1
|
Qin H, Liang T, Zhang C, Wu J, Sheng X. The bidirectional relationship between cilia and PCP signaling pathway core protein Vangl2. Sci Prog 2025; 108:368504241311964. [PMID: 39819247 PMCID: PMC11748379 DOI: 10.1177/00368504241311964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vangl2, a core component of the PCP signaling pathway, serves as a scaffold protein on the cell membrane, playing a crucial role in organizing protein complexes. Cilia, dynamic structures on the cell surface, carry out a wide range of functions. Research has highlighted a bidirectional regulatory interaction between Vangl2 and cilia, underscoring their interconnected roles in cellular processes. This relationship is demonstrated by the localization of Vangl2 at the base and proximal regions of cilia, where it plays essential roles in ciliary positioning, asymmetric distribution, and ciliogenesis. In contrast, the absence of cilia can disrupt Vangl2-mediated signal transduction processes. This review offers a narrative review of recent research on Vangl2's function in cilia and examines the regulatory effects of cilia on Vangl2-mediated signaling.
Collapse
Affiliation(s)
- Huanyong Qin
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Liang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chuanfen Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Junlin Wu
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Sheng
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Feng X, Ye Y, Zhang J, Zhang Y, Zhao S, Mak JCW, Otomo N, Zhao Z, Niu Y, Yonezawa Y, Li G, Lin M, Li X, Cheung PWH, Xu K, Takeda K, Wang S, Xie J, Kotani T, Choi VNT, Song YQ, Yang Y, Luk KDK, Lee KS, Li Z, Li PS, Leung CYH, Lin X, Wang X, Qiu G, Watanabe K, Wu Z, Posey JE, Ikegawa S, Lupski JR, Cheung JPY, Zhang TJ, Gao B, Wu N. Core planar cell polarity genes VANGL1 and VANGL2 in predisposition to congenital vertebral malformations. Proc Natl Acad Sci U S A 2024; 121:e2310283121. [PMID: 38669183 PMCID: PMC11067467 DOI: 10.1073/pnas.2310283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China
| | - Jianan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan250012, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Judith C. W. Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Junjie Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Vanessa N. T. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin Shing Lee
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Pik Shan Li
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie Y. H. Leung
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | | | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | | | - Zhihong Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston77030, TX
- Texas Children’s Hospital, Houston77030, TX
- Department of Pediatrics, Baylor College of Medicine, Houston77030, TX
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
- Centre for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| |
Collapse
|
3
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
4
|
Hummel D, Becks A, Men H, Bryda EC, Glasco DM, Chandrasekhar A. Celsr1 suppresses Wnt5a-mediated chemoattraction to prevent incorrect rostral migration of facial branchiomotor neurons. Development 2022; 149:282111. [PMID: 36325991 PMCID: PMC9845735 DOI: 10.1242/dev.200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
In the developing hindbrain, facial branchiomotor (FBM) neurons migrate caudally from rhombomere 4 (r4) to r6 to establish the circuit that drives jaw movements. Although the mechanisms regulating initiation of FBM neuron migration are well defined, those regulating directionality are not. In mutants lacking the Wnt/planar cell polarity (PCP) component Celsr1, many FBM neurons inappropriately migrate rostrally into r3. We hypothesized that Celsr1 normally blocks inappropriate rostral migration of FBM neurons by suppressing chemoattraction towards Wnt5a in r3 and successfully tested this model. First, FBM neurons in Celsr1; Wnt5a double mutant embryos never migrated rostrally, indicating that inappropriate rostral migration in Celsr1 mutants results from Wnt5a-mediated chemoattraction, which is suppressed in wild-type embryos. Second, FBM neurons migrated rostrally toward Wnt5a-coated beads placed in r3 of wild-type hindbrain explants, suggesting that excess Wnt5a chemoattractant can overcome endogenous Celsr1-mediated suppression. Third, rostral migration of FBM neurons was greatly enhanced in Celsr1 mutants overexpressing Wnt5a in r3. These results reveal a novel role for a Wnt/PCP component in regulating neuronal migration through suppression of chemoattraction.
Collapse
Affiliation(s)
- Devynn Hummel
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alexandria Becks
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Hongsheng Men
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Elizabeth C. Bryda
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Derrick M. Glasco
- Department of Biology, Bob Jones University, Greenville, SC 29614, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA,Author for correspondence ()
| |
Collapse
|
5
|
Deans MR. Planar cell polarity signaling guides cochlear innervation. Dev Biol 2022; 486:1-4. [DOI: 10.1016/j.ydbio.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 01/24/2023]
|
6
|
Dreyer CA, VanderVorst K, Carraway KL. Vangl as a Master Scaffold for Wnt/Planar Cell Polarity Signaling in Development and Disease. Front Cell Dev Biol 2022; 10:887100. [PMID: 35646914 PMCID: PMC9130715 DOI: 10.3389/fcell.2022.887100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The establishment of polarity within tissues and dynamic cellular morphogenetic events are features common to both developing and adult tissues, and breakdown of these programs is associated with diverse human diseases. Wnt/Planar cell polarity (Wnt/PCP) signaling, a branch of non-canonical Wnt signaling, is critical to the establishment and maintenance of polarity in epithelial tissues as well as cell motility events critical to proper embryonic development. In epithelial tissues, Wnt/PCP-mediated planar polarity relies upon the asymmetric distribution of core proteins to establish polarity, but the requirement for this distribution in Wnt/PCP-mediated cell motility remains unclear. However, in both polarized tissues and migratory cells, the Wnt/PCP-specific transmembrane protein Vangl is required and appears to serve as a scaffold upon which the core pathway components as well as positive and negative regulators of Wnt/PCP signaling assemble. The current literature suggests that the multiple interaction domains of Vangl allow for the binding of diverse signaling partners for the establishment of context- and tissue-specific complexes. In this review we discuss the role of Vangl as a master scaffold for Wnt/PCP signaling in epithelial tissue polarity and cellular motility events in developing and adult tissues, and address how these programs are dysregulated in human disease.
