1
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Huan P, Liu B. The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae. Evol Dev 2024; 26:e12456. [PMID: 37667429 DOI: 10.1111/ede.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing "typical" trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
Collapse
Affiliation(s)
- Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tilic E, Bartolomaeus T, Seaver EC. Discovery and characterization of a transient chaetal gland during the development of Capitella teleta (Sedentaria: Annelida). J Morphol 2024; 285:e21742. [PMID: 38837266 DOI: 10.1002/jmor.21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Chaetae are among the most extensively studied structures in polychaetes, serving as a defining morphological trait for annelids. Capitella teleta stands out as one of the few established annelid models for developmental and morphological studies, thus receiving significant scholarly attention. In this study, we unveil a previously unnoticed glandular structure associated with chaetae within the larvae of C. teleta. Our investigations demonstrate the absence of comparable structures in the chaetal follicles of adults and juveniles (older than 1 week), as well as during active chaetogenesis, underscoring the transient nature of these glands. This indicates that larval chaetal follicles transform into a gland that later disappears. Utilizing histology and transmission electron microscopy, we characterized these glands. Our findings underscore the diversity of chaetal ultrastructure in annelids and show that, even in well-studied species, novel morphological details can be found. We emphasize the importance of examining various life-history stages to capture such transient morphological features. This work lays a crucial morphological foundation and deepens our understanding of chaetae and chaetogenesis in C. teleta, paving the way for more accurate interpretations of future experimental studies on chaetogenesis in this species.
Collapse
Affiliation(s)
- Ekin Tilic
- Marine Zoology Department, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
- Bonn Institute of Organismic Biology (BIOB), Sec. II Animal Biodiversity, University of Bonn, Bonn, Germany
| | - Thomas Bartolomaeus
- Bonn Institute of Organismic Biology (BIOB), Sec. II Animal Biodiversity, University of Bonn, Bonn, Germany
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| |
Collapse
|
4
|
Webster NB, Meyer NP. Capitella teleta gets left out: possible evolutionary shift causes loss of left tissues rather than increased neural tissue from dominant-negative BMPR1. Neural Dev 2024; 19:4. [PMID: 38698415 PMCID: PMC11067212 DOI: 10.1186/s13064-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.
Collapse
Affiliation(s)
- Nicole B Webster
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
- Biology Department, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|
5
|
Özpolat BD. Annelids as models of germ cell and gonad regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:126-143. [PMID: 38078561 PMCID: PMC11060932 DOI: 10.1002/jez.b.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, St. Louis, United States, United States
| |
Collapse
|
6
|
Wandelt JE, Nakamoto A, Goulding MQ, Nagy LM. Embryonic organizer specification in the mud snail Ilyanassa obsoleta depends on intercellular signaling. Development 2023; 150:dev202027. [PMID: 37902104 PMCID: PMC10730015 DOI: 10.1242/dev.202027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
In early embryos of the caenogastropod snail Ilyanassa obsoleta, cytoplasmic segregation of a polar lobe is required for establishment of the D quadrant founder cell, empowering its great-granddaughter macromere 3D to act as a single-celled organizer that induces ectodermal pattern along the secondary body axis of the embryo. We present evidence that polar lobe inheritance is not sufficient to specify 3D potential, but rather makes the D macromere lineage responsive to some intercellular signal(s) required for normal expression of 3D-specific phenotypes. Experimental removal of multiple micromeres resulted in loss of organizer-linked MAPK activation, complete and specific defects of organizer-dependent larval organs, and progressive cell cycle retardation, leading to equalization of the normally accelerated division schedule of 3D (relative to the third-order macromeres of the A, B and C quadrants). Ablation of the second-quartet micromere 2d greatly potentiated the effects of first micromere quartet ablation. Our findings link organizer activation in I. obsoleta to the putative ancestral spiralian mechanism in which a signal from micromeres leads to specification of 3D among four initially equivalent macromeres.
