1
|
Maheshwari R, Rahman MM, Drey S, Onyundo M, Fabig G, Martinez MAQ, Matus DQ, Müller-Reichert T, Cohen-Fix O. A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans. Curr Biol 2023; 33:791-806.e7. [PMID: 36693370 PMCID: PMC10023444 DOI: 10.1016/j.cub.2022.12.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth Drey
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan Onyundo
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Fazeli G, Levin-Konigsberg R, Bassik MC, Stigloher C, Wehman AM. A BORC-dependent molecular pathway for vesiculation of cell corpse phagolysosomes. Curr Biol 2023; 33:607-621.e7. [PMID: 36652947 PMCID: PMC9992095 DOI: 10.1016/j.cub.2022.12.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
Phagocytic clearance is important to provide cells with metabolites and regulate immune responses, but little is known about how phagolysosomes finally resolve their phagocytic cargo of cell corpses, cell debris, and pathogens. While studying the phagocytic clearance of non-apoptotic polar bodies in C. elegans, we previously discovered that phagolysosomes tubulate into small vesicles to facilitate corpse clearance within 1.5 h. Here, we show that phagolysosome vesiculation depends on amino acid export by the solute transporter SLC-36.1 and the activation of TORC1. We demonstrate that downstream of TORC1, BLOC-1-related complex (BORC) is de-repressed by Ragulator through the BORC subunit BLOS-7. In addition, the BORC subunit SAM-4 is needed continuously to recruit the small GTPase ARL-8 to the phagolysosome for tubulation. We find that disrupting the regulated GTP-GDP cycle of ARL-8 reduces tubulation by kinesin-1, delays corpse clearance, and mislocalizes ARL-8 away from lysosomes. We also demonstrate that mammalian phagocytes use BORC to promote phagolysosomal degradation, confirming the conserved importance of TOR and BORC. Finally, we show that HOPS is required after tubulation for the rapid degradation of cargo in small phagolysosomal vesicles, suggesting that additional rounds of lysosome fusion occur. Thus, by observing single phagolysosomes over time, we identified the molecular pathway regulating phagolysosome vesiculation that promotes efficient resolution of phagocytosed cargos.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany; Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany.
| | - Roni Levin-Konigsberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
3
|
Shankar R, Lettman MM, Whisler W, Frankel EB, Audhya A. The ESCRT machinery directs quality control over inner nuclear membrane architecture. Cell Rep 2022; 38:110263. [PMID: 35045304 PMCID: PMC8801257 DOI: 10.1016/j.celrep.2021.110263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function significantly perturbs NE architecture and increases chromosome segregation defects, resulting in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation of the genome during early development. In this study, Shankar et al. demonstrate that defects in ESCRT machinery functions impair pruning of inner nuclear membrane invaginations that form normally after mitotic exit as the nuclear envelope undergoes expansion. These findings highlight a critical role for the ESCRT machinery in the maintenance of inner nuclear membrane morphology.
Collapse
Affiliation(s)
- Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Molly M Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - William Whisler
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Elisa B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
4
|
de la Cruz Ruiz P, Romero-Bueno R, Askjaer P. Analysis of Nuclear Pore Complexes in Caenorhabditis elegans by Live Imaging and Functional Genomics. Methods Mol Biol 2022; 2502:161-182. [PMID: 35412238 DOI: 10.1007/978-1-0716-2337-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear pore complexes (NPCs) are essential to communication of macromolecules between the cell nucleus and the surrounding cytoplasm. RNA synthesized in the nucleus is exported through NPCs to function in the cytoplasm, whereas transcription factors and other proteins are selectively and actively imported. In addition, many NPC constituents, known as nuclear pore proteins (nucleoporins or nups), also play critical roles in other processes, such as genome organization, gene expression, and kinetochore function. Thanks to its genetic amenability and transparent body, the nematode Caenorhabditis elegans is an attractive model to study NPC dynamics. We provide here an overview of available genome engineered strains and FLP/Frt-based tools to study tissue-specific functions of individual nucleoporins. We also present protocols for live imaging of fluorescently tagged nucleoporins in intact tissues of embryos, larvae, and adult and for analysis of interactions between nucleoporins and chromatin by DamID.
