1
|
Wang Y, Ge H, Chen P, Wang Y. Wnt/β-catenin signaling in corneal epithelium development, homeostasis, and pathobiology. Exp Eye Res 2024; 246:110022. [PMID: 39117134 DOI: 10.1016/j.exer.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The corneal epithelium is located on the most anterior surface of the eyeball and protects against external stimuli. The development of the corneal epithelium and the maintenance of corneal homeostasis are essential for the maintenance of visual acuity. It has been discovered recently via the in-depth investigation of ocular surface illnesses that the Wnt/β-catenin signaling pathway is necessary for the growth and stratification of corneal epithelial cells as well as the control of endothelial cell stability. In addition, the Wnt/β-catenin signaling pathway is directly linked to the development of common corneal illnesses such as keratoconus, fungal keratitis, and corneal neovascularization. This review mainly summarizes the role of the Wnt/β-catenin signaling pathway in the development, homeostasis, and pathobiology of cornea, hoping to provide new insights into the study of corneal epithelium and the treatment of related diseases.
Collapse
Affiliation(s)
- Yihui Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong 266042, China.
| |
Collapse
|
2
|
Zhang Z, Yang C, Wang Z, Guo L, Xu Y, Gao C, Sun Y, Zhang Z, Peng J, Hu M, Jan Lo L, Ma Z, Chen J. Wdr5-mediated H3K4me3 coordinately regulates cell differentiation, proliferation termination, and survival in digestive organogenesis. Cell Death Discov 2023; 9:227. [PMID: 37407577 DOI: 10.1038/s41420-023-01529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of β-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.
Collapse
Affiliation(s)
- Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zixu Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongpan Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Li Jan Lo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Yang Y, Li Y, Fu J, Li Y, Li S, Ni R, Yang Q, Luo L. Intestinal precursors avoid being misinduced to liver cells by activating Cdx-Wnt inhibition cascade. Proc Natl Acad Sci U S A 2022; 119:e2205110119. [PMID: 36396123 PMCID: PMC9659337 DOI: 10.1073/pnas.2205110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
During coordinated development of two neighboring organs from the same germ layer, how precursors of one organ resist the inductive signals of the other to avoid being misinduced to wrong cell fate remains a general question in developmental biology. The liver and anterior intestinal precursors located in close proximity along the gut axis represent a typical example. Here we identify a zebrafish leberwurst (lbw) mutant with a unique hepatized intestine phenotype, exhibiting replacement of anterior intestinal cells by liver cells. lbw encodes the Cdx1b homeoprotein, which is specifically expressed in the intestine, and its precursor cells. Mechanistically, in the intestinal precursors, Cdx1b binds to genomic DNA at the regulatory region of secreted frizzled related protein 5 (sfrp5) to activate sfrp5 transcription. Sfrp5 blocks the mesoderm-derived, liver-inductive Wnt2bb signal, thus conferring intestinal precursor cells resistance to Wnt2bb. These results demonstrate that the intestinal precursors avoid being misinduced toward hepatic lineages through the activation of the Cdx1b-Sfrp5 cascade, implicating Cdx/Sfrp5 as a potential pharmacological target for the manipulation of intestinal-hepatic bifurcations, and shedding light on the general question of how precursor cells resist incorrect inductive signals during embryonic development.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yuanyuan Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yanfeng Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| |
Collapse
|
4
|
Caetano da Silva C, Edouard T, Fradin M, Aubert-Mucca M, Ricquebourg M, Raman R, Salles JP, Charon V, Guggenbuhl P, Muller M, Cohen-Solal M, Collet C. WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis. Hum Mol Genet 2022; 31:1622-1634. [PMID: 34875064 PMCID: PMC9122655 DOI: 10.1093/hmg/ddab349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Monogenic early onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in Wnt family member 11 (WNT11) (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G > A p.Ala73Thr) and (NM_004626.2:c.865G > A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman, respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but Wnt family member 3A (WNT3A) recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Thomas Edouard
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Melanie Fradin
- Service de Génétique Clinique, Centre de Référence des Anomalies du Développement de l'Ouest, Hôpital Sud de Rennes, Rennes F-35033, France
| | - Marion Aubert-Mucca
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Manon Ricquebourg
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Jean Pierre Salles
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Valérie Charon
- Department of Radiology, CHU de Rennes, Rennes F-35000, France
| | | | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Martine Cohen-Solal
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Corinne Collet
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
- Département de Génétique, UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, Paris F-75019, France
| |
Collapse
|
5
|
Robertson SYT, Roberts JS, Deng SX. Regulation of Limbal Epithelial Stem Cells: Importance of the Niche. Int J Mol Sci 2021; 22:11975. [PMID: 34769405 PMCID: PMC8584795 DOI: 10.3390/ijms222111975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.