Collapse
Affiliation(s)
- Jessica E. Wandelt
- School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ayaki Nakamoto
- Faculty of Pharmaceutical Sciences, Aomori University, Koubata 2-3-1, Aomori 030-0943, Japan
| | | | - Lisa M. Nagy
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Tan S, Huan P, Liu B. Functional evidence that FGFR regulates MAPK signaling in organizer specification in the gastropod mollusk Lottia peitaihoensis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:455-466. [PMID: 38045550 PMCID: PMC10689715 DOI: 10.1007/s42995-023-00194-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
The D-quadrant organizer sets up the dorsal-ventral (DV) axis and regulates mesodermal development of spiralians. Studies have revealed an important role of mitogen-activated protein kinase (MAPK) signaling in organizer function, but the related molecules have not been fully revealed. The association between fibroblast growth factor receptor (FGFR) and MAPK signaling in regulating organizer specification has been established in the annelid Owenia fusiformis. Now, comparable studies in other spiralian phyla are required to decipher whether this organizer-inducing function of FGFR is prevalent in Spiralia. Here, we indicate that treatment with the FGFR inhibitor SU5402 resulted in deficiency of organizer specification in the mollusk Lottia peitaihoensis. Subsequently, the bone morphogenetic protein (BMP) signaling gradient and DV patterning were disrupted, suggesting the roles of FGFR in regulating organizer function. Changes in multiple aspects of organizer function (the morphology of vegetal blastomeres, BMP signaling gradient, expression of DV patterning markers, etc.) indicate that these developmental functions have different sensitivities to FGFR/MAPK signaling. Our results reveal a functional role of FGFR in organizer specification as well as DV patterning of Lottia embryos, which expands our knowledge of spiralian organizers. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00194-x.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
8
|
Seudre O, Carrillo-Baltodano AM, Liang Y, Martín-Durán JM. ERK1/2 is an ancestral organising signal in spiral cleavage. Nat Commun 2022; 13:2286. [PMID: 35484126 PMCID: PMC9050690 DOI: 10.1038/s41467-022-30004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Animal development is classified as conditional or autonomous based on whether cell fates are specified through inductive signals or maternal determinants, respectively. Yet how these two major developmental modes evolved remains unclear. During spiral cleavage-a stereotypic embryogenesis ancestral to 15 invertebrate groups, including molluscs and annelids-most lineages specify cell fates conditionally, while some define the primary axial fates autonomously. To identify the mechanisms driving this change, we study Owenia fusiformis, an early-branching, conditional annelid. In Owenia, ERK1/2-mediated FGF receptor signalling specifies the endomesodermal progenitor. This cell likely acts as an organiser, inducing mesodermal and posterodorsal fates in neighbouring cells and repressing anteriorising signals. The organising role of ERK1/2 in Owenia is shared with molluscs, but not with autonomous annelids. Together, these findings suggest that conditional specification of an ERK1/2+ embryonic organiser is ancestral in spiral cleavage and was repeatedly lost in annelid lineages with autonomous development.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
9
|
Slipper snail tales: How Crepidula fornicata and Crepidula atrasolea became model molluscs. Curr Top Dev Biol 2022; 147:375-399. [PMID: 35337456 DOI: 10.1016/bs.ctdb.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the great abundance and diversity of molluscs, only a few have attained "model research organism" status. One of those species is the slipper snail Crepidula fornicata. Its embryos were first used for classical lineage tracing studies in the late 19th century, and over a 100 years later they were "re-discovered" by our labs and used for modern fate mapping, gene perturbation, in vivo imaging, transcriptomics, and the first application of CRISPR/Cas9-mediated genome editing among the Spiralia/Lophotrochozoa. Simultaneously, other labs made extensive examinations of taxonomy, phylogeny, ecology, life-history, mode of development, larval feeding behavior, and responses to the environment in members of the family Calyptraeidae, which includes the genus Crepidula. Recently, we developed tools, resources, and husbandry protocols for another, direct-developing species, Crepidula atrasolea. This species is an ideal "lab rat" among molluscs. Together these species will be valuable for probing the cellular and molecular mechanisms underlying molluscan biology and evolution.
