1
|
Singh DJ, Tuscano KM, Ortega AL, Dimri M, Tae K, Lee W, Muslim MA, Rivera Paz IM, Liu JL, Pierce LX, McClendon A, Gibson I, Livesay J, Sakaguchi TF. Forward genetics combined with unsupervised classifications identified zebrafish mutants affecting biliary system formation. Dev Biol 2024; 512:44-56. [PMID: 38729406 PMCID: PMC11983484 DOI: 10.1016/j.ydbio.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes. We applied unsupervised clustering algorithms to unbiasedly classify the recovered mutants into three classes. Further computational analysis revealed that each of the recovered mutations in these three classes has a unique phenotype on node-subtype composition and distribution within the intrahepatic biliary network. In addition, we found most of the recovered mutations are viable. In those mutant fish, which are already good animal models to study chronic cholestatic liver diseases, the biliary network phenotypes persist into adulthood. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.
Collapse
Affiliation(s)
- Divya Jyoti Singh
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kathryn M Tuscano
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Amrhen L Ortega
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Manali Dimri
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kevin Tae
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - William Lee
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Muslim A Muslim
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Isabela M Rivera Paz
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jay L Liu
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Lain X Pierce
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Allyson McClendon
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Isabel Gibson
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jodi Livesay
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Takuya F Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Xu H, Mao X, Nie Z, Li Y. Oxr1a prevents the premature ovarian failure by regulating oxidative stress and mitochondrial function in zebrafish. Free Radic Biol Med 2023; 203:102-113. [PMID: 37031846 DOI: 10.1016/j.freeradbiomed.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Premature ovarian failure (POF) is characterized as the ovarian dysfunction and defective oocyte development. In POF patients, ROS level is reported to be significantly higher than normal individuals. However, the involvement of oxidative stress in POF and the regulatory mechanisms underlying the antioxidative process in oocyte development remain largely unknown. Here, we discover that oxidation resistance 1a (Oxr1a), the ortholog of mammalian Oxr1, protects the oocytes of female zebrafish against oxidative stress and thus represses the POF phenotype. Oxr1a was widely expressed in oocytes at different developmental stages, of which the mRNA expression levels were significantly upregulated upon follicle activation and oocyte maturation. Oxr1a knockout exacerbated the POF phenotype, as evidenced by the decreased number and quality of oocytes. Moreover, the oocytes of oxr1a knockout zebrafish exhibited excessive ROS, increased mitochondrial DNA damage, reduced mitochondria, and abnormal morphology. Mechanistically, instead of decomposing ROS directly, Oxr1a participated in the process of oxidative stress through regulating the mRNA expression levels of the key antioxidant enzymes Cat and Sod1. Moreover, treatment with antioxidant N-Acetyl-l-cysteine attenuated the mitochondrial oxidative damage and improved the fertility of mutant females, indicating that Oxr1a may mediates the Sod1/Cat pathway to metabolize the intracellular ROS and avoid the mitochondrial oxidative damage, thus ensuring the normal development and maturation of oocytes. Taken together, these findings are useful for the elucidation of molecular mechanisms underlying the oxidative damage in oocytes and beneficial to the clinical therapeutics of POF.
Collapse
Affiliation(s)
- Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, 400031, China
| | - Zhentao Nie
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Single-cell transcriptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development. Cell Rep 2021; 37:110140. [PMID: 34936864 PMCID: PMC8741273 DOI: 10.1016/j.celrep.2021.110140] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Neural crest (NC) cells migrate throughout vertebrate embryos to give rise to a huge variety of cell types, but when and where lineages emerge and their regulation remain unclear. We have performed single-cell RNA sequencing (RNA-seq) of cranial NC cells from the first pharyngeal arch in zebrafish over several stages during migration. Computational analysis combining pseudotime and real-time data reveals that these NC cells first adopt a transitional state, becoming specified mid-migration, with the first lineage decisions being skeletal and pigment, followed by neural and glial progenitors. In addition, by computationally integrating these data with RNA-seq data from a transgenic Wnt reporter line, we identify gene cohorts with similar temporal responses to Wnts during migration and show that one, Atp6ap2, is required for melanocyte differentiation. Together, our results show that cranial NC cell lineages arise progressively and uncover a series of spatially restricted cell interactions likely to regulate such cell-fate decisions. Tatarakis et al. provide a single-cell transcriptomic timeline of cranial neural crest (NC) development in zebrafish and address long-standing questions surrounding the integration of NC cell migration and lineage specification. They find that lineages are specified mid-migration. These fate decisions correspond to shifts in Wnt signaling, and lineages rapidly segregate.
