisms. To better understand zld´s ancestral function, we thoroughly investigated its roles in a short-germ beetle, Tribolium castaneum, using molecular biology and computational approaches. Our results demonstrate roles for zld not only during the MZT, but also in posterior segmentation and patterning of imaginal disc derived structures. Further, we also demonstrate that zld is critical for posterior segmentation in the hemipteran Rhodnius prolixus, indicating this function predates the origin of holometabolous insects and was subsequently lost in long-germ insects. Our results unveil new roles of zld in different biological contexts and suggest that changes in expression of zld (and probably other major TFs) are critical in the evolution of insect GRNs. Pioneer transcription factors (TFs) are considered the first regulators of chromatin accessibility in fruit flies and vertebrates, modulating the expression of a large number of target genes. In fruit flies, zelda resembles a pioneer TF, being essential during early embryogenesis. However, the evolutionary origins and ancestral functions of zelda remain largely unknown. Through a number of gene silencing, microscopy and evolutionary analysis, the present work shows that zelda is an innovation of the Pancrustacea lineage, governing not only the MZT in the short-germ insect Tribolium castaneum, but also posterior segmentation and post-embryonic patterning of imaginal disc derived structures such as wings, legs and antennae. Further, zelda regulation of posterior segmentation predates the origin of insects with complete metamorphosis (holometabolous), as supported by gene silencing experiments in the kissing bug Rhodnius prolixus. We hypothesize that the emergence of zelda contributed to the evolution of gene regulatory networks and new morphological structures of insects.
Collapse
Affiliation(s)
- Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| | - Vitória Tobias-Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Daniele Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Felipe Antunes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Geórgia Feltran
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Jackson de Souza Menezes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
- * E-mail: (TMV); (RNdF)
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
- * E-mail: (TMV); (RNdF)
| |
Collapse
|
14
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
15
|
Nunes-da-Fonseca R, Berni M, Tobias-Santos V, Pane A, Araujo HM. Rhodnius prolixus: From classical physiology to modern developmental biology. Genesis 2017; 55. [DOI: 10.1002/dvg.22995] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Mateus Berni
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Institute of Molecular Entomology; INCT-EM
| | - Attilio Pane
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Helena Marcolla Araujo
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
16
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
17
|
Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus. Parasitology 2016; 143:1569-79. [DOI: 10.1017/s0031182016001487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYRhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4’−6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.
Collapse
|
18
|
Matsumoto Y, Hattori M. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:152-164. [PMID: 26728387 DOI: 10.1002/arch.21315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Insect-Plant Interaction Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Makoto Hattori
- Insect-Plant Interaction Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 2015; 112:14936-41. [PMID: 26627243 DOI: 10.1073/pnas.1506226112] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Collapse
|
20
|
Lavore A, Pascual A, Salinas FM, Esponda-Behrens N, Martinez-Barnetche J, Rodriguez M, Rivera-Pomar R. Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:32-43. [PMID: 26187251 DOI: 10.1016/j.ibmb.2015.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/13/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Most of the in-depth studies on insect developmental genetic have been carried out in the fruit fly Drosophila melanogaster, an holometabolous insect, so much more still remains to be studied in hemimetabolous insects. Having Rhodnius prolixus sequenced genome available, we search for orthologue genes of zygotic signaling pathways, segmentation, and tracheogenesis in the R. prolixus genome and in three species of Triatoma genus transcriptomes, concluding that there is a high level of gene conservation. We also study the function of two genes required for tracheal system development in D. melanogaster - R. prolixus orthologues: trachealess (Rp-trh) and empty spiracles (Rp-ems). From that we see that Rp-trh is required for early tracheal development since Rp-trh RNAi shows that the primary tracheal branches fail to form. On the other hand, Rp-ems is implied in the proper formation of the posterior tracheal branches, in a similar way to D. melanogaster. These results represent the initial characterization of the genes involved in the tracheal development of an hemimetabolous insect building a bridge between the current genomic era and V. Wigglesworth's classical studies on insects' respiratory system physiology.