Collapse
|
10
|
Seaver EC. Sifting through the mud: A tale of building the annelid Capitella teleta for EvoDevo studies. Curr Top Dev Biol 2022; 147:401-432. [PMID: 35337457 DOI: 10.1016/bs.ctdb.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last few decades, the annelid Capitella teleta has been used increasingly as a study system for investigations of development and regeneration. Its favorable properties include an ability to continuously maintain a laboratory culture, availability of a sequenced genome, a stereotypic cleavage program of early development, substantial regeneration abilities, and established experimental and functional genomics techniques. With this review I tell of my adventure of establishing the Capitella teleta as an emerging model and share examples of a few of the contributions our work has made to the fields of evo-devo and developmental biology. I highlight examples of conservation in developmental programs as well as surprising deviations from existing paradigms that highlight the importance of leveraging biological diversity to shift thinking in the field. The story for each study system is unique, and every animal has its own advantages and disadvantages as an experimental system. Just like most progress in science, it takes strategy, hard work and determination to develop tools and resources for a less studied animal, but luck and serendipity also play a role. I include a few narratives to personalize the science, share details of the story that are not included in typical publications, and provide perspective for investigators who are interested in developing their own study organism.
Collapse
Affiliation(s)
- Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
11
|
Seaver EC, de Jong DM. Regeneration in the Segmented Annelid Capitella teleta. Genes (Basel) 2021; 12:genes12111769. [PMID: 34828375 PMCID: PMC8623021 DOI: 10.3390/genes12111769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
The segmented worms, or annelids, are a clade within the Lophotrochozoa, one of the three bilaterian superclades. Annelids have long been models for regeneration studies due to their impressive regenerative abilities. Furthermore, the group exhibits variation in adult regeneration abilities with some species able to replace anterior segments, posterior segments, both or neither. Successful regeneration includes regrowth of complex organ systems, including the centralized nervous system, gut, musculature, nephridia and gonads. Here, regenerative capabilities of the annelid Capitella teleta are reviewed. C. teleta exhibits robust posterior regeneration and benefits from having an available sequenced genome and functional genomic tools available to study the molecular and cellular control of the regeneration response. The highly stereotypic developmental program of C. teleta provides opportunities to study adult regeneration and generate robust comparisons between development and regeneration.
Collapse
|
12
|
Phuangphong S, Tsunoda J, Wada H, Morino Y. Duplication of spiralian-specific TALE genes and evolution of the blastomere specification mechanism in the bivalve lineage. EvoDevo 2021; 12:11. [PMID: 34663437 PMCID: PMC8524836 DOI: 10.1186/s13227-021-00181-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Despite the conserved pattern of the cell-fate map among spiralians, bivalves display several modified characteristics during their early development, including early specification of the D blastomere by the cytoplasmic content, as well as the distinctive fate of the 2d blastomere. However, it is unclear what changes in gene regulatory mechanisms led to such changes in cell specification patterns. Spiralian-TALE (SPILE) genes are a group of spiralian-specific transcription factors that play a role in specifying blastomere cell fates during early development in limpets. We hypothesised that the expansion of SPILE gene repertoires influenced the evolution of the specification pattern of blastomere cell fates. Results We performed a transcriptome analysis of early development in the purplish bifurcate mussel and identified 13 SPILE genes. Phylogenetic analysis of the SPILE gene in molluscs suggested that duplications of SPILE genes occurred in the bivalve lineage. We examined the expression patterns of the SPILE gene in mussels and found that some SPILE genes were expressed in quartet-specific patterns, as observed in limpets. Furthermore, we found that several SPILE genes that had undergone gene duplication were specifically expressed in the D quadrant, C and D quadrants or the 2d blastomere. These expression patterns were distinct from the expression patterns of SPILE in their limpet counterparts. Conclusions These results suggest that, in addition to their ancestral role in quartet specification, certain SPILE genes in mussels contribute to the specification of the C and D quadrants. We suggest that the expansion of SPILE genes in the bivalve lineage contributed to the evolution of a unique cell fate specification pattern in bivalves. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00181-2.