Collapse
|
4
|
Larsen LE, van den Boogert MAW, Rios-Ocampo WA, Jansen JC, Conlon D, Chong PLE, Levels JHM, Eilers RE, Sachdev VV, Zelcer N, Raabe T, He M, Hand NJ, Drenth JPH, Rader DJ, Stroes ESG, Lefeber DJ, Jonker JW, Holleboom AG. Defective Lipid Droplet-Lysosome Interaction Causes Fatty Liver Disease as Evidenced by Human Mutations in TMEM199 and CCDC115. Cell Mol Gastroenterol Hepatol 2021; 13:583-597. [PMID: 34626841 PMCID: PMC8688563 DOI: 10.1016/j.jcmgh.2021.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model. METHODS AND RESULTS Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very low density lipoprotein range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared with controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, and elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity. CONCLUSIONS Our data suggest that the hypercholesterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy, and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. Because this pathway remains understudied and its regulation is largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease.
Collapse
Affiliation(s)
- Lars E Larsen
- Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands; Department of Pediatrics, Section Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | - Wilson A Rios-Ocampo
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Jos C Jansen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Donna Conlon
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick L E Chong
- Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - J Han M Levels
- Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Roos E Eilers
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Vinay V Sachdev
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Tobias Raabe
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Miao He
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David J Rader
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Dirk J Lefeber
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Santra P, Amack JD. Loss of vacuolar-type H+-ATPase induces caspase-independent necrosis-like death of hair cells in zebrafish neuromasts. Dis Model Mech 2021; 14:dmm048997. [PMID: 34296747 PMCID: PMC8319552 DOI: 10.1242/dmm.048997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that regulates cellular pH. V-ATPase activity modulates several cellular processes, but cell-type-specific functions remain poorly understood. Patients with mutations in specific V-ATPase subunits can develop sensorineural deafness, but the underlying mechanisms are unclear. Here, we show that V-ATPase mutations disrupt the formation of zebrafish neuromasts, which serve as a model to investigate hearing loss. V-ATPase mutant neuromasts are small and contain pyknotic nuclei that denote dying cells. Molecular markers and live imaging show that loss of V-ATPase induces mechanosensory hair cells in neuromasts, but not neighboring support cells, to undergo caspase-independent necrosis-like cell death. This is the first demonstration that loss of V-ATPase can lead to necrosis-like cell death in a specific cell type in vivo. Mechanistically, loss of V-ATPase reduces mitochondrial membrane potential in hair cells. Modulating the mitochondrial permeability transition pore, which regulates mitochondrial membrane potential, improves hair cell survival. These results have implications for understanding the causes of sensorineural deafness, and more broadly, reveal functions for V-ATPase in promoting survival of a specific cell type in vivo.