Collapse
Affiliation(s)
- Patricia de la Cruz Ruiz
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Raquel Romero-Bueno
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
5
|
Maheshwari R, Rahman MM, Joseph-Strauss D, Cohen-Fix O. An RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans reveals the involvement of unexpected processes. G3 (BETHESDA, MD.) 2021; 11:jkab264. [PMID: 34849797 PMCID: PMC8527477 DOI: 10.1093/g3journal/jkab264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Aberration in nuclear morphology is one of the hallmarks of cellular transformation. However, the processes that, when mis-regulated, result aberrant nuclear morphology are poorly understood. In this study, we carried out a systematic, high-throughput RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans embryos. The screen employed over 1700 RNAi constructs against genes required for embryonic viability. Nuclei of early embryos are typically spherical, and their NPCs are evenly distributed. The screen was performed on early embryos expressing a fluorescently tagged component of the nuclear pore complex (NPC), allowing visualization of nuclear shape as well as the distribution of NPCs around the nuclear envelope. Our screen uncovered 182 genes whose downregulation resulted in one or more abnormal nuclear phenotypes, including multiple nuclei, micronuclei, abnormal nuclear shape, anaphase bridges, and abnormal NPC distribution. Many of these genes fall into common functional groups, including some that were not previously known to affect nuclear morphology, such as genes involved in mitochondrial function, the vacuolar ATPase, and the CCT chaperonin complex. The results of this screen add to our growing knowledge of processes that affect nuclear morphology and that may be altered in cancer cells that exhibit abnormal nuclear shape.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Daphna Joseph-Strauss
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Jeyasimman D, Ercan B, Dharmawan D, Naito T, Sun J, Saheki Y. PDZD-8 and TEX-2 regulate endosomal PI(4,5)P 2 homeostasis via lipid transport to promote embryogenesis in C. elegans. Nat Commun 2021; 12:6065. [PMID: 34663803 PMCID: PMC8523718 DOI: 10.1038/s41467-021-26177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Different types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P2 is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P2 from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood. Using the C. elegans early embryo as our model system, we show that the evolutionarily conserved lipid transfer proteins, PDZD-8 and TEX-2, act together with the PI(4,5)P2 phosphatases, OCRL-1 and UNC-26/synaptojanin, to prevent the build-up of PI(4,5)P2 on endosomal membranes. In the absence of these four proteins, large amounts of PI(4,5)P2 accumulate on endosomes, leading to embryonic lethality due to ectopic recruitment of proteins involved in actomyosin contractility. PDZD-8 localizes to the endoplasmic reticulum and regulates endosomal PI(4,5)P2 levels via its lipid harboring SMP domain. Accumulation of PI(4,5)P2 on endosomes is accompanied by impairment of their degradative capacity. Thus, cells use multiple redundant systems to maintain endosomal PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Darshini Jeyasimman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jingbo Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
7
|
Samaddar M, Goudeau J, Sanchez M, Hall DH, Bohnert KA, Ingaramo M, Kenyon C. A genetic screen identifies new steps in oocyte maturation that enhance proteostasis in the immortal germ lineage. eLife 2021; 10:e62653. [PMID: 33848238 PMCID: PMC8043744 DOI: 10.7554/elife.62653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Somatic cells age and die, but the germ-cell lineage is immortal. In Caenorhabditis elegans, germline immortality involves proteostasis renewal at the beginning of each new generation, when oocyte maturation signals from sperm trigger the clearance of carbonylated proteins and protein aggregates. Here, we explore the cell biology of this proteostasis renewal in the context of a whole-genome RNAi screen. Oocyte maturation signals are known to trigger protein-aggregate removal via lysosome acidification. Our findings suggest that lysosomes are acidified as a consequence of changes in endoplasmic reticulum activity that permit assembly of the lysosomal V-ATPase, which in turn allows lysosomes to clear the aggregates via microautophagy. We define two functions for mitochondria, both of which appear to be independent of ATP generation. Many genes from the screen also regulate lysosome acidification and age-dependent protein aggregation in the soma, suggesting a fundamental mechanistic link between proteostasis renewal in the germline and somatic longevity.
Collapse
Affiliation(s)
| | - Jérôme Goudeau
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Melissa Sanchez
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - K Adam Bohnert
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Maria Ingaramo
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Cynthia Kenyon
- Calico Life Sciences LLCSouth San FranciscoUnited States
| |
Collapse
|
8
|
Fickentscher R, Struntz P, Weiss M. Setting the Clock for Fail-Safe Early Embryogenesis. PHYSICAL REVIEW LETTERS 2016; 117:188101. [PMID: 27835015 DOI: 10.1103/physrevlett.117.188101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 06/06/2023]
Abstract
The embryogenesis of the small nematode Caenorhabditis elegans is a remarkably robust self-organization phenomenon. Cell migration trajectories in the early embryo, for example, are well explained by mechanical cues that push cells into positions where they experience the least repulsive forces. Yet, how this mechanically guided progress in development is properly timed has remained elusive so far. Here, we show that cell volumes and division times are strongly anticorrelated during the early embryogenesis of C. elegans with significant differences between somatic cells and precursors of the germline. Our experimental findings are explained by a simple model that in conjunction with mechanical guidance can account for the fail-safe early embryogenesis of C. elegans.