Collapse
Affiliation(s)
| | | | - Sophie X. Deng
- Jules Stein Eye Institute, University of California, Los Angeles, CA 94143, USA; (S.Y.T.R.); (J.S.R.)
| |
Collapse
|
6
|
Xi L, Liu Q, Zhang W, Luo L, Song J, Liu R, Wei S, Wang Y. Circular RNA circCSPP1 knockdown attenuates doxorubicin resistance and suppresses tumor progression of colorectal cancer via miR-944/FZD7 axis. Cancer Cell Int 2021; 21:153. [PMID: 33663510 PMCID: PMC7934234 DOI: 10.1186/s12935-021-01855-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. METHODS 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. RESULTS The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3' untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. CONCLUSION Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.
Collapse
Affiliation(s)
- Lanlan Xi
- Department of Surgery of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Quanlin Liu
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Linshan Luo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Jingfeng Song
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Ruitao Liu
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Shue Wei
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Yong Wang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| |
Collapse
|
7
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
8
|
Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW. A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. BMC Genomics 2019; 20:386. [PMID: 31101013 PMCID: PMC6525467 DOI: 10.1186/s12864-019-5773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adenovirus protein, Gam1, triggers the proteolytic destruction of the E1 SUMO-activating enzyme. Microinjection of an empirically determined amount of Gam1 mRNA into one-cell Xenopus embryos can reduce SUMOylation activity to undetectable, but nonlethal, levels, enabling an examination of the role of this post-translational modification during early vertebrate development. Results We find that SUMOylation-deficient embryos consistently exhibit defects in neural tube and heart development. We have measured differences in gene expression between control and embryos injected with Gam1 mRNA at three developmental stages: early gastrula (immediately following the initiation of zygotic transcription), late gastrula (completion of the formation of the three primary germ layers), and early neurula (appearance of the neural plate). Although changes in gene expression are widespread and can be linked to many biological processes, three pathways, non-canonical Wnt/PCP, snail/twist, and Ets-1, are especially sensitive to the loss of SUMOylation activity and can largely account for the predominant phenotypes of Gam1 embryos. SUMOylation appears to generate different pools of a given transcription factor having different specificities with this post-translational modification involved in the regulation of more complex, as opposed to housekeeping, processes. Conclusions We have identified changes in gene expression that underlie the neural tube and heart phenotypes resulting from depressed SUMOylation activity. Notably, these developmental defects correspond to the two most frequently occurring congenital birth defects in humans, strongly suggesting that perturbation of SUMOylation, either globally or of a specific protein, may frequently be the origin of these pathologies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle M Bertke
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Laura Cronin
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: Division of Biostatistics and Computational Biology, Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Preventive & Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| |
Collapse
|
9
|
Tan M, Asad M, Heong V, Wong MK, Tan TZ, Ye J, Kuay KT, Thiery JP, Scott C, Huang RYJ. The FZD7-TWIST1 axis is responsible for anoikis resistance and tumorigenesis in ovarian carcinoma. Mol Oncol 2019; 13:757-780. [PMID: 30548372 PMCID: PMC6441896 DOI: 10.1002/1878-0261.12425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/24/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Frizzled family receptor 7 (FZD7), a Wnt signaling receptor, is associated with the maintenance of stem cell properties and cancer progression. FZD7 has emerged as a potential therapeutic target because it is capable of transducing both canonical and noncanonical Wnt signals. In this study, we investigated the regulatory pathway downstream of FZD7 and its functional roles. We found that FZD7 expression was crucial to the maintenance of the mesenchymal phenotype, anoikis resistance, and spheroid and tumor formation in ovarian cancer (OC). We identified TWIST1 as the crucial downstream effector of the FZD7 pathway. TWIST1, a basic helix loop helix transcription factor, is known to associate with mesenchymal and cancer stem cell phenotypes. Manipulating TWIST1 expression mimicked the functional consequences observed in the FZD7 model, and overexpression of TWIST1 partially rescued the functional phenotypes abolished by FZD7 knockdown. We further proved that FZD7 regulated TWIST1 expression through epigenetic modifications of H3K4me3 and H3K27ac at the TWIST1 proximal promoter. We also identified that the FZD7‐TWIST1 axis regulates the expression of BCL2, a gene that controls apoptosis. Identification of this FZD7‐TWIST1‐BCL2 pathway reaffirms the mechanism of anoikis resistance in OC. We subsequently showed that the FZD7‐TWIST1 axis can be targeted by using a small molecule inhibitor of porcupine, an enzyme essential for secretion and functional activation of Wnts. In conclusion, our results identified that the FZD7‐TWIST1 axis is important for tumorigenesis and anoikis resistance, and therapeutic inhibition results in cell death in OCs.