Collapse
Affiliation(s)
- Peu Santra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY 13244, USA
| |
Collapse
|
6
|
Xu H, Jiang Y, Miao XM, Tao YX, Xie L, Li Y. A Model Construction of Starvation Induces Hepatic Steatosis and Transcriptome Analysis in Zebrafish Larvae. BIOLOGY 2021; 10:92. [PMID: 33513687 PMCID: PMC7911188 DOI: 10.3390/biology10020092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions, the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More importantly, we detected that the expression of numerous apolipoprotein genes was downregulated and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Yu Jiang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Xiao-Min Miao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Yi-Xi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Chen Y, Xu C. The interaction partners of (pro)renin receptor in the distal nephron. FASEB J 2020; 34:14136-14149. [PMID: 32975331 DOI: 10.1096/fj.202001711r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/11/2022]
Abstract
The (pro)renin receptor (PRR), a key regulator of intrarenal renin-angiotensin system (RAS), is predominantly presented in podocytes, proximal tubules, distal convoluted tubules, and the apical membrane of collecting duct A-type intercalated cells, and plays a crucial role in hypertension, cardiovascular disease, kidney disease, and fluid homeostasis. In addition to its well-known renin-regulatory function, increasing evidence suggests PRR can also act in a variety of intracellular signaling cascades independently of RAS in the renal medulla, including Wnt/β-catenin signaling, cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) signaling, and the apelinergic system, and work as a component of the vacuolar H+ -ATPase. PRR and these pathways regulate the expression/activity of each other that controlling blood pressure and renal functions. In this review, we highlight recent findings regarding the antagonistic interaction between PRR and ELABELA/apelin, the mutually stimulatory relationship between PRR and COX-2/PGE2 or Wnt/β-catenin signaling in the renal medulla, and their involvement in the regulation of intrarenal RAS thereby control blood pressure, renal injury, and urine concentrating ability in health and patho-physiological conditions. We also highlight the latest progress in the involvement of PRR for the vacuolar H+ -ATPase activity.
Collapse
Affiliation(s)
- Yanting Chen
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.,Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Chuanming Xu
- Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Center for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Chen B, Zheng YM, Zhang MQ, Han Y, Zhang JP, Hu CQ. Microarray Expression Profiling and Raman Spectroscopy Reveal Anti-Fatty Liver Action of Berberine in a Diet-Induced Larval Zebrafish Model. Front Pharmacol 2020; 10:1504. [PMID: 31969822 PMCID: PMC6960226 DOI: 10.3389/fphar.2019.01504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The prevalence of non-alcohol fatty liver disease (NAFLD) is increasing in children and adolescents who are mostly resulted from overfeeding. Previous studies demonstrate that berberine (BBR), a compound derived from plant, has beneficial effects on NAFLD in adults but poorly understood in the pediatric population. This study employed a larval zebrafish model to mimic the therapeutic effects of BBR in the pediatric population and the mechanisms underlying its hepatoprotection. Methods: High-cholesterol diet (HCD)-fed zebrafish exposed to BBR at doses of 0, 1, 5, and 25 μM. After the larvae were treated with BBR for 10 days, its effect on hepatic steatosis was evaluated. We introduced Raman imaging and three-dimensional (3D) molecular imaging to detect changes in the biochemical composition and reactive oxygen species (ROS) levels of zebrafish liver. Gene expression microarray was performed to identify differentially expressed genes (DEGs) followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and functional category analysis. Results: BBR (5 and 25 μM) administration prevented HCD-induced liver lipid accumulation in larval zebrafish. The result was further confirmed by the pathological observation. Raman mapping indicated that the biochemical composition in the liver of BBR-treated group shifted to the control. The quantitative analysis of 3D imaging showed that the ROS level was significantly decreased in the liver of BBR-treated larvae. In the livers of the BBR group, we found 468 DEGs, including 172 genes with upregulated expression and 296 genes with downregulated expression. Besides, GO enrichment, KEGG pathway, and functional category analysis showed that various processes related to glucolipid metabolism, immune response, DNA damage and repair, and iron were significantly enriched with DEGs. The expression levels of the crucial genes from the functional analysis were also confirmed by quantitative PCR (qPCR). Conclusion: BBR can significantly improve hepatic steatosis in HCD-fed zebrafish larvae. Its mechanisms might be associated with the regulation of lipid metabolism, oxidative stress, and iron homeostasis. Raman imaging in larval zebrafish might become a useful tool for drug evaluation. Mainly, the gene expression profiles provide molecular information for BBR on the prevention and treatment of pediatric NAFLD.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang-Min Zheng
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Postdoctoral Scientific Research Workstation, China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China.,Postdoctoral Mobile Research Station, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ying Han
- National Institutes for Food and Drug Control, Graduate School of Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68:1049-1062. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023]
Abstract
Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.