Collapse
Affiliation(s)
- Supanat Phuangphong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Jumpei Tsunoda
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
13
|
Webster NB, Corbet M, Sur A, Meyer NP. Role of BMP signaling during early development of the annelid Capitella teleta. Dev Biol 2021; 478:183-204. [PMID: 34216573 DOI: 10.1016/j.ydbio.2021.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
The mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria. This is especially true in the morphologically diverse Spiralia (≈Lophotrochozoa). Despite several studies of D-V axis formation and neural induction in spiralians, there is no consensus for how these two processes are related, or whether BMP signaling may have played an ancestral role in either process. To determine the function of BMP signaling during early development of the spiralian annelid Capitella teleta, we incubated embryos and larvae in BMP4 protein for different amounts of time. Adding exogenous BMP protein to early-cleaving C. teleta embryos had a striking effect on formation of the brain, eyes, foregut, and ventral midline in a time-dependent manner. However, adding BMP did not block brain or VNC formation or majorly disrupt the D-V axis. We identified three key time windows of BMP activity. 1) BMP treatment around birth of the 3rd-quartet micromeres caused the loss of the eyes, radialization of the brain, and a reduction of the foregut, which we interpret as a loss of A- and C-quadrant identities with a possible trans-fate switch to a D-quadrant identity. 2) Treatment after the birth of micromere 4d induced formation of a third ectopic brain lobe, eye, and foregut lobe, which we interpret as a trans-fate switch of B-quadrant micromeres to a C-quadrant identity. 3) Continuous BMP treatment from late cleavage (4d + 12 h) through mid-larval stages resulted in a modest expansion of Ct-chrdl expression in the dorsal ectoderm and a concomitant loss of the ventral midline (neurotroch ciliary band). Loss of the ventral midline was accompanied by a collapse of the bilaterally-symmetric ventral nerve cord, although the total amount of neural tissue was not greatly affected. Our results compared with those from other annelids and molluscs suggest that BMP signaling was not ancestrally involved in delimiting neural tissue to one region of the D-V axis. However, the effects of ectopic BMP on quadrant-identity during cleavage stages may represent a non-axial organizing signal that was present in the last common ancestor of annelids and mollusks. Furthermore, in the last common ancestor of annelids, BMP signaling may have functioned in patterning ectodermal fates along the D-V axis in the trunk. Ultimately, studies on a wider range of spiralian taxa are needed to determine the role of BMP signaling during neural induction and neural patterning in the last common ancestor of this group. Ultimately, these comparisons will give us insight into the evolutionary origins of centralized nervous systems and body plans.
Collapse
Affiliation(s)
- Nicole B Webster
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA.
| | - Michele Corbet
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA
| | - Abhinav Sur
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA
| | - Néva P Meyer
- Clark University Biology Department, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|
14
|
Lanza AR, Seaver EC. Functional evidence that Activin/Nodal signaling is required for establishing the dorsal-ventral axis in the annelid Capitella teleta. Development 2020; 147:147/18/dev189373. [PMID: 32967906 PMCID: PMC7522025 DOI: 10.1242/dev.189373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
The TGF-β superfamily comprises two distinct branches: the Activin/Nodal and BMP pathways. During development, signaling by this superfamily regulates a variety of embryological processes, and it has a conserved role in patterning the dorsal-ventral body axis. Recent studies show that BMP signaling establishes the dorsal-ventral axis in some mollusks. However, previous pharmacological inhibition studies in the annelid Capitella teleta, a sister clade to the mollusks, suggests that the dorsal-ventral axis is patterned via Activin/Nodal signaling. Here, we determine the role of both the Activin/Nodal and BMP pathways as they function in Capitella axis patterning. Antisense morpholino oligonucleotides were targeted to Ct-Smad2/3 and Ct-Smad1/5/8, transcription factors specific to the Activin/Nodal and BMP pathways, respectively. Following microinjection of zygotes, resulting morphant larvae were scored for axial anomalies. We demonstrate that the Activin/Nodal pathway of the TGF-β superfamily, but not the BMP pathway, is the primary dorsal-ventral patterning signal in Capitella. These results demonstrate variation in the molecular control of axis patterning across spiralians, despite sharing a conserved cleavage program. We suggest that these findings represent an example of developmental system drift. Summary: Morpholino knockdown experiments in the annelid Capitella teleta demonstrate that the dorsal-ventral axis is primarily patterned by the Activin/Nodal pathway of the TGF-β superfamily, rather than by the BMP pathway.