Collapse
Affiliation(s)
- Ming Tan
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Mohammad Asad
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore
| | - Valerie Heong
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore.,Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Meng Kang Wong
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Kuee Theng Kuay
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Gere-Becker MB, Pommerenke C, Lingner T, Pieler T. Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis. Development 2018; 145:dev.161372. [PMID: 29769220 PMCID: PMC6031401 DOI: 10.1242/dev.161372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA) is required for pancreas specification in Xenopus and other vertebrates. However, the gene network that is directly induced by RA signalling in this context remains to be defined. By RNA sequencing of in vitro-generated pancreatic explants, we identified the genes encoding the transcription factor Hnf1β and the Wnt-receptor Fzd4/Fzd4s as direct RA target genes. Functional analyses of Hnf1b and Fzd4/Fzd4s in programmed pancreatic explants and whole embryos revealed their requirement for pancreatic progenitor formation and differentiation. Thus, Hnf1β and Fzd4/Fzd4s appear to be involved in pre-patterning events of the embryonic endoderm that allow pancreas formation in Xenopus.
Collapse
Affiliation(s)
- Maja B Gere-Becker
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Thomas Lingner
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Genevention GmbH, Rudolf-Wissel-Str. 28, 37079 Goettingen, Germany
| | - Tomas Pieler
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| |
Collapse
|
11
|
Abstract
Wnt signalling regulates cardiogenesis during specification of heart tissue and the morphogenetic movements necessary to form the linear heart. Wnt11-mediated non-canonical signalling promotes early cardiac development whilst Wnt11-R, which is expressed later, also signals through the non-canonical pathway to promote heart development. It is unclear which Frizzled proteins mediate these interactions. Frizzled-7 (fzd7) is expressed during gastrulation in the mesodermal cells fated to become heart, and then in the primary heart field. This expression is complementary to the expression of wnt11 and wnt11-R. We further show co-localisation of fzd7 with other early- and late-heart-specific markers using double in situ hybridisation. We have used loss of function analysis to determine the role of fzd7 during heart development. Morpholino antisense oligonucleotide-mediated knockdown of Fzd7 results in effects on heart development, similar to that caused by Wnt11 loss of function. Surprisingly, overexpression of dominant-negative Fzd7 cysteine rich domain (Fzd7 CRD) results in a cardia bifida phenotype, similar to the loss of wnt11-R phenotype. Overexpression of Fzd7 and activation of non-canonical wnt signalling can rescue the effect of Fzd7 CRD. We propose that Fzd7 has an important role during Xenopus heart development. Summary: Wnt signalling has been shown to be important in heart development. Here, we demonstrate that the wnt receptor fzd7 is required in mediating these Wnt signals.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216 Jeddah 21589, Kingdom of Saudi Arabia.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Joanna Mulvaney
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
12
|
Stevens ML, Chaturvedi P, Rankin SA, Macdonald M, Jagannathan S, Yukawa M, Barski A, Zorn AM. Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs. Development 2017; 144:1283-1295. [PMID: 28219948 DOI: 10.1242/dev.145789] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
Digestive system development is orchestrated by combinatorial signaling interactions between endoderm and mesoderm, but how these signals are interpreted in the genome is poorly understood. Here we identified the transcriptomes of Xenopus foregut and hindgut progenitors, which are conserved with mammals. Using RNA-seq and ChIP-seq we show that BMP/Smad1 regulates dorsal-ventral gene expression in both the endoderm and mesoderm, whereas Wnt/β-catenin acts as a genome-wide toggle between foregut and hindgut programs. Unexpectedly, β-catenin and Smad1 binding were associated with both transcriptional activation and repression, with Wnt-repressed genes often lacking canonical Tcf DNA binding motifs, suggesting a novel mode of direct repression. Combinatorial Wnt and BMP signaling was mediated by Smad1 and β-catenin co-occupying hundreds of cis-regulatory DNA elements, and by a crosstalk whereby Wnt negatively regulates BMP ligand expression in the foregut. These results extend our understanding of gastrointestinal organogenesis and of how Wnt and BMP might coordinate genomic responses in other contexts.
Collapse
Affiliation(s)
- Mariana L Stevens
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Melissa Macdonald
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Masashi Yukawa
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
13
|
Abstract
Inspite of effective treatment with imatinib (IM), chronic myeloid leukemia (CML) is still an incurable disease. Some patients became refractory because of IM resistance. Bone marrow mesenchymal stem cells (BMSCs) have been implicated a role in promoting CML cells' resistance against IM treatment. The detailed molecular mechanisms, however, remain largely unknown. In this study, we found that BMSCs increased the expression of FZD7 and activated Wnt/β-catenin signaling pathway in CML cells. BMSCs from CML patients showed increased efficiency to accelerate CML cell proliferation, enhance the drug resistance of K562 cells and up-regulate the expression of FZD7. Antagonism of FZD7 expression by shRNA significantly suppressed proliferation and increased IM sensitivity of CML cells co-cultured with BMSCs cells. Our findings suggest that FZD7, involved in canonical Wnt signaling pathway, plays a critical role in mediating BMSCs-dependent protection of CML cells, and potentially provide a novel therapeutic target for CML.