Collapse
Affiliation(s)
- A Lavore
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - A Pascual
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - F M Salinas
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - N Esponda-Behrens
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - J Martinez-Barnetche
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - M Rodriguez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - R Rivera-Pomar
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Toll signals regulate dorsal-ventral patterning and anterior-posterior placement of the embryo in the hemipteran Rhodnius prolixus. EvoDevo 2014; 5:38. [PMID: 25908955 PMCID: PMC4407881 DOI: 10.1186/2041-9139-5-38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect embryonic dorso-ventral patterning depends greatly on two pathways: the Toll pathway and the Bone Morphogenetic Protein pathway. While the relative contribution of each pathway has been investigated in holometabolous insects, their role has not been explored in insects with a hemimetabolous type of development. The hemimetabolous insect Rhodnius prolixus, an important vector of Chagas disease in the Americas, develops from an intermediate germ band and displays complex movements during katatrepsis that are not observed in other orders. However, little is known about the molecular events that regulate its embryogenesis. Here we investigate the expression and function of genes potentially involved in the initial patterning events that establish the embryonic dorso-ventral axis in this hemipteran. RESULTS We establish a staging system for early embryogenesis that allows us to correlate embryo morphology with gene expression profiles. Using this system, we investigate the role of Toll pathway genes during embryogenesis. Detailed analyses of gene expression throughout development, coupled with functional analyses using parental RNA interference, revealed that maternal Toll is required to establish germ layers along the dorso-ventral axis and for embryo placement along the anterior-posterior axis. Interestingly, knockdown of the Toll pathway effector Rp-dorsal appears to regulate the expression of the Bone Morphogenetic Protein antagonist Rp-short-gastrulation. CONCLUSIONS Our results indicate that Toll signals are the initiating event in dorso-ventral patterning during Rhodnius embryogenesis, and this is the first report of a conserved role for Toll in a hemipteran. Furthermore, as Rp-dorsal RNA interference generates anteriorly misplaced embryos, our results indicate a novel role for Toll signals in establishment of the anterior-posterior axis in Rhodnius.
Collapse
|
22
|
Souza-Ferreira PS, Mansur JF, Berni M, Moreira MF, dos Santos RE, Araújo HMM, de Souza W, Ramos IB, Masuda H. Chitin deposition on the embryonic cuticle of Rhodnius prolixus: the reduction of CHS transcripts by CHS-dsRNA injection in females affects chitin deposition and eclosion of the first instar nymph. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:101-109. [PMID: 24412274 DOI: 10.1016/j.ibmb.2013.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
In a previous study, we found that the embryonic cuticle of Rhodnius prolixus is a chitin-based structure that helps the first instar nymph to hatch from the chorion. Here, we investigated how the reduction of transcripts induced by CHS dsRNA injection affects R. prolixus embryogenesis and eclosion. Deposition of chitin in the embryonic cuticle begins later at embryogenesis, around day 8, and ends approximately at day 15, when the insects are ready for eclosion. In R. prolixus, chitin deposition follows pari passu with the synthesis of the chitin synthase mRNA, indicating a regulation at the transcriptional level. The reduction of the chitin synthase gene transcripts by the injection of CHS dRNA prevented chitin deposition during embryonic cuticle formation, being lethal to hatching nymphs, which end up dying while stuck in the chorionic border trying to leave the chorion. The successful eclosion rates were reduced by 60% in animals treated with CHS dsRNA when compared to animals injected with a control (dsRNA no related gene or water). We found that the harmful effects on oviposition and eclosion are possibly due to changes in the structure of the embryonic cuticle, as observed by directly comparing the morphology of control and chitin-deficient embryonic cuticles under the transmission electron microscope. The lack of chitin and changes in its morphological characteristics appears to alter the embryonic cuticle physiology and functionality. Additionally, we observed that the effects of CHS dRNA treatment on R. prolixus females lasted up to 3 egg-laying cycles (∼100 days), pointing to R. prolixus as a useful model for developmental studies.
Collapse
Affiliation(s)
- Paula S Souza-Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Juliana F Mansur
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Matheus Berni
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, 21941-970 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Roberto Eizemberg dos Santos
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, 21941599 Rio de Janeiro, RJ, Brazil
| | - Helena M Marcolla Araújo
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, 21941-970 Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Isabela B Ramos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Hatisaburo Masuda
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
23
|
Lavore A, Esponda-Behrens N, Pagola L, Rivera-Pomar R. The gap gene Krüppel of Rhodnius prolixus is required for segmentation and for repression of the homeotic gene sex comb-reduced. Dev Biol 2014; 387:121-9. [PMID: 24406318 DOI: 10.1016/j.ydbio.2013.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022]
Abstract
The establishment of the anterior-posterior segmentation in insects requires the concerted action of a hierarchical gene network. Here, we study the orthologue of Krüppel gap gene in the hemipteran Rhodnius prolixus (Rp-Kr). We characterized its structure, expression pattern and function. The genomic sequence upstream of the Rp-Kr transcriptional unit shows a putative regulatory region conserved in the orthologue genes from Drosophila melanogaster and Tribolium castaneum. Rp-Kr expression is zygotic and it is expressed in the anterior half of the embryo (the posterior half of the egg) during the blastoderm stage and germ band formation; later, during germ band extension, it is expressed in a central domain, from T2 to A3. The Rp-Kr loss of function phenotypes shows disrupted thoracic and abdominal segmentation. Embryos with weak segmentation phenotypes show homeotic transformations, in which an ectopic tibial comb, typical of T1 leg, appears in T2, which correlates with the ectopic expression of Rp-sex-comb reduced in this leg.