Collapse
Affiliation(s)
| | | | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
7
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
8
|
Hakanen J, Parmentier N, Sommacal L, Garcia-Sanchez D, Aittaleb M, Vertommen D, Zhou L, Ruiz-Reig N, Tissir F. The Celsr3-Kif2a axis directs neuronal migration in the postnatal brain. Prog Neurobiol 2021; 208:102177. [PMID: 34582949 DOI: 10.1016/j.pneurobio.2021.102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
The tangential migration of immature neurons in the postnatal brain involves consecutive migration cycles and depends on constant remodeling of the cell cytoskeleton, particularly in the leading process (LP). Despite the identification of several proteins with permissive and empowering functions, the mechanisms that specify the direction of migration remain largely unknown. Here, we report that planar cell polarity protein Celsr3 orients neuroblasts migration from the subventricular zone (SVZ) to olfactory bulb (OB). In Celsr3-forebrain conditional knockout mice, neuroblasts loose directionality and few can reach the OB. Celsr3-deficient neuroblasts exhibit aberrant branching of LP, de novo LP formation, and decreased growth rate of microtubules (MT). Mechanistically, we show that Celsr3 interacts physically with Kif2a, a MT depolymerizing protein and that conditional inactivation of Kif2a in the forebrain recapitulates the Celsr3 knockout phenotype. Our findings provide evidence that Celsr3 and Kif2a cooperatively specify the directionality of neuroblasts tangential migration in the postnatal brain.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nicolas Parmentier
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Leonie Sommacal
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Dario Garcia-Sanchez
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Didier Vertommen
- Université catholique de Louvain, de Duve Institute, Massprot Platform, Brussels, Belgium
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, PR China
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
9
|
Asante E, Hummel D, Gurung S, Kassim YM, Al-Shakarji N, Palaniappan K, Sittaramane V, Chandrasekhar A. Defective Neuronal Positioning Correlates With Aberrant Motor Circuit Function in Zebrafish. Front Neural Circuits 2021; 15:690475. [PMID: 34248505 PMCID: PMC8265374 DOI: 10.3389/fncir.2021.690475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Precise positioning of neurons resulting from cell division and migration during development is critical for normal brain function. Disruption of neuronal migration can cause a myriad of neurological disorders. To investigate the functional consequences of defective neuronal positioning on circuit function, we studied a zebrafish frizzled3a (fzd3a) loss-of-function mutant off-limits (olt) where the facial branchiomotor (FBM) neurons fail to migrate out of their birthplace. A jaw movement assay, which measures the opening of the zebrafish jaw (gape), showed that the frequency of gape events, but not their amplitude, was decreased in olt mutants. Consistent with this, a larval feeding assay revealed decreased food intake in olt mutants, indicating that the FBM circuit in mutants generates defective functional outputs. We tested various mechanisms that could generate defective functional outputs in mutants. While fzd3a is ubiquitously expressed in neural and non-neural tissues, jaw cartilage and muscle developed normally in olt mutants, and muscle function also appeared to be unaffected. Although FBM neurons were mispositioned in olt mutants, axon pathfinding to jaw muscles was unaffected. Moreover, neuromuscular junctions established by FBM neurons on jaw muscles were similar between wildtype siblings and olt mutants. Interestingly, motor axons innervating the interhyoideus jaw muscle were frequently defasciculated in olt mutants. Furthermore, GCaMP imaging revealed that mutant FBM neurons were less active than their wildtype counterparts. These data show that aberrant positioning of FBM neurons in olt mutants is correlated with subtle defects in fasciculation and neuronal activity, potentially generating defective functional outputs.
Collapse
Affiliation(s)
- Emilia Asante
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Devynn Hummel
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Suman Gurung
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, FL, United States
| | - Yasmin M Kassim
- Computational Imaging and VisAnalysis (CIVA) Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Noor Al-Shakarji
- Computational Imaging and VisAnalysis (CIVA) Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Kannappan Palaniappan
- Computational Imaging and VisAnalysis (CIVA) Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA, United States
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Frizzled3 and Frizzled6 Cooperate with Vangl2 to Direct Cochlear Innervation by Type II Spiral Ganglion Neurons. J Neurosci 2019; 39:8013-8023. [PMID: 31462532 DOI: 10.1523/jneurosci.1740-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022] Open
Abstract
Type II spiral ganglion neurons provide afferent innervation to outer hair cells of the cochlea and are proposed to have nociceptive functions important for auditory function and homeostasis. These neurons are anatomically distinct from other classes of spiral ganglion neurons because they extend a peripheral axon beyond the inner hair cells that subsequently makes a distinct 90 degree turn toward the cochlear base. As a result, patterns of outer hair cell innervation are coordinated with the tonotopic organization of the cochlea. Previously, it was shown that peripheral axon turning is directed by a nonautonomous function of the core planar cell polarity (PCP) protein VANGL2. We demonstrate using mice of either sex that Fzd3 and Fzd6 similarly regulate axon turning, are functionally redundant with each other, and that Fzd3 genetically interacts with Vangl2 to guide this process. FZD3 and FZD6 proteins are asymmetrically distributed along the basolateral wall of cochlear-supporting cells, and are required to promote or maintain the asymmetric distribution of VANGL2 and CELSR1. These data indicate that intact PCP complexes formed between cochlear-supporting cells are required for the nonautonomous regulation of axon pathfinding. Consistent with this, in the absence of PCP signaling, peripheral axons turn randomly and often project toward the cochlear apex. Additional analyses of Porcn mutants in which WNT secretion is reduced suggest that noncanonical WNT signaling establishes or maintains PCP signaling in this context. A deeper understanding of these mechanisms is necessary for repairing auditory circuits following acoustic trauma or promoting cochlear reinnervation during regeneration-based deafness therapies.SIGNIFICANCE STATEMENT Planar cell polarity (PCP) signaling has emerged as a complementary mechanism to classical axon guidance in regulating axon track formation, axon outgrowth, and neuronal polarization. The core PCP proteins are also required for auditory circuit assembly, and coordinate hair cell innervation with the tonotopic organization of the cochlea. This is a non-cell-autonomous mechanism that requires the formation of PCP protein complexes between cochlear-supporting cells located along the trajectory of growth cone navigation. These findings are significant because they demonstrate how the fidelity of auditory circuit formation is ensured during development, and provide a mechanism by which PCP proteins may regulate axon outgrowth and guidance in the CNS.
Collapse
|
11
|
Gruner HN, Kim M, Mastick GS. Robo1 and 2 Repellent Receptors Cooperate to Guide Facial Neuron Cell Migration and Axon Projections in the Embryonic Mouse Hindbrain. Neuroscience 2019; 402:116-129. [PMID: 30685539 PMCID: PMC6435285 DOI: 10.1016/j.neuroscience.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
The facial nerve is necessary for our ability to eat, speak, and make facial expressions. Both the axons and cell bodies of the facial nerve undergo a complex embryonic developmental pattern involving migration of the cell bodies caudally and tangentially through rhombomeres, and simultaneously the axons projecting to exit the hindbrain to form the facial nerve. Our goal in this study was to test the functions of the chemorepulsive receptors Robo1 and Robo2 in facial neuron migration and axon projection by analyzing genetically marked motor neurons in double-mutant mouse embryos through the migration time course, E10.0-E13.5. In Robo1/2 double mutants, axon projection and cell body migration errors were more severe than in single mutants. Most axons did not make it to their motor exit point, and instead projected into and longitudinally within the floor plate. Surprisingly, some facial neurons had multiple axons exiting and projecting into the floor plate. At the same time, a subset of mutant facial cell bodies failed to migrate caudally, and instead either streamed dorsally toward the exit point or shifted into the floor plate. We conclude that Robo1 and Robo2 have redundant functions to guide multiple aspects of the complex cell migration of the facial nucleus, as well as regulating axon trajectories and suppressing formation of ectopic axons.