Collapse
Affiliation(s)
- Elke A Ober
- Novo Nordisk Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Atp6ap2 ablation in adult mice impairs viability through multiple organ deficiencies. Sci Rep 2017; 7:9618. [PMID: 28851918 PMCID: PMC5575319 DOI: 10.1038/s41598-017-08845-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2017] [Indexed: 11/16/2022] Open
Abstract
ATP6AP2 codes for the (pro)renin receptor and is an essential component of vacuolar H+ ATPase. Activating (pro)renin for conversion of Angiotensinogen to Angiotensin makes ATP6AP2 attractive for drug intervention. Tissue-specific ATP6AP2 inactivation in mouse suggested a strong impact on various organs. Consistent with this, we found that embryonic ablation of Atp6ap2 resulted in both male hemizygous lethality and female haploinsufficiency. Next, we examined the phenotype of an induced inactivation in the adult animal, most akin to detect potential effect of functional interference of ATP6AP2 through drug therapy. Induced ablation of Atp6ap2, even without equal efficiency in all tissues (aorta, brain and kidney), resulted in rapid lethality marked by weight loss, changes in nutritional as well as blood parameters, leukocyte depletion, and bone marrow hypoplasia. Upon Atp6ap2 ablation, the colon demonstrated a rapid disruption of crypt morphology, aberrant proliferation, cell-death activation, as well as generation of microadenomas. Consequently, disruption of ATP6AP2 is extremely poorly tolerated in the adult, and severely affects various organ systems demonstrating that ATP6AP2 is an essential gene implicated in basic cellular mechanisms and necessary for multiple organ function. Accordingly, any potential drug targeting of this gene product must be strictly assessed for safety.
Collapse
|
11
|
Cooper CD. Insights from zebrafish on human pigment cell disease and treatment. Dev Dyn 2017; 246:889-896. [DOI: 10.1002/dvdy.24550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cynthia D. Cooper
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver Washington
| |
Collapse
|
12
|
Nakagawa T, Suzuki-Nakagawa C, Watanabe A, Asami E, Matsumoto M, Nakano M, Ebihara A, Uddin MN, Suzuki F. Site-1 protease is required for the generation of soluble (pro)renin receptor. J Biochem 2017; 161:369-379. [PMID: 28013223 DOI: 10.1093/jb/mvw080] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/03/2016] [Indexed: 11/13/2022] Open
Abstract
The extracellular domain of the (pro)renin receptor [(P)RR] is cleaved to generate the soluble form of (P)RR [s(P)RR]. Multiple clinical studies have revealed the association between serum/plasma s(P)RR levels and certain diseases, thereby suggesting a potential role for s(P)RR as a disease biomarker. Here, we investigated whether site-1 protease (S1P) is responsible for cleaving (P)RR to generate s(P)RR. Reduction of endogenous S1P with siRNA attenuated s(P)RR generation in Chinese hamster ovary (CHO) cells exogenously expressing human (P)RR with a C-terminal decahistidine tag [CHO/h(P)RR-10His cells]; conversely, overexpression of S1P by transient transfection increased s(P)RR generation. The S1P inhibitor PF429242 suppressed s(P)RR generation in CHO/h(P)RR-10His and human cervical carcinoma HeLa cells; however, the ADAM inhibitor GM6001 had no effect. The furin inhibitor Dec-RVKR-CMK had no effect on the amount of s(P)RR, but caused a slight increase in the size of the s(P)RR. Moreover, the reversible vesicle-trafficking inhibitor brefeldin A (BFA) enhanced the generation of large-sized s(P)RR; PF429242, but not Dec-RVKR-CMK, suppressed this BFA-induced s(P)RR formation. The size of s(P)RR generated during BFA treatment was reduced after removal of BFA; Dec-RVKR-CMK, but not PF429242, suppressed this conversion. Together, these results suggest that s(P)RR is generated by sequential processing by S1P and furin.