Collapse
Affiliation(s)
- Andrés Lavore
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Avenue Calchaqui Km 23.5, Florencio Varela, Buenos Aires, Argentina; Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Natalia Esponda-Behrens
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Avenue Calchaqui Km 23.5, Florencio Varela, Buenos Aires, Argentina
| | - Lucía Pagola
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Avenue Calchaqui Km 23.5, Florencio Varela, Buenos Aires, Argentina
| | - Rolando Rivera-Pomar
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Avenue Calchaqui Km 23.5, Florencio Varela, Buenos Aires, Argentina; Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina.
| |
Collapse
|
24
|
Chen B, Monteiro A. A method for inducible gene over-expression and down-regulation in emerging model species using Pogostick. Methods Mol Biol 2014; 1101:249-266. [PMID: 24233785 DOI: 10.1007/978-1-62703-721-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nontraditional model species need new tools for the functional testing of genes, both conserved and lineage-specific genes. These tools should enable the exploration of gene function, either via knock-downs of endogenous genes or via over-expression and ectopic expression of transgenes. We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ-line transformation by the piggyBac transposable element. The vector currently uses the heat-shock promoter Hsp70 from Drosophila melanogaster to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. Here we introduce the main features of Pogostick and how candidate genes can be inserted into the vector for use in either over-expression or down-regulation experiments. In addition, we also test Pogostick in two insect species, D. melanogaster and the emerging model butterfly Bicyclus anynana. We over-express the fluorescent protein DsRed during the larval and pupal stages of D. melanogaster development, and down-regulate DsRed in a line constitutively expressing this gene in the eyes. We then test the over-expression of Ultrabithorax (Ubx) in B. anynana, and obtain sequences flanking the Pogostick genomic insertions. This new vector will allow emerging model species to enter the field of functional genetics with few hurdles.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, P. R. China
| | | |
Collapse
|
25
|
Paim RMM, Araujo RN, Lehane MJ, Gontijo NF, Pereira MH. Long-term effects and parental RNAi in the blood feeder Rhodnius prolixus (Hemiptera; Reduviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1015-1020. [PMID: 23999100 DOI: 10.1016/j.ibmb.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) has been widely employed as a useful alternative to study gene function in insects, including triatomine bugs. However, several aspects related to the RNAi mechanism and functioning are still unclear. The aim of this study is to investigate the persistence and the occurrence of systemic and parental RNAi in the triatomine bug Rhodnius prolixus. For such, the nitrophorins 1 to 4 (NP1-4), which are salivary hemeproteins, and the rhodniin, an intestinal protein, were used as targets for RNAi. The dsRNA for both molecules were injected separately into 3rd and 5th instar nymphs of R. prolixus and the knockdown (mRNA levels and phenotype) were progressively evaluated along several stages of the insect's life. We observed that the NP1-4 knockdown persisted for more than 7 months after the dsRNA injection, and at least 5 months in rhodniin knockdown, passing through various nymphal stages until the adult stage, without continuous input of dsRNA. The parental RNAi was successful from the dsRNA injection in 5th instar nymphs for both knockdown targets, when the RNAi effects (mRNA levels and phenotype) were observed at least in the 2nd instar nymphs of the F1 generation. However, the parental RNAi did not occur when the dsRNA was injected in the 3rd instars. The confirmation of the long persistence and parental transmission of RNAi in R. prolixus can improve and facilitate the utilization of this tool in insect functional genomic studies.
Collapse
Affiliation(s)
- Rafaela M M Paim
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Bloco I4, Sala 177, Av. Antonio Carlos 6627, Pampulha, CEP 30270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
26
|
Paim RMM, Araujo RN, Lehane MJ, Gontijo NF, Pereira MH. Application of RNA interference in triatomine (Hemiptera: Reduviidae) studies. INSECT SCIENCE 2013; 20:40-52. [PMID: 23955824 DOI: 10.1111/j.1744-7917.2012.01540.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triatomines (Hemiptera: Reduviidae) are obligate hematophagous insects. They are of medical importance because they are vectors of Trypanosoma cruzi, the causative agent of Chagas disease in the Americas. In recent years, the RNA interference (RNAi) technology has emerged as a practical and useful alternative means of studying gene function in insects, including triatomine bugs. RNAi research in triatomines is still in its early stages, several issues still need to be elucidated, including the description of the molecules involved in the RNAi machinery and aspects related to phenotype evaluation and persistence of the knockdown in different tissues and organs. This review considers recent applications of RNAi to triatomine research, describing the major methods that have been applied during the knockdown process such as the double-stranded RNA delivery mechanism (injection, microinjection, or ingestion) and the phenotype characterization (mRNA and target protein levels) in studies conducted with the intent to provide greater insights into the biology of these insects. In addition to the characterization of insect biomolecules, some with biopharmacological potential, RNAi may provide a new view of the interaction between triatomine and trypanosomatids, enabling the development of new measures for vector control and transmission of the parasite.
Collapse
Affiliation(s)
- Rafaela M M Paim
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Bloco I4, Sala 177, Av. Antonio Carlos 6627, Pampulha, CEP 30270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
27
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|