Collapse
Affiliation(s)
- Hannah N. Gruner
- Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA.
| | - Minkyung Kim
- Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA.
| | - Grant S. Mastick
- Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA.
| |
Collapse
|
12
|
The planar cell polarity protein VANG-1/Vangl negatively regulates Wnt/β-catenin signaling through a Dvl dependent mechanism. PLoS Genet 2018; 14:e1007840. [PMID: 30532125 PMCID: PMC6307821 DOI: 10.1371/journal.pgen.1007840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/27/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Van Gogh-like (Vangl) and Prickle (Pk) are core components of the non-canonical Wnt planar cell polarity pathway that controls epithelial polarity and cell migration. Studies in vertebrate model systems have suggested that Vangl and Pk may also inhibit signaling through the canonical Wnt/β-catenin pathway, but the functional significance of this potential cross-talk is unclear. In the nematode C. elegans, the Q neuroblasts and their descendants migrate in opposite directions along the anteroposterior body axis. The direction of these migrations is specified by Wnt signaling, with activation of canonical Wnt signaling driving posterior migration, and non-canonical Wnt signaling anterior migration. Here, we show that the Vangl ortholog VANG-1 influences the Wnt signaling response of the Q neuroblasts by negatively regulating canonical Wnt signaling. This inhibitory activity depends on a carboxy-terminal PDZ binding motif in VANG-1 and the Dishevelled ortholog MIG-5, but is independent of the Pk ortholog PRKL-1. Moreover, using Vangl1 and Vangl2 double mutant cells, we show that a similar mechanism acts in mammalian cells. We conclude that cross-talk between VANG-1/Vangl and the canonical Wnt pathway is an evolutionarily conserved mechanism that ensures robust specification of Wnt signaling responses. Wnt proteins are signaling molecules with a wide range of functions in embryonic development and the maintenance of adult tissues. Wnt proteins can trigger several different signaling pathways that are grouped in β-catenin dependent (canonical) and independent (non-canonical) signaling mechanisms. Here, we have investigated cross-talk between these different Wnt signaling pathways. We show that VANG-1/Vangl, a component of the non-canonical planar cell polarity pathway, negatively regulates canonical Wnt signaling. We propose that this cross-talk mechanism ensures that Wnt stimulated cells always activate the proper downstream signaling response.
Collapse
|
13
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
14
|
Zhang Q, Bai B, Mei X, Wan C, Cao H, Dan Li, Wang S, Zhang M, Wang Z, Wu J, Wang H, Huo J, Ding G, Zhao J, Xie Q, Wang L, Qiu Z, Zhao S, Zhang T. Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat Commun 2018; 9:3436. [PMID: 30143612 PMCID: PMC6109101 DOI: 10.1038/s41467-018-05451-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Neural tube defects (NTDs) are serious congenital malformations. Excessive maternal homocysteine (Hcy) increases the risk of NTDs, while its mechanism remains elusive. Here we report the role of histone homocysteinylation in neural tube closure (NTC). A total of 39 histone homocysteinylation sites are identified in samples from human embryonic brain tissue using mass spectrometry. Elevated levels of histone KHcy and H3K79Hcy are detected at increased cellular Hcy levels in human fetal brains. Using ChIP-seq and RNA-seq assays, we demonstrate that an increase in H3K79Hcy level down-regulates the expression of selected NTC-related genes including Cecr2, Smarca4, and Dnmt3b. In human NTDs brain tissues, decrease in expression of CECR2, SMARCA4, and DNMT3B is also detected along with high levels of Hcy and H3K79Hcy. Our results suggest that higher levels of Hcy contribute to the onset of NTDs through up-regulation of histone H3K79Hcy, leading to abnormal expressions of selected NTC-related genes.
Collapse
Affiliation(s)
- Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Xinyu Mei
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic, Engineering and Institutes of Biomedical Sciences, 200433, Shanghai, China
| | - Chunlei Wan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Haiyan Cao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Dan Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
- Weifang Medical University, 261053, Weifang, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Min Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Zhigang Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic, Engineering and Institutes of Biomedical Sciences, 200433, Shanghai, China
| | - Junsheng Huo
- Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Gangqiang Ding
- Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Jianyuan Zhao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Qiu Xie
- Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Shiming Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic, Engineering and Institutes of Biomedical Sciences, 200433, Shanghai, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
| |
Collapse
|
15
|
Ghimire SR, Ratzan EM, Deans MR. A non-autonomous function of the core PCP protein VANGL2 directs peripheral axon turning in the developing cochlea. Development 2018; 145:dev.159012. [PMID: 29784671 DOI: 10.1242/dev.159012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/14/2018] [Indexed: 01/02/2023]
Abstract
The cochlea is innervated by neurons that relay sound information from hair cells to central auditory targets. A subset of these are the type II spiral ganglion neurons, which have nociceptive features and contribute to feedback circuits providing neuroprotection in extreme noise. Type II neurons make a distinctive 90° turn towards the cochlear base to synapse with 10-15 outer hair cells. We demonstrate that this axon turning event requires planar cell polarity (PCP) signaling and is disrupted in Vangl2 and Celsr1 knockout mice, and that VANGL2 acts non-autonomously from the cochlea to direct turning. Moreover, VANGL2 is asymmetrically distributed at intercellular junctions between cochlear supporting cells, and in a pattern that could allow it to act directly as an axon guidance cue. Together, these data reveal a non-autonomous function for PCP signaling during axon guidance occurring in the tissue that is innervated, rather than the navigating growth cone.
Collapse
Affiliation(s)
- Satish R Ghimire
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Evan M Ratzan
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael R Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA .,Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
16
|
Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. Wilhelm His' lasting insights into hindbrain and cranial ganglia development and evolution. Dev Biol 2018; 444 Suppl 1:S14-S24. [PMID: 29447907 DOI: 10.1016/j.ydbio.2018.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 01/04/2023]
Abstract
Wilhelm His (1831-1904) provided lasting insights into the development of the central and peripheral nervous system using innovative technologies such as the microtome, which he invented. 150 years after his resurrection of the classical germ layer theory of Wolff, von Baer and Remak, his description of the developmental origin of cranial and spinal ganglia from a distinct cell population, now known as the neural crest, has stood the test of time and more recently sparked tremendous advances regarding the molecular development of these important cells. In addition to his 1868 treatise on 'Zwischenstrang' (now neural crest), his work on the development of the human hindbrain published in 1890 provided novel ideas that more than 100 years later form the basis for penetrating molecular investigations of the regionalization of the hindbrain neural tube and of the migration and differentiation of its constituent neuron populations. In the first part of this review we briefly summarize the major discoveries of Wilhelm His and his impact on the field of embryology. In the second part we relate His' observations to current knowledge about the molecular underpinnings of hindbrain development and evolution. We conclude with the proposition, present already in rudimentary form in the writings of His, that a primordial spinal cord-like organization has been molecularly supplemented to generate hindbrain 'neomorphs' such as the cerebellum and the auditory and vestibular nuclei and their associated afferents and sensory organs.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Albert Erives
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Victor V Chizhikov
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
17
|
Abstract
The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors.