Collapse
|
14
|
Gérard C, Tys J, Lemaigre FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol 2016; 66:43-50. [PMID: 27979774 DOI: 10.1016/j.semcdb.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022]
Abstract
Liver development proceeds by sequential steps during which gene regulatory networks (GRNs) determine differentiation and maturation of hepatic cells. Characterizing the architecture and dynamics of these networks is essential for understanding how cell fate decisions are made during development, and for recapitulating these processes during in vitro production of liver cells for toxicology studies, disease modelling and regenerative therapy. Here we review the GRNs that control key steps of liver development and lead to differentiation of hepatocytes and cholangiocytes in mammals. We focus on GRNs determining cell fate decisions and analyse subcircuitry motifs that may confer specific dynamic properties to the networks. Finally, we put our analysis in the perspective of recent attempts to directly reprogram cells to hepatocytes by forced expression of transcription factors.
Collapse
Affiliation(s)
- Claude Gérard
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Janne Tys
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Frédéric P Lemaigre
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
15
|
Benham-Pyle BW, Sim JY, Hart KC, Pruitt BL, Nelson WJ. Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis. eLife 2016; 5. [PMID: 27782880 PMCID: PMC5104517 DOI: 10.7554/elife.19799] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis. DOI:http://dx.doi.org/10.7554/eLife.19799.001 Tissues and organs can both produce and respond to physical forces. For example, the lungs expand and contract; the heart pumps blood; and bones and muscles grow or shrink depending on how much they are used. These responses are possible because cells contain proteins that can respond to physical forces. One of the best studied of these is a protein called β-catenin, which increases the activity of genes that trigger cells to divide to promote the expansion of tissues. β-catenin is over-active in many types of cancer cells where it contributes to tumor growth. In addition to being switched on by mechanical force, β-catenin is also activated when cells detect a signal molecule called Wnt. Cells cycle through a series of stages known as the cell cycle to ensure that they only divide when they are fully prepared to do so. Benham-Pyle et al. investigated if physical force and Wnt activate β-catenin in the same way or if they have different effects on cell division. The experiments were conducted on dog kidney cells that had left the cell cycle and had therefore temporarily stopped dividing. Physical forces, such as stretching, resulted in β-catenin being modified by an enzyme called SRC kinase, which allowed the cells to re-enter the cell cycle. On the other hand, Wnt stabilized β-catenin and temporarily increased the number of cell divisions. When mechanical stretch and Wnt signaling were combined, the cells were more likely to re-enter the cell cycle and divide compared to either stimulus alone. These data suggest that physical force and Wnt signaling affect β-catenin differently and that they can therefore have a greater effect on cell or tissue growth when they act together than on their own. The findings of Benham-Pyle et al. show that β-catenin is not simply switched on or off, but can have different levels of activity depending on the input the cells are receiving. Future experiments will test whether these mechanisms also exist in three-dimensional tissues, which will help us understand how organs develop. DOI:http://dx.doi.org/10.7554/eLife.19799.002
Collapse
Affiliation(s)
| | - Joo Yong Sim
- Department of Mechanical Engineering, Stanford University, Stanford, United States
| | - Kevin C Hart
- Department of Biology, Stanford University, Stanford, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - William James Nelson
- Program in Cancer Biology, Stanford University, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
16
|
Golenia G, Gatie MI, Kelly GM. Frizzled gene expression and negative regulation of canonical WNT-β-catenin signaling in mouse F9 teratocarcinoma cells. Biochem Cell Biol 2016; 95:251-262. [PMID: 28177772 DOI: 10.1139/bcb-2016-0150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse F9 cells differentiate into primitive endoderm (PrE) following the activation of the canonical WNT-β-catenin pathway. The upregulation of Wnt6 and activation of β-catenin-TCF-LEF-dependent transcription is known to accompany differentiation, but the Frizzled (FZD) receptor responsible for transducing the WNT6 signal is not known. Eight of the 10 Fzd genes were found to be expressed in F9 cells, with Fzd7 being the most highly expressed, and chosen for further analysis. To alter steady-state Fzd7 levels and test the effect this has on differentiation, siRNA and overexpression approaches were used to knock-down and ectopically express the Fzd7 message, respectively. siRNA knock-down of Fzd7 resulted in reduced DAB2 levels, and the overexpression activated a TCF-LEF reporter, but neither approach affected differentiation. Our focus turned to how canonical WNT6 signaling was attenuated to allow PrE cells to form parietal endoderm (PE). Dkk1, encoding a WNT antagonist, was examined and results showed that its expression increased in F9 cells treated with retinoic acid (RA) or overexpressing Wnt6. F9 cells overexpressing human DKK1 or treated with DKK1-conditioned medium and then treated with RA failed to differentiate, indicating that a negative feedback loop involving WNT6 and DKK1 attenuates canonical WNT-β-catenin signaling, thereby allowing PE cells to differentiate.