Collapse
Affiliation(s)
- Alexis R Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080-8610, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080-8610, USA
| |
Collapse
|
15
|
Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands. Nat Commun 2020; 11:4171. [PMID: 32820176 PMCID: PMC7441323 DOI: 10.1038/s41467-020-17780-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian-specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla—the annelids, nemerteans, phoronids, brachiopods and rotifers—show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages. Spiralians have ciliary bands, used for locomotion and feeding, but defining molecular features of these structures are unknown. Here, the authors report a gene, Lophotrochin, that contains a protein domain only found in spiralians, and specifically expressed in diverse ciliary bands across the group, which provides a molecular signature for these structures.
Collapse
|
16
|
Lanza AR, Seaver EC. Activin/Nodal signaling mediates dorsal-ventral axis formation before third quartet formation in embryos of the annelid Chaetopterus pergamentaceus. EvoDevo 2020; 11:17. [PMID: 32788949 PMCID: PMC7418201 DOI: 10.1186/s13227-020-00161-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The clade of protostome animals known as the Spiralia (e.g., mollusks, annelids, nemerteans and polyclad flatworms) shares a highly conserved program of early development. This includes shared arrangement of cells in the early-stage embryo and fates of descendant cells into embryonic quadrants. In spiralian embryos, a single cell in the D quadrant functions as an embryonic organizer to pattern the body axes. The precise timing of the organizing signal and its cellular identity varies among spiralians. Previous experiments in the annelid Chaetopterus pergamentaceus Cuvier, 1830 demonstrated that the D quadrant possesses an organizing role in body axes formation; however, the molecular signal and exact cellular identity of the organizer were unknown. RESULTS In this study, the timing of the signal and the specific signaling pathway that mediates organizing activity in C. pergamentaceus was investigated through short exposures to chemical inhibitors during early cleavage stages. Chemical interference of the Activin/Nodal pathway but not the BMP or MAPK pathways results in larvae that lack a detectable dorsal-ventral axis. Furthermore, these data show that the duration of organizing activity encompasses the 16 cell stage and is completed before the 32 cell stage. CONCLUSIONS The timing and molecular signaling pathway of the C. pergamentaceus organizer is comparable to that of another annelid, Capitella teleta, whose organizing signal is required through the 16 cell stage and localizes to micromere 2d. Since C. pergamentaceus is an early branching annelid, these data in conjunction with functional genomic investigations in C. teleta hint that the ancestral state of annelid dorsal-ventral axis patterning involved an organizing signal that occurs one to two cell divisions earlier than the organizing signal identified in mollusks, and that the signal is mediated by Activin/Nodal signaling. Our findings have significant evolutionary implications within the Spiralia, and furthermore suggest that global body patterning mechanisms may not be as conserved across bilaterians as was previously thought.
Collapse
Affiliation(s)
- Alexis R. Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| |
Collapse
|
17
|
Abstract
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development and evolution. However, our knowledge of spiral cleavage is still in its infancy. Recent technical and conceptual advances, such as the establishment of genome editing and improved phylogenetic resolution, are paving the way for a fresher and deeper look into this fascinating early cleavage mode.