Collapse
Affiliation(s)
- Crystal F Davey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
18
|
Zhang Q, Liu Y, Wang H, Ma L, Xia H, Niu J, Sun T, Zhang L. The preventive effects of taurine on neural tube defects through the Wnt/PCP-Jnk-dependent pathway. Amino Acids 2017; 49:1633-1640. [PMID: 28718066 DOI: 10.1007/s00726-017-2462-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to clarify the protective role of taurine in neuronal apoptosis and the role of the Wnt/PCP-Jnk pathway in mediating the preventive effects of taurine on neural tube defects (NTDs). HT-22 cells (a hippocampal neuron cell line) were divided into a control group, a glutamate-induced apoptosis group, and glutamate (4.0 mmol/L) plus low-dose taurine (L; 0.5 mmol/L) and high-dose taurine (H; 2.0 mmol/L) groups. The MTT assay was used to monitor cell proliferation and cell survival. Immunofluorescence and Western blot analyses were used to determine caspase 9 expression. Retinoic acid (RA) induced embryonic NTDs in Kunming mice, thus establishing an NTD model. Pregnant mice were divided into a control group, an RA (30 mg/kg body weight) group, and an RA (30 mg/kg body weight) plus taurine (free drinking of 2 g/L solution) group. Immunohistochemistry and Western blot analyses were used to detect the expression of Dvl, RhoA and phosphorylated (p)-Jnk/Jnk in the embryonic neural tubes. In HT-22 cells, the apoptosis rate was significantly higher and caspase 9 activation was also significantly increased in the glutamate-induced apoptosis group compared to the L and H taurine groups. In the NTD model, the expression levels of Dvl, RhoA, and p-Jnk were significantly higher in the RA group than in the control group, whereas they were significantly reduced in the RA + taurine group. This study suggests that taurine has positive effects on neuronal protection and NTD prevention. Moreover, the Wnt/PCP-Jnk-dependent pathway plays an important role in taurine-mediated prevention of NTDs.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, No. 804 Shenglinajie, XingQing District, Yinchuan, 750004, NingXia, China.
| | - Yang Liu
- Department of Neurosurgery, Qingdao Chengyang People's Hospital, Qingdao, 266106, China
| | - Hui Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, No. 804 Shenglinajie, XingQing District, Yinchuan, 750004, NingXia, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, No. 804 Shenglinajie, XingQing District, Yinchuan, 750004, NingXia, China
| | - Jianguo Niu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, No. 804 Shenglinajie, XingQing District, Yinchuan, 750004, NingXia, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, No. 804 Shenglinajie, XingQing District, Yinchuan, 750004, NingXia, China
| | - Li Zhang
- Department of Cardiac Function Examination, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
19
|
Fritzsch B, Elliott KL. Evolution and Development of the Inner Ear Efferent System: Transforming a Motor Neuron Population to Connect to the Most Unusual Motor Protein via Ancient Nicotinic Receptors. Front Cell Neurosci 2017; 11:114. [PMID: 28484373 PMCID: PMC5401870 DOI: 10.3389/fncel.2017.00114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
All craniate chordates have inner ears with hair cells that receive input from the brain by cholinergic centrifugal fibers, the so-called inner ear efferents (IEEs). Comparative data suggest that IEEs derive from facial branchial motor (FBM) neurons that project to the inner ear instead of facial muscles. Developmental data showed that IEEs develop adjacent to FBMs and segregation from IEEs might depend on few transcription factors uniquely associated with IEEs. Like other cholinergic terminals in the peripheral nervous system (PNS), efferent terminals signal on hair cells through nicotinic acetylcholine channels, likely composed out of alpha 9 and alpha 10 units (Chrna9, Chrna10). Consistent with the evolutionary ancestry of IEEs is the even more conserved ancestry of Chrna9 and 10. The evolutionary appearance of IEEs may reflect access of FBMs to a novel target, possibly related to displacement or loss of mesoderm-derived muscle fibers by the ectoderm-derived ear vesicle. Experimental transplantations mimicking this possible aspect of ear evolution showed that different motor neurons of the spinal cord or brainstem form cholinergic synapses on hair cells when ears replace somites or eyes. Transplantation provides experimental evidence in support of the evolutionary switch of FBM neurons to become IEEs. Mammals uniquely evolved a prestin related motor system to cause shape changes in outer hair cells regulated by the IEEs. In summary, an ancient motor neuron population drives in craniates via signaling through highly conserved Chrna receptors a uniquely derived cellular contractility system that is essential for hearing in mammals.