Collapse
Affiliation(s)
- Gregory Golenia
- a Department of Biology, Molecular Genetics Unit, Western University, London, ON N6A 5B7, Canada
| | - Mohamed I Gatie
- a Department of Biology, Molecular Genetics Unit, Western University, London, ON N6A 5B7, Canada
| | - Gregory M Kelly
- a Department of Biology, Molecular Genetics Unit, Western University, London, ON N6A 5B7, Canada.,b Child Health Research Institute, London, ON N6C 2V5, Canada.,c Ontario Institute for Regenerative Medicine, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
17
|
Zhang Z, Rankin SA, Zorn AM. Syndecan4 coordinates Wnt/JNK and BMP signaling to regulate foregut progenitor development. Dev Biol 2016; 416:187-199. [PMID: 27235146 PMCID: PMC5293220 DOI: 10.1016/j.ydbio.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/21/2016] [Accepted: 05/21/2016] [Indexed: 01/17/2023]
Abstract
Temporally and spatially dynamic Wnt and BMP signals are essential to pattern foregut endoderm progenitors that give rise to the liver, pancreas and lungs, but how these two signaling pathways are coordinated in the extracellular space is unknown. Here we identify the transmembrane heparan sulphate proteoglycan Syndecan-4 (Sdc4), as a key regulator of both non-canonical Wnt and BMP signaling in the Xenopus foregut. Foregut-specific Sdc4 depletion results in a disrupted Fibronectin (Fn1) matrix, reduced cell adhesion, and failure to maintain foregut gene expression ultimately leading to foregut organ hypoplasia. Sdc4 is required to maintain robust Wnt/JNK and BMP/Smad1 signaling in the hhex+ foregut progenitors. Pathway analysis suggests that Sdc4 functionally interacts with Fzd7 to promote Wnt/JNK signaling, which maintains foregut identity and cell adhesion. In addition, the Sdc4 ectodomain is required to support Fn1 matrix assembly, which is essential for the robust BMP signaling that promotes foregut gene expression. This work sheds lights on how the extracellular matrix can coordinate different signaling pathways during organogenesis.
Collapse
Affiliation(s)
- Zheng Zhang
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer. Cancers (Basel) 2016; 8:cancers8050050. [PMID: 27196929 PMCID: PMC4880867 DOI: 10.3390/cancers8050050] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer.
Collapse
|
19
|
Bhat V, Sun YJ, Weger S, Raouf A. Notch-Induced Expression of FZD7 Requires Noncanonical NOTCH3 Signaling in Human Breast Epithelial Cells. Stem Cells Dev 2016; 25:522-9. [PMID: 26847503 DOI: 10.1089/scd.2015.0315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The evolutionarily conserved Notch and Wnt signaling pathways have demonstrated roles in normal mammary gland development and in breast carcinogenesis. We previously reported that in human mammary gland, signaling through NOTCH3 alone regulates the commitment of the undifferentiated bipotential progenitors to the luminal cell fate, indicating that NOTCH3 may regulate the expression of unique genes apart from the other Notch receptors. In this study, we used gain of function and loss of function experiments and found that a Wnt signaling receptor, Frizzled7 (FZD7), is a unique and nonredundant target of NOTCH3 in human breast epithelial cells. Interestingly, neither the constitutively active forms of NOTCH1-2, 4 nor loss of expression of these receptors were able to alter expression of FZD7 in human breast epithelial cells. We further show that FZD7-expressing cells are found more frequently in the luminal progenitor-enriched subpopulation of cells obtained from breast reduction samples compared with the undifferentiated bipotent progenitors. Also, we show that NOTCH3-induced expression of FZD7 occurs in the absence of CSL (CBF1-Suppressor of Hairless-Lag-1). Our data suggest that noncanonical Notch signaling through NOTCH3 could modulate Wnt signaling via FZD7 and in this way, might be involved in luminal cell differentiation.