Collapse
Affiliation(s)
- Tsutomu Nakagawa
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Chiharu Suzuki-Nakagawa
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akiko Watanabe
- Department of Applied Life Science, Graduate School of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Eriko Asami
- Department of Applied Life Science, Graduate School of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mizuki Matsumoto
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mami Nakano
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akio Ebihara
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mohammad Nasir Uddin
- Department of Obstetrics & Gynecology, Scott & White Healthcare and Texas A&M Health Science Center College of Medicine, Temple, TX 76508, USA
| | - Fumiaki Suzuki
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Sun Y, Danser AHJ, Lu X. (Pro)renin receptor as a therapeutic target for the treatment of cardiovascular diseases? Pharmacol Res 2017; 125:48-56. [PMID: 28532817 DOI: 10.1016/j.phrs.2017.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
The discovery of the (pro)renin receptor [(P)RR] 15years ago stimulated ideas on prorenin being more than renin's inactive precursor. Indeed, binding of prorenin to the (P)RR induces a conformational change in the prorenin molecule, allowing it to display angiotensin-generating activity, and additionally results in intracellular signaling in an angiotensin-independent manner. However, the prorenin levels required to observe these angiotensin-dependent and -independent effects of the (P)RR are many orders above its in vivo concentrations, both under normal and pathological conditions. Given this requirement, the idea that the (P)RR has a function within the renin-angiotensin system (RAS) is now being abandoned. Instead, research is now focused on the (P)RR as an accessory protein of vacuolar H+-ATPase (V-ATPase), potentially determining its integrity. Acting as an adaptor between Frizzled co-receptor LRP6 and V-ATPase, the (P)RR appears to be indispensable for Wnt/β-catenin signaling, thus explaining why (P)RR deletion (unlike renin deletion) is lethal even when restricted to specific cells, such as cardiomyocytes, podocytes and smooth muscle cells. Furthermore, recent studies suggest that the (P)RR may play important roles in lipoprotein metabolism and overall energy metabolism. In this review, we summarize the controversial RAS-related effects of the (P)RR, and critically review the novel non-RAS-related functions of the (P)RR, ending with a discussion on the potential of targeting the (P)RR to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Yuan Sun
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China; Erasmus Medical Center, Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Rotterdam, The Netherlands
| | - A H Jan Danser
- Erasmus Medical Center, Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Rotterdam, The Netherlands
| | - Xifeng Lu
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
Loss of a Candidate Biliary Atresia Susceptibility Gene, add3a, Causes Biliary Developmental Defects in Zebrafish. J Pediatr Gastroenterol Nutr 2016; 63:524-530. [PMID: 27526058 PMCID: PMC5074882 DOI: 10.1097/mpg.0000000000001375] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Biliary atresia (BA) is a progressive fibroinflammatory cholangiopathy affecting the bile ducts of neonates. Although BA is the leading indication for pediatric liver transplantation, the etiology remains elusive. Adducin 3 (ADD3) and X-prolyl aminopeptidase 1 (XPNPEP1) are 2 genes previously identified in genome-wide association studies as potential BA susceptibility genes. Using zebrafish, we investigated the importance of ADD3 and XPNPEP1 in functional studies. METHODS To determine whether loss of either gene leads to biliary defects, we performed morpholino antisense oligonucleotide (MO) knockdown studies targeting add3a and xpnpep1 in zebrafish. Individuals were assessed for decreases in biliary function and the presence of biliary defects. Quantitative polymerase chain reaction was performed on pooled 5 days postfertilization larvae to assess variations in transcriptional expression of genes of interest. RESULTS Although both xpnpep1 and add3a are expressed in the developing zebrafish liver, only knockdown of add3a produced intrahepatic defects and decreased biliary function. Similar results were observed in homozygous add3a mutants. MO-mediated knockdown of add3a also showed higher mRNA expression of hedgehog (Hh) targets. Inhibition of Hh signaling rescued biliary defects caused by add3a knockdown. Combined knockdown of add3a and glypican-1 (gpc1), another mediator of Hh activity that is also a BA susceptibility gene, resulted in more severe biliary defects than knockdown of either alone. CONCLUSIONS Our results support previous studies identifying ADD3 as a putative genetic risk factor for BA susceptibility. Our results also provide evidence that add3a may be affecting the Hh pathway, an important factor in BA pathogenesis.