Collapse
|
20
|
Jussila M, Ciruna B. Zebrafish models of non-canonical Wnt/planar cell polarity signalling: fishing for valuable insight into vertebrate polarized cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28304136 DOI: 10.1002/wdev.267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/02/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Planar cell polarity (PCP) coordinates the uniform orientation, structure and movement of cells within the plane of a tissue or organ system. It is beautifully illustrated in the polarized arrangement of bristles and hairs that project from specialized cell surfaces of the insect abdomen and wings, and pioneering genetic studies using the fruit fly, Drosophila melanogaster, have defined a core signalling network underlying PCP. This core PCP/non-canonical Wnt signalling pathway is evolutionarily conserved, and studies in zebrafish have helped transform our understanding of PCP from a peculiarity of polarized epithelia to a more universal cellular property that orchestrates a diverse suite of polarized cell behaviors that are required for normal vertebrate development. Furthermore, application of powerful genetics, embryonic cell-transplantation, and live-imaging capabilities afforded by the zebrafish model have yielded novel insights into the establishment and maintenance of vertebrate PCP, over the course of complex and dynamic morphogenetic events like gastrulation and neural tube morphogenesis. Although key questions regarding vertebrate PCP remain, with the emergence of new genome-editing technologies and the promise of endogenous labeling and Cre/LoxP conditional targeting strategies, zebrafish remains poised to deliver fundamental new insights into the function and molecular dynamic regulation of PCP signalling from embryonic development through to late-onset phenotypes and adult disease states. WIREs Dev Biol 2017, 6:e267. doi: 10.1002/wdev.267 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Maria Jussila
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance. BMC Neurosci 2016; 17:83. [PMID: 27955617 PMCID: PMC5154073 DOI: 10.1186/s12868-016-0318-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A fundamental feature of early nervous system development is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. Spinal commissural neurons are an attractive model to investigate the multiple guidance cues that control growth cone navigation both pre- and post-midline crossing, as well as along both the dorsal-ventral (D-V) and anterior-posterior (A-P) axes. Accumulating evidence suggests that guidance of spinal commissural axons along the A-P axis is dependent on components of the planar cell polarity (PCP) signaling pathway. In the zebrafish, the earliest born spinal commissural neuron to navigate the midline and turn rostrally is termed commissural primary ascending (CoPA). Unlike mammalian systems, CoPA axons cross the midline as a single axon and allow an analysis of the role of PCP components in anterior pathfinding in single pioneering axons. RESULTS Here, we establish CoPA cells in the zebrafish spinal cord as a model system for investigating the molecular function of planar cell polarity signaling in axon guidance. Using mutant analysis, we show that the functions of Fzd3a and Vangl2 in the anterior turning of commissural axons are evolutionarily conserved in teleosts. We extend our findings to reveal a role for the PCP gene scribble in the anterior guidance of CoPA axons. Analysis of single CoPA axons reveals that these commissural axons become responsive to PCP-dependent anterior guidance cues even prior to midline crossing. When midline crossing is prevented by dcc gene knockdown, ipsilateral CoPA axons still extend axons anteriorly in response to A-P guidance cues. We show that this ipsilateral anterior pathfinding that occurs in the absence of midline crossing is dependent on PCP signaling. CONCLUSION Our results demonstrate that anterior guidance decisions by CoPA axons are dependent on the function of planar cell polarity genes both prior to and after midline crossing.
Collapse
|
22
|
The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice. Dev Biol 2016; 417:40-9. [PMID: 27395006 DOI: 10.1016/j.ydbio.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
Abstract
The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons.
Collapse
|
23
|
Okerlund ND, Stanley RE, Cheyette BNR. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain. MOLECULAR NEUROPSYCHIATRY 2016; 2:107-14. [PMID: 27606324 DOI: 10.1159/000446778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment.
Collapse
Affiliation(s)
- Nathan D Okerlund
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, Calif., USA; Department of Psychiatry, Stanford University, Palo Alto, Calif., USA
| | - Robert E Stanley
- Department of Psychiatry, Stanford University, Palo Alto, Calif., USA; Tetrad Graduate Program, Stanford University, Palo Alto, Calif., USA
| | - Benjamin N R Cheyette
- Department of Psychiatry, Stanford University, Palo Alto, Calif., USA; Tetrad Graduate Program, Stanford University, Palo Alto, Calif., USA; UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, Calif., USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco (UCSF), San Francisco, Calif., USA
| |
Collapse
|
24
|
Davey CF, Mathewson AW, Moens CB. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genet 2016; 12:e1005934. [PMID: 26990447 PMCID: PMC4798406 DOI: 10.1371/journal.pgen.1005934] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/24/2016] [Indexed: 11/18/2022] Open
Abstract
The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP “core components” (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia. Planar cell polarity (PCP) is a common feature of many animal tissues. This type of polarity is most obvious in cells that are organized into epithelial sheets, where PCP signaling components act to orient cells in the plane of the tissue. Although, PCP is best understood for its function in polarizing stable epithelia, PCP is also required for the dynamic process of cell migration in animal development and disease. The goal of this study was to determine how PCP functions to control cell migration. We used the migration of facial branchiomotor neurons in the zebrafish hindbrain, which requires almost the entire suite of PCP core components, to address this question. We present evidence that PCP signaling within migrating neurons, and between migrating neurons and cells of their migratory environment promote migration by regulating filopodial dynamics. Our results suggest that broadly conserved interactions between PCP components control the cytoskeleton in motile cells and non-motile epithelia alike.
Collapse
Affiliation(s)
- Crystal F. Davey
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Andrew W. Mathewson
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Cecilia B. Moens
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Polarity Determinants in Dendritic Spine Development and Plasticity. Neural Plast 2015; 2016:3145019. [PMID: 26839714 PMCID: PMC4709733 DOI: 10.1155/2016/3145019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/16/2015] [Accepted: 11/01/2015] [Indexed: 11/17/2022] Open
Abstract
The asymmetric distribution of various proteins and RNAs is essential for all stages of animal development, and establishment and maintenance of this cellular polarity are regulated by a group of conserved polarity determinants. Studies over the last 10 years highlight important functions for polarity proteins, including apical-basal polarity and planar cell polarity regulators, in dendritic spine development and plasticity. Remarkably, many of the conserved polarity machineries function in similar manners in the context of spine development as they do in epithelial morphogenesis. Interestingly, some polarity proteins also utilize neuronal-specific mechanisms. Although many questions remain unanswered in our understanding of how polarity proteins regulate spine development and plasticity, current and future research will undoubtedly shed more light on how this conserved group of proteins orchestrates different pathways to shape the neuronal circuitry.