Collapse
Affiliation(s)
- Vasudeva Bhat
- 1 Department of Immunology, Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba, Canada .,2 Research Institute for Oncology and Hematology, CancerCare Manitoba , Winnipeg, Manitoba, Canada
| | - Yu Jia Sun
- 1 Department of Immunology, Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba, Canada .,2 Research Institute for Oncology and Hematology, CancerCare Manitoba , Winnipeg, Manitoba, Canada
| | - Steve Weger
- 1 Department of Immunology, Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba, Canada .,2 Research Institute for Oncology and Hematology, CancerCare Manitoba , Winnipeg, Manitoba, Canada
| | - Afshin Raouf
- 1 Department of Immunology, Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba, Canada .,2 Research Institute for Oncology and Hematology, CancerCare Manitoba , Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. Semin Cell Dev Biol 2016; 51:92-105. [PMID: 26851628 PMCID: PMC4798877 DOI: 10.1016/j.semcdb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Melissa Pickett
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States.
| |
Collapse
|
21
|
Kofent J, Spagnoli FM. Xenopus as a model system for studying pancreatic development and diabetes. Semin Cell Dev Biol 2016; 51:106-16. [PMID: 26806634 DOI: 10.1016/j.semcdb.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023]
Abstract
Diabetes is a chronic disease caused by the loss or dysfunction of the insulin-producing β-cells in the pancreas. To date, much of our knowledge about β-cells in humans comes from studying rare monogenic forms of diabetes. Importantly, the majority of mutations so far associated to monogenic diabetes are in genes that exert a regulatory role in pancreatic development and/or β-cell function. Thus, the identification and study of novel mutations open an unprecedented window into human pancreatic development. In this review, we summarize major advances in the genetic dissection of different types of monogenic diabetes and the insights gained from a developmental perspective. We highlight future challenges to bridge the gap between the fast accumulation of genetic data through next-generation sequencing and the need of functional insights into disease mechanisms. Lastly, we discuss the relevance and advantages of studying candidate gene variants in vivo using the Xenopus as model system.
Collapse
Affiliation(s)
- Julia Kofent
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Francesca M Spagnoli
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany.
| |
Collapse
|
22
|
Twaroski K, Mallanna SK, Jing R, DiFurio F, Urick A, Duncan SA. FGF2 mediates hepatic progenitor cell formation during human pluripotent stem cell differentiation by inducing the WNT antagonist NKD1. Genes Dev 2015; 29:2463-74. [PMID: 26637527 PMCID: PMC4691950 DOI: 10.1101/gad.268961.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/28/2015] [Indexed: 01/24/2023]
Abstract
Fibroblast growth factors (FGFs) are required to specify hepatic fate within the definitive endoderm through activation of the FGF receptors (FGFRs). While the signaling pathways involved in hepatic specification are well understood, the mechanisms through which FGFs induce hepatic character within the endoderm are ill defined. Here we report the identification of genes whose expression is directly regulated by FGFR activity during the transition from endoderm to hepatic progenitor cell. The FGFR immediate early genes that were identified include those encoding transcription factors, growth factors, and signaling molecules. One of these immediate early genes encodes naked cuticle homolog 1 (NKD1), which is a repressor of canonical WNT (wingless-type MMTV integration site) signaling. We show that loss of NKD1 suppresses the formation of hepatic progenitor cells from human induced pluripotent stem cells and that this phenotype can be rescued by using a pharmacological antagonist of canonical WNT signaling. We conclude that FGF specifies hepatic fate at least in large part by inducing expression of NKD1 to transiently suppress the canonical WNT pathway.
Collapse
Affiliation(s)
- Kirk Twaroski
- Department of Cell Biology, Neurobiology, and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Sunil K Mallanna
- Department of Cell Biology, Neurobiology, and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Ran Jing
- Department of Cell Biology, Neurobiology, and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Francesca DiFurio
- Department of Cell Biology, Neurobiology, and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Amanda Urick
- Department of Cell Biology, Neurobiology, and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Stephen A Duncan
- Department of Cell Biology, Neurobiology, and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| |
Collapse
|
23
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
24
|
Abstract
During gastrulation and neurulation, foxj1 expression requires ATP4a-dependent Wnt/β-catenin signaling for ciliation of the gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012) 516-527.) and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015)) of Xenopus laevis embryos. These data suggested that ATP4a and Wnt/β-catenin signaling regulate foxj1 throughout Xenopus development. Here we analyzed whether foxj1 expression was also ATP4a-dependent in other ciliated tissues of the developing Xenopus embryo and tadpole. We found that in the floor plate of the neural tube ATP4a-dependent canonical Wnt signaling was required for foxj1 expression, downstream of or in parallel to Hedgehog signaling. In the developing tadpole brain, ATP4-function was a prerequisite for the establishment of cerebrospinal fluid flow. Furthermore, we describe foxj1 expression and the presence of multiciliated cells in the developing tadpole gastrointestinal tract. Our work argues for a general requirement of ATP4-dependent Wnt/β-catenin signaling for foxj1 expression and motile ciliogenesis throughout Xenopus development.