Collapse
|
15
|
Cofer ZC, Cui S, EauClaire SF, Kim C, Tobias JW, Hakonarson H, Loomes KM, Matthews RP. Methylation Microarray Studies Highlight PDGFA Expression as a Factor in Biliary Atresia. PLoS One 2016; 11:e0151521. [PMID: 27010479 PMCID: PMC4806872 DOI: 10.1371/journal.pone.0151521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/27/2016] [Indexed: 01/21/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-inflammatory disorder that is the leading indication for liver transplantation in children. Although there is evidence implicating genetic, infectious, environmental, and inflammatory causes, the etiology of BA remains unknown. We have recently reported that cholangiocytes from BA patients showed decreased DNA methylation relative to disease- and non-disease controls, supporting a potential role for DNA hypomethylation in BA etiopathogenesis. In the current study, we examined the methylation status of specific genes in human BA livers using methylation microarray technology. We found global DNA hypomethylation in BA samples as compared to disease- and non-disease controls at specific genetic loci. Hedgehog pathway members, SHH and GLI2, known to be upregulated in BA, were both hypomethylated, validating this approach as an investigative tool. Another region near the PDGFA locus was the most significantly hypomethylated in BA, suggesting potential aberrant expression. Validation assays confirmed increased transcriptional and protein expression of PDGFA in BA livers. We also show that PDGF-A protein is specifically localized to cholangiocytes in human liver samples. Injection of PDGF-AA protein dimer into zebrafish larvae caused biliary developmental and functional defects. In addition, activation of the Hedgehog pathway caused increased expression of PDGF-A in zebrafish larvae, providing a previously unrecognized link between PDGF and the Hedgehog pathway. Our findings implicate DNA hypomethylation as a specific factor in mediating overexpression of genes associated with BA and identify PDGF as a new candidate in BA pathogenesis.
Collapse
Affiliation(s)
- Zenobia C. Cofer
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Shuang Cui
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Steven F. EauClaire
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - John W. Tobias
- Penn Center for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Randolph P. Matthews
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Goessling W, Sadler KC. Zebrafish: an important tool for liver disease research. Gastroenterology 2015; 149:1361-77. [PMID: 26319012 PMCID: PMC4762709 DOI: 10.1053/j.gastro.2015.08.034] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration.
Collapse
Affiliation(s)
- Wolfram Goessling
- Divisions of Genetics and Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts
| | - Kirsten C Sadler
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
17
|
Gokey JJ, Dasgupta A, Amack JD. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish. Dev Biol 2015; 407:115-30. [PMID: 26254189 DOI: 10.1016/j.ydbio.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
Abstract
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.
Collapse
Affiliation(s)
- Jason J Gokey
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
18
|
Sapp V, Gaffney L, EauClaire SF, Matthews RP. Fructose leads to hepatic steatosis in zebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition. Hepatology 2014; 60:1581-92. [PMID: 25043405 DOI: 10.1002/hep.27284] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD), the accumulation of lipid within hepatocytes, is increasing in prevalence. Increasing fructose consumption correlates with this increased prevalence, and rodent studies directly support fructose leading to NAFLD. The mechanisms of NAFLD and in particular fructose-induced lipid accumulation remain unclear, although there is evidence for a role for endoplasmic reticulum (ER) stress and oxidative stress. We have evidence that NAFLD models demonstrate activation of the target of rapamycin complex 1 (Torc1) pathway. We set out to assess the contribution of ER stress, oxidative stress, and Torc1 up-regulation in the development of steatohepatitis in fructose-treated larval zebrafish. Zebrafish were treated with fructose or glucose as a calorie-matched control. We also treated larvae with rapamycin, tunicamycin (ER stress), or valinomycin (oxidative stress). Fish were stained with oil red O to assess hepatic lipid accumulation, and we also performed quantitative polymerase chain reaction (qPCR)and western blot analysis. We performed immunostaining on samples from patients with NAFLD and nonalcoholic steatohepatitis (NASH). Treatment with fructose induced hepatic lipid accumulation, mitochondrial abnormalities, and ER defects. In addition, fructose-treated fish showed activation of inflammatory and lipogenic genes. Treatment with tunicamycin or valinomycin also induced hepatic lipid accumulation. Expression microarray studies of zebrafish NAFLD models showed an elevation of genes downstream of Torc1 signaling. Rapamycin treatment of fructose-treated fish prevented development of hepatic steatosis, as did treatment of tunicamycin- or valinomycin-treated fish. Examination of liver samples from patients with hepatic steatosis demonstrated activation of Torc1 signaling. CONCLUSION Fructose treatment of larval zebrafish induces hepatic lipid accumulation, inflammation, and oxidative stress. Our results indicate that Torc1 activation is required for hepatic lipid accumulation across models of NAFLD, and in patients.