Collapse
|
26
|
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol 2015; 408:316-27. [PMID: 26079437 PMCID: PMC4810801 DOI: 10.1016/j.ydbio.2015.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Fillatre
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara K Brott
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
27
|
Sokol SY. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Semin Cell Dev Biol 2015; 42:78-85. [PMID: 25986055 PMCID: PMC4562884 DOI: 10.1016/j.semcdb.2015.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022]
Abstract
Wnt signaling pathways act at multiple locations and developmental stages to specify cell fate and polarity in vertebrate embryos. A long-standing question is how the same molecular machinery can be reused to produce different outcomes. The canonical Wnt/β-catenin branch modulates target gene transcription to specify cell fates along the dorsoventral and anteroposterior embryonic axes. By contrast, the Wnt/planar cell polarity (PCP) branch is responsible for cell polarization along main body axes, which coordinates morphogenetic cell behaviors during gastrulation and neurulation. Whereas both cell fate and cell polarity are modulated by spatially- and temporally-restricted Wnt activity, the downstream signaling mechanisms are very diverse. This review highlights recent progress in the understanding of Wnt-dependent molecular events leading to the establishment of PCP and linking it to early morphogenetic processes.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
28
|
Kim M, Fontelonga T, Roesener AP, Lee H, Gurung S, Mendonca PRF, Mastick GS. Motor neuron cell bodies are actively positioned by Slit/Robo repulsion and Netrin/DCC attraction. Dev Biol 2015; 399:68-79. [PMID: 25530182 PMCID: PMC4339514 DOI: 10.1016/j.ydbio.2014.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/22/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
Motor neurons differentiate from a ventral column of progenitors and settle in static clusters, the motor nuclei, next to the floor plate. Within these cell clusters, motor neurons receive afferent input and project their axons out to muscle targets. The molecular mechanisms that position motor neurons in the neural tube remain poorly understood. The floor plate produces several types of guidance cues with well-known roles in attracting and repelling axons, including the Slit family of chemorepellents via their Robo receptors, and Netrin1 via its DCC attractive receptor. In the present study we found that Islet1(+) motor neuron cell bodies invaded the floor plate of Robo1/2 double mutant mouse embryos or Slit1/2/3 triple mutants. Misplaced neurons were born in their normal progenitor column, but then migrated tangentially into the ventral midline. Robo1 and 2 receptor expression in motor neurons was confirmed by reporter gene staining and anti-Robo antibody labeling. Mis-positioned motor neurons projected their axons longitudinally within the floor plate, and failed to reach their normal exit points. To test for potential counteracting ventral attractive signals, we examined Netrin-1 and DCC mutants, and found that motor neurons shifted dorsally in the hindbrain and spinal cord, suggesting that Netrin-1/DCC signaling normally attracts motor neurons closer to the floor plate. Our results show that motor neurons are actively migrating cells, and are normally trapped in a static position by Slit/Robo repulsion and Netrin-1/DCC attraction.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | | | - Haeram Lee
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Suman Gurung
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | | |
Collapse
|
29
|
Ossipova O, Chuykin I, Chu CW, Sokol SY. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 2014; 142:99-107. [PMID: 25480917 DOI: 10.1242/dev.111161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Core planar cell polarity (PCP) proteins are well known to regulate polarity in Drosophila and vertebrate epithelia; however, their functions in vertebrate morphogenesis remain poorly understood. In this study, we describe a role for PCP signaling in the process of apical constriction during Xenopus gastrulation. The core PCP protein Vangl2 is detected at the apical surfaces of cells at the blastopore lip, and it functions during blastopore formation and closure. Further experiments show that Vangl2, as well as Daam1 and Rho-associated kinase (Rock), regulate apical constriction of bottle cells at the blastopore and ectopic constriction of ectoderm cells triggered by the actin-binding protein Shroom3. At the blastopore lip, Vangl2 is required for the apical accumulation of the recycling endosome marker Rab11. We also show that Rab11 and the associated motor protein Myosin V play essential roles in both endogenous and ectopic apical constriction, and might be involved in Vangl2 trafficking to the cell surface. Overexpression of Rab11 RNA was sufficient to partly restore normal blastopore formation in Vangl2-deficient embryos. These observations suggest that Vangl2 affects Rab11 to regulate apical constriction during blastopore formation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilya Chuykin
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
Hatakeyama J, Wald JH, Printsev I, Ho HYH, Carraway KL. Vangl1 and Vangl2: planar cell polarity components with a developing role in cancer. Endocr Relat Cancer 2014; 21:R345-56. [PMID: 24981109 PMCID: PMC4332879 DOI: 10.1530/erc-14-0141] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancers commonly reactivate embryonic developmental pathways to promote the aggressive behavior of their cells, resulting in metastasis and poor patient outcome. While developmental pathways such as canonical Wnt signaling and epithelial-to-mesenchymal transition have received much attention, our understanding of the role of the planar cell polarity (PCP) pathway in tumor progression remains rudimentary. Protein components of PCP, including a subset that overlaps with the canonical Wnt pathway, partition in polarized epithelial cells along the planar axis and are required for the establishment and maintenance of lateral epithelial polarity. Significant insight into PCP regulation of developmental and cellular processes has come from analysis of the functions of the core PCP scaffolding proteins Vangl1 and Vangl2. In particular, studies on zebrafish and with Looptail (Lp) mice, which harbor point mutations in Vangl2 that alter its trafficking and localization, point to roles for the PCP pathway in maintaining cell polarization along both the apical-basal and planar axes as well as in collective cell motility and invasiveness. Recent findings have suggested that the Vangls can promote similar processes in tumor cells. Initial data-mining efforts suggest that VANGL1 and VANGL2 are dysregulated in human cancers, and estrogen receptor (ER)-positive breast cancer patients whose tumors exhibit elevated VANGL1 expression suffer from shortened overall survival. Overall, evidence is beginning to accumulate that the heightened cellular motility and invasiveness associated with PCP reactivation may contribute to the malignancy of some cancer subtypes.
Collapse
Affiliation(s)
- Jason Hatakeyama
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Ignat Printsev
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Hsin-Yi Henry Ho
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| |
Collapse
|
31
|
Zakaria S, Mao Y, Kuta A, de Sousa CF, Gaufo GO, McNeill H, Hindges R, Guthrie S, Irvine KD, Francis-West PH. Regulation of neuronal migration by Dchs1-Fat4 planar cell polarity. Curr Biol 2014; 24:1620-1627. [PMID: 24998526 PMCID: PMC4193925 DOI: 10.1016/j.cub.2014.05.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/14/2014] [Accepted: 05/23/2014] [Indexed: 01/02/2023]
Abstract
Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes.
Collapse
Affiliation(s)
- Sana Zakaria
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854, USA
| | - Anna Kuta
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Catia Ferreira de Sousa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Gary O Gaufo
- Department of Biology, The University of Texas at San Antonio, One UTSA circle, San Antonio, Texas, 78249 USA
| | - Helen McNeill
- The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Canada
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | - Sarah Guthrie
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854, USA
| | - Philippa H Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| |
Collapse
|
32
|
Yang T, Bassuk AG, Stricker S, Fritzsch B. Prickle1 is necessary for the caudal migration of murine facial branchiomotor neurons. Cell Tissue Res 2014; 357:549-61. [PMID: 24927917 DOI: 10.1007/s00441-014-1925-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Abstract
Facial branchiomotor neurons (FBMs) of vertebrates typically develop in rhombomere 4 (r4), and in mammals and several other vertebrate taxa, migrate caudally into r6 and subsequently laterally and ventrally to the pial surface. How similar or dissimilar these migratory processes between species are at a molecular level remains unclear. In zebrafish and mouse, mutations in certain PCP genes disrupt normal caudal migration of FBMs. Zebrafish prickle1a (prickle-like 1a) and prickle1b, two orthologs of Prickle1, act non-cell-autonomously and cell-autonomously, respectively, to regulate FBM migration. Here, we show that, in Prickle1 (C251X/C251X) mice which have reduced Prickle1 expression, the caudal migration of FBMs is affected. Most FBM neurons do not migrate caudally along the floor plate. However, some neurons perform limited caudal migration such that the neurons eventually lie near the pial surface from r4 to anterior r6. FBMs in Prickle1 (C251X/C251X) mice survive until P0 and form an ectopic nucleus dorsal to the olivo-cochlear efferents of r4. Ror2, which modifies the PCP pathway in other systems, is expressed by the migrating mouse FBMs, but is not required for FBM caudal migration. Our results suggest that, in mice, Prickle1 is part of a molecular mechanism that regulates FBM caudal migration and separates the FBM and the olivo-cochlear efferents. This defective caudal migration of FBMs in Prickle1C251X mutants resembles Vangl2 mutant defects. In contrast to other developing systems that show similar defects in Prickle1, Wnt5a and Ror2, the latter two only have limited or no effect on FBM caudal migration.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | |
Collapse
|
33
|
Tillo M, Schwarz Q, Ruhrberg C. Mouse hindbrain ex vivo culture to study facial branchiomotor neuron migration. J Vis Exp 2014. [PMID: 24686480 PMCID: PMC4032788 DOI: 10.3791/51397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Embryonic neurons are born in the ventricular zone of the brain, but subsequently migrate to new destinations to reach appropriate targets. Deciphering the molecular signals that cooperatively guide neuronal migration in the embryonic brain is therefore important to understand how the complex neural networks form which later support postnatal life. Facial branchiomotor (FBM) neurons in the mouse embryo hindbrain migrate from rhombomere (r) 4 caudally to form the paired facial nuclei in the r6-derived region of the hindbrain. Here we provide a detailed protocol for wholemount ex vivo culture of mouse embryo hindbrains suitable to investigate the signaling pathways that regulate FBM migration. In this method, hindbrains of E11.5 mouse embryos are dissected and cultured in an open book preparation on cell culture inserts for 24 hr. During this time, FBM neurons migrate caudally towards r6 and can be exposed to function-blocking antibodies and small molecules in the culture media or heparin beads loaded with recombinant proteins to examine roles for signaling pathways implicated in guiding neuronal migration.