Collapse
|
25
|
Abstract
Diseases affecting endodermal organs like the pancreas, lung and gastrointestinal (GI) tract have a substantial impact on human welfare. Since many of these are congenital defects that arise as a result of defects during development broad efforts are focused on understanding the development of these organs so as to better identify risk factors, disease mechanisms and therapeutic targets. Studies implementing model systems, like the amphibian Xenopus, have contributed immensely to our understanding of signaling (e.g. Wnt, FGF, BMP, RA) pathways and gene regulation (e.g. hhex, ptf1a, ngn3) that underlie normal development as well as disease progression. Recent advances in genome engineering further enhance the capabilities of the Xenopus model system for pursuing biomedical research, and will undoubtedly result in a boom of new information underlying disease mechanisms ultimately leading to advancements in diagnosis and therapy.
Collapse
|
26
|
Sinagoga KL, Wells JM. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J 2015; 34:1149-63. [PMID: 25792515 DOI: 10.15252/embj.201490686] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host-parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
27
|
Afelik S, Pool B, Schmerr M, Penton C, Jensen J. Wnt7b is required for epithelial progenitor growth and operates during epithelial-to-mesenchymal signaling in pancreatic development. Dev Biol 2015; 399:204-17. [DOI: 10.1016/j.ydbio.2014.12.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023]
|
28
|
Mei H, Nakatsu MN, Baclagon ER, Deng SX. Frizzled 7 maintains the undifferentiated state of human limbal stem/progenitor cells. Stem Cells 2015; 32:938-45. [PMID: 24170316 DOI: 10.1002/stem.1582] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/14/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway plays an important role in the regulation of human limbal stem/progenitor cells (LSCs). To examine the possible function of Frizzled (Fz) receptors in LSCs, the expression of 10 Fz receptors was profiled in the limbus and cornea. Only Fz7 had preferential expression in the basal limbal epithelium which contains the LSCs. The expression of Fz7 was colocalized with the putative LSC markers including p63α, N-cadherin and keratin (K) 14, and was minimum in cells expressing the corneal maturation marker K12. The expression of Fz7 was higher in the enriched LSCs population and decreased in cultured LSCs when there was a loss of progenitor phenotype. When the Fz7 was knocked down (Fz(KD)) using shRNA in primary LSCs, the expression of putative LSC markers ABCG2, ΔNp63α, and K14 was decreased significantly. The colony forming efficiency of the Fz7(KD) LSCs was significantly decreased in the subsequent passage 1 and 2 compared to the control. Our finding suggests that Wnt signaling is one of the factors of LSC niche, and Fz7 helps to maintain the undifferentiated state of LSCs.
Collapse
Affiliation(s)
- Hua Mei
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
29
|
Asad M, Wong MK, Tan TZ, Choolani M, Low J, Mori S, Virshup D, Thiery JP, Huang RYJ. FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis 2014; 5:e1346. [PMID: 25032869 PMCID: PMC4123093 DOI: 10.1038/cddis.2014.302] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 06/09/2014] [Indexed: 01/02/2023]
Abstract
Ovarian cancer (OC) can be classified into five biologically distinct molecular subgroups: epithelial-A (Epi-A), Epi-B, mesenchymal (Mes), Stem-A and Stem-B. Among them, Stem-A expresses genes relating to stemness and is correlated with poor clinical prognosis. In this study, we show that frizzled family receptor 7 (FZD7), a receptor for Wnt signalling, is overexpressed in the Stem-A subgroup. To elucidate the functional roles of FZD7, we used an RNA interference gene knockdown approach in three Stem-A cell lines: CH1, PA1 and OV-17R. Si-FZD7 OC cells showed reduced cell proliferation with an increase in the G0/G1 sub-population, with no effect on apoptosis. The cells also displayed a distinctive morphologic change by colony compaction to become more epithelial-like and polarised with smaller internuclear distances and increased z-axis height. Immunofluorescence (IF) staining patterns of pan-cadherin and β-catenin suggested an increase in cadherin-based cell–cell adhesion in si-FZD7 cells. We also observed a significant rearrangement in the actin cytoskeleton and an increase in tensile contractility in si-FZD7 OC cells, as evident by the loss of stress fibres and the redistribution of phospho-myosin light chain (pMLC) from the sites of cell–cell contacts to the periphery of cell colonies. Furthermore, there was reciprocal regulation of RhoA (Ras homolog family member A) and Rac1 (Ras-related C3 botulinum toxin substrate 1 (Rho family, small GTP-binding protein Rac1)) activities upon FZD7 knockdown, with a significant reduction in RhoA activity and a concomitant upregulation in Rac1 activity. These changes in pMLC and RhoA, as well as the increased TopFlash reporter activities in si-FZD7 cells, suggested involvement of the non-canonical Wnt/planar cell polarity (PCP) pathway. Selected PCP pathway genes (cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3), prickle homolog 4 (Drosophila) (PRICKLE4), dishevelled-associated activator of morphogenesis 1 (DAAM1), profilin 2 (PFN2), protocadherin 9 (PCDH9), protocadherin α1 (PCDHA1), protocadherin β17 pseudogene (PCDHB17), protocadherin β3 (PCDHB3), sprouty homolog 1 (SPRY1) and protein tyrosine kinase 7 (PTK7)) were found to be more highly expressed in Stem-A than non Stem-A subgroup of OC. Taken together, our results suggest that FZD7 might drive aggressiveness in Stem-A OC by regulating cell proliferation, cell cycle progression, maintenance of the Mes phenotype and cell migration via casein kinase 1ɛ-mediated non-canonical Wnt/PCP pathway.