Collapse
Affiliation(s)
- Valerie Sapp
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA
| | | | | | | |
Collapse
|
19
|
Zhang D, Golubkov VS, Han W, Correa RG, Zhou Y, Lee S, Strongin AY, Dong PDS. Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival. Dev Biol 2014; 395:96-110. [PMID: 25176043 DOI: 10.1016/j.ydbio.2014.08.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing ß-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic ß-cell apoptosis and cancer cell chemoresistance.
Collapse
Affiliation(s)
- Danhua Zhang
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Vladislav S Golubkov
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Wenlong Han
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricardo G Correa
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ying Zhou
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Sunyoung Lee
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - P Duc Si Dong
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Cofer ZC, Matthews RP. Zebrafish Models of Biliary Atresia and Other Infantile Cholestatic Diseases. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0040-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Abstract
A decade ago, the (P)RR [(pro)renin receptor] was discovered and depicted as a potential activator of the tissue renin-angiotensin system. For this reason, the role of the (P)RR in cardiovascular diseases and diabetes has been particularly studied. However, the discovery of embryonic lethality after (P)RR gene deletion in mouse and zebrafish paved the way for additional roles of (P)RR in cell homoeostasis. Indeed, the (P)RR has been shown to associate with vacuolar H+-ATPase, hence its other name ATP6ap2. Developmental studies in Xenopus and Drosophila have revealed an essential role of this association to promote the canonical and non-canonical Wnt signalling pathways, whereas studies with tissue-specific gene deletion have pointed out a role in autophagy. The present review aims to summarize recent findings on the cellular functions of (P)RR emerging from various mutated and transgenic animal models.
Collapse
|
22
|
Abstract
The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
23
|
Cui S, Leyva-Vega M, Tsai EA, Eauclaire SF, Glessner JT, Hakonarson H, Devoto M, Haber BA, Spinner NB, Matthews RP. Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 2013; 144:1107-1115.e3. [PMID: 23336978 PMCID: PMC3736559 DOI: 10.1053/j.gastro.2013.01.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) is a progressive fibroinflammatory disorder of infants involving the extrahepatic and intrahepatic biliary tree. Its etiology is unclear but is believed to involve exposure of a genetically susceptible individual to certain environmental factors. BA occurs exclusively in the neonatal liver, so variants of genes expressed during hepatobiliary development could affect susceptibility. Genome-wide association studies previously identified a potential region of interest at 2q37. We continued these studies to narrow the region and identify BA susceptibility genes. METHODS We searched for copy number variants that were increased among patients with BA (n = 61) compared with healthy individuals (controls; n = 5088). After identifying a candidate gene, we investigated expression patterns of orthologues in zebrafish liver and the effects of reducing expression, with morpholino antisense oligonucleotides, on biliary development, gene expression, and signal transduction. RESULTS We observed a statistically significant increase in deletions at 2q37.3 in patients with BA that resulted in deletion of one copy of GPC1, which encodes glypican 1, a heparan sulfate proteoglycan that regulates Hedgehog signaling and inflammation. Knockdown of gpc1 in zebrafish led to developmental biliary defects. Exposure of the gpc1 morphants to cyclopamine, a Hedgehog antagonist, partially rescued the gpc1-knockdown phenotype. Injection of zebrafish with recombinant Sonic Hedgehog led to biliary defects similar to those of the gpc1 morphants. Liver samples from patients with BA had reduced levels of apical GPC1 in cholangiocytes compared with samples from controls. CONCLUSIONS Based on genetic analysis of patients with BA and zebrafish, GPC1 appears to be a BA susceptibility gene. These findings also support a role for Hedgehog signaling in the pathogenesis of BA.