Collapse
Affiliation(s)
- Miguel Tillo
- UCL Institute of Ophthalmology, University College London
| | - Quenten Schwarz
- UCL Institute of Ophthalmology, University College London; Department of Human Immunology, Centre for Cancer Biology, South Australia
| | | |
Collapse
|
34
|
Yang T, Jia Z, Bryant-Pike W, Chandrasekhar A, Murray JC, Fritzsch B, Bassuk AG. Analysis of PRICKLE1 in human cleft palate and mouse development demonstrates rare and common variants involved in human malformations. Mol Genet Genomic Med 2014; 2:138-51. [PMID: 24689077 PMCID: PMC3960056 DOI: 10.1002/mgg3.53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 02/05/2023] Open
Abstract
Palate development is shaped by multiple molecular signaling pathways, including the Wnt pathway. In mice and humans, mutations in both the canonical and noncanonical arms of the Wnt pathway manifest as cleft palate, one of the most common human birth defects. Like the palate, numerous studies also link different Wnt signaling perturbations to varying degrees of limb malformation; for example, shortened limbs form in mutations of Ror2,Vangl2 (looptail) and, in particular, Wnt5a. We recently showed the noncanonical Wnt/planar cell polarity (PCP) signaling molecule Prickle1 (Prickle like 1) also stunts limb growth in mice. We now expanded these studies to the palate and show that Prickle1 is also required for palate development, like Wnt5a and Ror2. Unlike in the limb, the Vangl2looptail mutation only aggravates palate defects caused by other mutations. We screened Filipino cleft palate patients and found PRICKLE1 variants, both common and rare, at an elevated frequency. Our results reveal that in mice and humans PRICKLE1 directs palate morphogenesis; our results also uncouple Prickle1 function from Vangl2 function. Together, these findings suggest mouse and human palate development is guided by PCP-Prickle1 signaling that is probably not downstream of Vangl2.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, University of IowaIowa City, Iowa, 52242
| | - Zhonglin Jia
- Department of Pediatrics, University of IowaIowa City, Iowa, 52242
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
- Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Whitney Bryant-Pike
- Division of Biological Sciences, University of MissouriColumbia, Missouri, 65211
| | - Anand Chandrasekhar
- Division of Biological Sciences, University of MissouriColumbia, Missouri, 65211
| | - Jeffrey C Murray
- Department of Pediatrics, University of IowaIowa City, Iowa, 52242
| | - Bernd Fritzsch
- Department of Biology, University of IowaIowa City, Iowa, 52242
| | | |
Collapse
|
35
|
Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish. Mech Dev 2013; 131:1-14. [PMID: 24333599 DOI: 10.1016/j.mod.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/28/2013] [Accepted: 12/01/2013] [Indexed: 01/07/2023]
Abstract
Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements.
Collapse
|
36
|
Wanner SJ, Saeger I, Guthrie S, Prince VE. Facial motor neuron migration advances. Curr Opin Neurobiol 2013; 23:943-50. [PMID: 24090878 DOI: 10.1016/j.conb.2013.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
Abstract
During development, the migration of specific neuronal subtypes is required for the correct establishment of neural circuits. In mice and zebrafish, facial branchiomotor (FBM) neurons undergo a tangential migration from rhombomere 4 caudally through the hindbrain. Recent advances in the field have capitalized on genetic studies in zebrafish and mouse, and high-resolution time-lapse imaging in zebrafish. Planar cell polarity signaling has emerged as a critical conserved factor in FBM neuron migration, functioning both within the neurons and their environment. In zebrafish, migration depends on specialized 'pioneer' neurons to lead follower FBM neurons through the hindbrain, and on interactions with structural components including pre-laid axon tracts and the basement membrane. Despite fundamental conservation, species-specific differences in migration mechanisms are being uncovered.