Collapse
Affiliation(s)
- Rolf Fickentscher
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Philipp Struntz
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
9
|
Maheshwari R, Pushpa K, Subramaniam K. A role for post-transcriptional control of endoplasmic reticulum dynamics and function in C. elegans germline stem cell maintenance. Development 2016; 143:3097-108. [PMID: 27510976 DOI: 10.1242/dev.134056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/21/2016] [Indexed: 01/02/2023]
Abstract
Membrane-bound receptors, which are crucial for mediating several key developmental signals, are synthesized on endoplasmic reticulum (ER). The functional integrity of ER must therefore be important for the regulation of at least some developmental programs. However, the developmental control of ER function is not well understood. Here, we identify the C. elegans protein FARL-11, an ortholog of the mammalian STRIPAK complex component STRIP1/2 (FAM40A/B), as an ER protein. In the C. elegans embryo, we find that FARL-11 is essential for the cell cycle-dependent morphological changes of ER and for embryonic viability. In the germline, FARL-11 is required for normal ER morphology and for membrane localization of the GLP-1/Notch receptor involved in germline stem cell (GSC) maintenance. Furthermore, we provide evidence that PUF-8, a key translational regulator in the germline, promotes the translation of farl-11 mRNA. These findings reveal that ER form and function in the C. elegans germline are post-transcriptionally regulated and essential for the niche-GSC signaling mediated by GLP-1.
Collapse
Affiliation(s)
- Richa Maheshwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kumari Pushpa
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India Department of Biotechnology, Indian Institute of Technology - Madras, Chennai 600036, India
| |
Collapse
|
10
|
An RNAi-based suppressor screen identifies interactors of the Myt1 ortholog of Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2014; 4:2329-43. [PMID: 25298536 PMCID: PMC4267929 DOI: 10.1534/g3.114.013649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oocyte maturation in all species is controlled by a protein complex termed the maturation promoting factor (MPF). MPF comprises a cyclin-dependent kinase (CDK) and its partner cyclin, and it is regulated by dueling regulatory phosphorylation events on the CDK. In Caenorhabditis elegans, the Wee1/Myt1 ortholog WEE-1.3 provides the inhibitory phosphorylations on CDK-1 that keep MPF inactive and halt meiosis. Prior work has shown that depletion of WEE-1.3 in C. elegans results in precocious oocyte maturation in vivo and a highly penetrant infertility phenotype. This study sought to further define the precocious maturation phenotype and to identify novel interactors with WEE-1.3. We found that WEE-1.3 is expressed throughout the germline and in developing embryos in a perinuclear pattern, and demonstrated that oocytes in WEE-1.3–depleted germlines have begun to transcribe embryonic genes and exhibit inappropriate expression of proteins normally restricted to fertilized eggs. In addition, we performed an RNAi suppressor screen of the infertile phenotype to identify novel factors that, when co-depleted with WEE-1.3, restore fertility to these animals. We screened ∼1900 essential genes by RNAi feeding and identified 44 (∼2% of the tested genes) that are suppressors of the WEE-1.3 depletion phenotype. The suppressors include many previously unidentified players in the meiotic cell cycle and represent a pool of potential WEE-1.3 interacting proteins that function during C. elegans oocyte maturation and zygotic development.
Collapse
|
11
|
Rahman MM, Rosu S, Joseph-Strauss D, Cohen-Fix O. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A 2014; 111:2602-7. [PMID: 24550289 PMCID: PMC3932911 DOI: 10.1073/pnas.1311635111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.
Collapse
Affiliation(s)
- Mohammad M. Rahman
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Simona Rosu
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daphna Joseph-Strauss
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Orna Cohen-Fix
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
12
|
Alternative Splicing Regulation of Cancer-Related Pathways in Caenorhabditis elegans: An In Vivo Model System with a Powerful Reverse Genetics Toolbox. Int J Cell Biol 2013; 2013:636050. [PMID: 24069034 PMCID: PMC3771449 DOI: 10.1155/2013/636050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing allows for the generation of protein diversity and fine-tunes gene expression. Several model systems have been used for the in vivo study of alternative splicing. Here we review the use of the nematode Caenorhabditis elegans to study splicing regulation in vivo. Recent studies have shown that close to 25% of genes in the worm genome undergo alternative splicing. A big proportion of these events are functional, conserved, and under strict regulation either across development or other conditions. Several techniques like genome-wide RNAi screens and bichromatic reporters are available for the study of alternative splicing in worms. In this review, we focus, first, on the main studies that have been performed to dissect alternative splicing in this system and later on examples from genes that have human homologs that are implicated in cancer. The significant advancement towards understanding the regulation of alternative splicing and cancer that the C. elegans system has offered is discussed.
Collapse
|