Collapse
Affiliation(s)
- Shuang Cui
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa Leyva-Vega
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen A. Tsai
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Genomics and Computational Biology Graduate Group, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven F. Eauclaire
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph T. Glessner
- Center for Applied Genomics, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Department of Genetics, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcella Devoto
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Department of Biostatistics and Epidemiology, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Department of Molecular Medicine, University of Rome La Sapienza, Rome, Italy
| | - Barbara A. Haber
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nancy B. Spinner
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Randolph P. Matthews
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Cui S, Eauclaire SF, Matthews RP. Interferon-gamma directly mediates developmental biliary defects. Zebrafish 2013; 10:177-83. [PMID: 23448251 DOI: 10.1089/zeb.2012.0815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is the most common identifiable hepatobiliary disease affecting infants, in which there are defects in intra- and extrahepatic bile ducts and progressive fibrosis. Activation of interferon-gamma (IFNγ) appears to be critical in both patients with BA and in rodent models of BA. We have recently reported a zebrafish model of biliary disease that shares features with BA, in which inhibition of DNA methylation leads to intrahepatic biliary defects and activation of IFNγ target genes. Here we report that ifng genes are hypomethylated and upregulated in zebrafish larvae treated with azacytidine (azaC), an inhibitor of DNA methylation. Injection of IFNγ protein into developing zebrafish larvae leads to biliary defects, suggesting that activation of the IFNγ pathway is sufficient to cause developmental biliary defects. These defects are associated with decreased cholangiocyte proliferation and with a decrease in the expression of vhnf1 (hnf1b, tcf2), which encodes a homeodomain protein with previously reported roles in biliary development in multiple models. These results support an importance of IFNγ in mediating biliary defects, and also demonstrate the feasibility of direct injection of intact protein into developing zebrafish larvae.
Collapse
Affiliation(s)
- Shuang Cui
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia Research Institute , Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
25
|
The zebrafish mutants for the V-ATPase subunits d, ac45, E, H and c and their variable pigment dilution phenotype. BMC Res Notes 2013; 6:39. [PMID: 23375000 PMCID: PMC3599454 DOI: 10.1186/1756-0500-6-39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background The V-ATPase is a proton pump that creates an acidic medium, necessary for lysosome function and vesicular traffic. It is also essential for several developmental processes. Many enzymes, like the V-ATPase, are assemblies of multiple subunits, in which each one performs a specific function required to achieve full activity. In the zebrafish V-ATPase 15 different subunits form this multimeric complex and mutations in any of these subunits induce hypopigmentation or pigment dilution phenotype. We have previously found variability in the pigment dilution phenotype among five of the V-ATPase zebrafish mutants. This work presents additional information about such differences and is an update from a previous report. Findings We describe the variable phenotype severity observed among zebrafish V-ATPase pigment dilution mutants studying mRNA expression levels from their corresponding genes. At the same time we carried out phylogenetic analysis for this genes. Conclusions Based in the similarities between different pigment dilution mutants we suggest that there is an essential role for V-ATPases in melanosome biogenesis and melanocyte survival. Neither variable expression levels for the different V-ATPase subunits studied here or the presence of duplicated genes seems to account for the variable phenotype severity from this group of mutants. We believe there are some similarities between the pigment dilution phenotype from zebrafish V-ATPase insertional mutants and pigment mutants obtained in a chemical screening (“Tubingen pigmentation mutants”). As for some of these “Tubingen mutants” the mutated gene has not been found we suggest that mutations in V-ATPase genes may be inducing their defects.
Collapse
|
26
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|