Collapse
Affiliation(s)
- Sarah J Wanner
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637, United States
| | | | | | | |
Collapse
|
37
|
Yang T, Bassuk AG, Fritzsch B. Prickle1 stunts limb growth through alteration of cell polarity and gene expression. Dev Dyn 2013; 242:1293-306. [PMID: 23913870 DOI: 10.1002/dvdy.24025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/25/2013] [Accepted: 07/21/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Wnt/PCP signaling plays a critical role in multiple developmental processes, including limb development. Wnt5a, a ligand of the PCP pathway, signals through the Ror2/Vangl2 or the Vangl2/Ryk complex to regulate limb development along the proximal-distal axis in mice. Based on the interaction between Van Gogh and Prickle in Drosophila, we hypothesized the vertebrate Prickle1 has a similar function as Vangl2 in limb development. RESULTS We show Prickle1 is expressed in the skeletal condensates that will differentiate into chondrocytes and later form bones. Disrupted Prickle1 function in Prickle1(C251X/C251X) mouse mutants alters expression of genes such as Bmp4, Fgf8, Vangl2, and Wnt5a. These expression changes correlate with shorter and wider bones in the limbs and loss of one phalangeal segment in digits 2-5 of Prickle1C251X mutants. These growth defects along the proximal-distal axis are also associated with increased cell death in the growing digit tip, reduced cell death in the interdigital membrane, and disrupted chondrocyte polarity. CONCLUSIONS We suggest Prickle1 is part of the Wnt5a/PCP signaling, regulating cell polarity and affecting expression of multiple factors to stunt limb growth through altered patterns of gene expression, including the PCP genes Wnt5a and Vangl2.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
38
|
Sittaramane V, Pan X, Glasco DM, Huang P, Gurung S, Bock A, Li S, Wang H, Kawakami K, Matise MP, Chandrasekhar A. The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function. Dev Biol 2013; 382:400-12. [PMID: 23988578 DOI: 10.1016/j.ydbio.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Vangl2, a core component of the Planar Cell Polarity pathway, is necessary for the caudal migration of Facial Branchiomotor (FBM) neurons in the vertebrate hindbrain. Studies in zebrafish suggest that vangl2 functions largely non-cell autonomously to regulate FBM neuron migration out of rhombomere 4 (r4), but the cell-type within which it acts is not known. Here, we demonstrate that vangl2 functions largely in floor plate cells to regulate caudal neuronal migration. Furthermore, FBM neurons fail to migrate caudally in the mouse Gli2 mutant that lacks the floor plate, suggesting an evolutionarily conserved role for this cell type in neuronal migration. Although hindbrain floor plate cilia are disorganized in vangl2 mutant embryos, cilia appear to be dispensable for neuronal migration. Notably, Vangl2 is enriched in the basolateral, but not apical, membranes of floor plate cells. Taken together, our data suggest strongly that Vangl2 regulates FBM neuron migration by acting in floor plate cells, independently of cilia function.
Collapse
Affiliation(s)
- Vinoth Sittaramane
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tissir F, Goffinet AM. Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci 2013; 14:525-35. [PMID: 23839596 DOI: 10.1038/nrn3525] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Planar cell polarity (PCP) is complementary to the intrinsic polarization of single cells and refers to the global coordination of cell behaviour in the plane of a tissue and, by extension, to the signalling pathways that control it. PCP is most evident in cell sheets, and research into PCP was for years confined to studies in Drosophila melanogaster. However, PCP has more recently emerged as an important phenomenon in vertebrates, in which it regulates various developmental processes and is associated with multiple disorders. In particular, core PCP genes are crucial for the development and function of the nervous system. They are involved in neural tube closure, ependymal polarity, neuronal migration, dendritic growth and axon guidance.
Collapse
Affiliation(s)
- Fadel Tissir
- University of Louvain, Institute of Neuroscience, Developmental Neurobiology Group, Avenue Mounier 73, Box B1.73.16, 1200 Brussels, Belgium
| | | |
Collapse
|
40
|
Tatin F, Taddei A, Weston A, Fuchs E, Devenport D, Tissir F, Makinen T. Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell 2013; 26:31-44. [PMID: 23792146 PMCID: PMC3714594 DOI: 10.1016/j.devcel.2013.05.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/23/2013] [Accepted: 05/14/2013] [Indexed: 01/04/2023]
Abstract
Planar cell polarity (PCP) signaling controls tissue morphogenesis by coordinating collective cell behaviors. We show a critical role for the core PCP proteins Celsr1 and Vangl2 in the complex morphogenetic process of intraluminal valve formation in lymphatic vessels. We found that valve-forming endothelial cells undergo elongation, reorientation, and collective migration into the vessel lumen as they initiate valve leaflet formation. During this process, Celsr1 and Vangl2 are recruited from endothelial filopodia to discrete membrane domains at cell-cell contacts. Celsr1- or Vangl2-deficient mice show valve aplasia due to failure of endothelial cells to undergo rearrangements and adopt perpendicular orientation at valve initiation sites. Mechanistically, we show that Celsr1 regulates dynamic cell movements by inhibiting stabilization of VE-cadherin and maturation of adherens junctions. These findings reveal a role for PCP signaling in regulating adherens junctions and directed cell rearrangements during vascular development. Endothelial cells undergo collective migration during lymphatic valve morphogenesis PCP signaling directs rearrangements of valve-forming endothelial cells PCP components localize to filopodia and cell-cell contacts in valve endothelia PCP signaling regulates adherens junction formation and stabilization
Collapse
Affiliation(s)
- Florence Tatin
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Wanner SJ, Prince VE. Axon tracts guide zebrafish facial branchiomotor neuron migration through the hindbrain. Development 2013; 140:906-15. [PMID: 23325758 DOI: 10.1242/dev.087148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Appropriate localization of neurons within the brain is a crucial component of the establishment of neural circuitry. In the zebrafish hindbrain, the facial branchiomotor neurons (FBMNs) undergo a chain-like tangential migration from their birthplace in rhombomere (r) 4 to their final destination in r6/r7. Here, we report that ablation of either the cell body or the trailing axon of the leading FBMN, or 'pioneer' neuron, blocks the migration of follower FBMNs into r5. This demonstrates that the pioneer neuron and its axon are crucial to the early migration of FBMNs. Later migration from r5 to r6 is not dependent on pioneer neurons but on the medial longitudinal fasciculus (MLF), a bundle of axons lying ventral to the FBMNs. We find that MLF axons enter r5 only after the pioneer neuron has led several followers into this region; the MLF is then contacted by projections from the FBMNs. The interactions between FBMNs and the MLF are important for migration from r5 to r6, as blocking MLF axons from entering the hindbrain can stall FBMN migration in r5. Finally, we have found that the adhesion molecule Cdh2 (N-cadherin) is important for interactions between the MLF and FBMNs, as well as for interactions between the trailing axon of the pioneer neuron and follower FBMNs. Interestingly, migration of pioneer neurons is independent of both the MLF and Cdh2, suggesting pioneer migration relies on independent cues.
Collapse
Affiliation(s)
- Sarah J Wanner
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
42
|
Abstract
The mammalian Vangl1 and Vangl2 genes were discovered a decade ago through their association with neural tube defects, in particular the presence of Vangl2 mutations in independent alleles of the mouse mutant Loop-tail (Lp), a mouse model of the severe neural tube defect craniorachischisis. Vangl1 and Vangl2 variants have also been detected in familial and sporadic cases of spina bifida. Vangl proteins are highly conserved in evolution with relatives in flies, and distant invertebrates and vertebrates. In these organisms, they play a central role in planar cell polarity (PCP) and convergent extension (CE) movements. Over the past decade, these functional characteristics have also been established for mammalian Vangl genes. The careful analysis of mouse Vangl genes mutants has showed that these genes and the associated PCP pathway and CE movements are involved in many unexpected developmental processes, from morphogenesis of different tissues, left-right asymmetry, asymmetric cell division, and organization of many epithelial structures, as well as positioning and function of cellular appendages. Genetic studies in double mutants and biochemical studies of interacting proteins have started to elucidate the molecular pathways in which Vangl proteins participate and that regulate these complex events.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|