Collapse
Affiliation(s)
- M Asad
- Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - M K Wong
- Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - T Z Tan
- Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - M Choolani
- Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, Singapore
| | - J Low
- 1] Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, Singapore [2] National University Cancer Institute of Singapore, Singapore, Singapore
| | - S Mori
- Division of Cancer Genomics, Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, Japan
| | - D Virshup
- Duke NUS Graduate Medical School, Singapore, Singapore
| | - J P Thiery
- 1] Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore [2] National University Cancer Institute of Singapore, Singapore, Singapore [3] Department of Biochemistry, National University of Singapore, Singapore, Singapore [4] Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - R Y-J Huang
- 1] Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore [2] Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, Singapore [3] National University Cancer Institute of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Rodríguez-Seguel E, Mah N, Naumann H, Pongrac IM, Cerdá-Esteban N, Fontaine JF, Wang Y, Chen W, Andrade-Navarro MA, Spagnoli FM. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes Dev 2013; 27:1932-46. [PMID: 24013505 PMCID: PMC3778245 DOI: 10.1101/gad.220244.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A key question in stem cell biology is how distinct cell types arise from common multipotent progenitor cells. It is unknown how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates. Using RNA-seq, Spagnoli and colleagues define the gene expression programs of liver and pancreas progenitors and identify the noncanonical Wnt pathway as a potential developmental regulator of this fate decision. Furthermore, this study provides a framework for lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells.
Collapse
|
31
|
Cavodeassi F. Integration of anterior neural plate patterning and morphogenesis by the Wnt signaling pathway. Dev Neurobiol 2013; 74:759-71. [PMID: 24115566 DOI: 10.1002/dneu.22135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
Wnts are essential for a multitude of processes during embryonic development and adult homeostasis. The molecular structure of the Wnt pathway is extremely complex, and it keeps growing as new molecular components and novel interactions are uncovered. Recent studies have advanced our understanding on how the diverse molecular outcomes of the Wnt pathway are integrated during organ development, an integration that is also essential, although mechanistically poorly understood, during the formation of the anterior part of the nervous system, the forebrain. In this article, the author has summarized these findings and discussed their implications for forebrain development. A special emphasis has been put forth on studies performed in the zebrafish as this model system has been instrumental for our current understanding of forebrain patterning.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
32
|
Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol 2013; 59:1107-17. [PMID: 23835194 DOI: 10.1016/j.jhep.2013.07.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. HCC can be cured by radical therapies if early diagnosis is done while the tumor has remained of small size. Unfortunately, diagnosis is commonly late when the tumor has grown and spread. Thus, palliative approaches are usually applied such as transarterial intrahepatic chemoembolization and sorafenib, an anti-angiogenic agent and MAP kinase inhibitor. This latter is the only targeted therapy that has shown significant, although moderate, efficiency in some individuals with advanced HCC. This highlights the need to develop other targeted therapies, and to this goal, to identify more and more pathways as potential targets. The Wnt pathway is a key component of a physiological process involved in embryonic development and tissue homeostasis. Activation of this pathway occurs when a Wnt ligand binds to a Frizzled (FZD) receptor at the cell membrane. Two different Wnt signaling cascades have been identified, called non-canonical and canonical pathways, the latter involving the β-catenin protein. Deregulation of the Wnt pathway is an early event in hepatocarcinogenesis and has been associated with an aggressive HCC phenotype, since it is implicated both in cell survival, proliferation, migration and invasion. Thus, component proteins identified in this pathway are potential candidates of pharmacological intervention. This review focuses on the characteristics and functions of the molecular targets of the Wnt signaling cascade and how they may be manipulated to achieve anti-tumor effects.
Collapse
Affiliation(s)
- Floriane Pez
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Université Lyon-1, F-69622 Villeurbanne, France; Centre Léon Bérard, F-69008 Lyon, France
| | | | | | | | | | | |
Collapse
|