Collapse
Affiliation(s)
- José M Martín-Durán
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1, Tancha, Onna 904-0495, Japan
| |
Collapse
|
18
|
Vopalensky P, Tosches MA, Achim K, Handberg-Thorsager M, Arendt D. From spiral cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain. BMC Biol 2019; 17:81. [PMID: 31640768 PMCID: PMC6805352 DOI: 10.1186/s12915-019-0705-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND During early development, patterns of cell division-embryonic cleavage-accompany the gradual restriction of blastomeres to specific cell fates. In Spiralia, which include annelids, mollusks, and flatworms, "spiral cleavage" produces a highly stereotypic, spiral-like arrangement of blastomeres and swimming trochophore-type larvae with rotational (spiral) symmetry. However, starting at larval stages, spiralian larvae acquire elements of bilateral symmetry, before they metamorphose into fully bilateral juveniles. How this spiral-to-bilateral transition occurs is not known and is especially puzzling for the early differentiating brain and head sensory organs, which emerge directly from the spiral cleavage pattern. Here we present the developmental cell lineage of the Platynereis larval episphere. RESULTS Live-imaging recordings from the zygote to the mid-trochophore stage (~ 30 hpf) of the larval episphere of the marine annelid Platynereis dumerilii reveal highly stereotypical development and an invariant cell lineage of early differentiating cell types. The larval brain and head sensory organs develop from 11 pairs of bilateral founders, each giving rise to identical clones on the right and left body sides. Relating the origin of each bilateral founder pair back to the spiral cleavage pattern, we uncover highly divergent origins: while some founder pairs originate from corresponding cells in the spiralian lineage on each body side, others originate from non-corresponding cells, and yet others derive from a single cell within one quadrant. Integrating lineage and gene expression data for several embryonic and larval stages, we find that the conserved head patterning genes otx and six3 are expressed in bilateral founders representing divergent lineage histories and giving rise to early differentiating cholinergic neurons and head sensory organs, respectively. CONCLUSIONS We present the complete developmental cell lineage of the Platynereis larval episphere, and thus the first comprehensive account of the spiral-to-bilateral transition in a developing spiralian. The bilateral symmetry of the head emerges from pairs of bilateral founders, similar to the trunk; however, the head founders are more numerous and show striking left-right asymmetries in lineage behavior that we relate to differential gene expression.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Maria Antonietta Tosches
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Mette Handberg-Thorsager
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, 01307, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
19
|
Carrillo-Baltodano AM, Boyle MJ, Rice ME, Meyer NP. Developmental architecture of the nervous system in Themiste lageniformis (Sipuncula): New evidence from confocal laser scanning microscopy and gene expression. J Morphol 2019; 280:1628-1650. [PMID: 31487090 DOI: 10.1002/jmor.21054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022]
Abstract
Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids. However, recent studies show that some annelid taxa outside of Sedentaria and Errantia have a medullary cord, without ganglia, as adults. Importantly, neural development in these taxa is understudied and interpretation can vary widely. For example, reports in sipunculans range from no evidence of segmentation to vestigial segmentation as inferred from a few pairs of serially repeated neuronal cell bodies along the VNC. We investigated patterns of pan-neuronal, neuronal subtype, and axonal markers using immunohistochemistry and whole mount in situ hybridization (WMISH) during neural development in an indirect-developing sipunculan, Themiste lageniformis. Confocal imaging revealed two clusters of 5HT+ neurons, two pairs of FMRF+ neurons, and Tubulin+ peripheral neurites that appear to be serially positioned along the VNC, similar to other sipunculans, to other annelids, and to spiralian taxa outside of Annelida. WMISH of a synaptotagmin1 ortholog in T. lageniformis (Tl-syt1) showed expression throughout the centralized nervous system (CNS), including the VNC where it appears to correlate with mature 5HT+ and FMRF+ neurons. An ortholog of elav1 (Tl-elav1) showed expression in differentiated neurons of the CNS with continuous expression in the VNC, supporting evidence of a medullary cord, and refuting evidence of ontogenetic segmentation during formation of the nervous system. Thus, we conclude that sipunculans do not exhibit any signs of morphological segmentation during development.
Collapse
Affiliation(s)
| | - Michael J Boyle
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Mary E Rice
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Néva P Meyer
- Biology Department, Clark University, Worcester, Massachusetts
| |
Collapse
|
20
|
Klann M, Seaver EC. Functional role of pax6 during eye and nervous system development in the annelid Capitella teleta. Dev Biol 2019; 456:86-103. [PMID: 31445008 DOI: 10.1016/j.ydbio.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
The transcription factor Pax6 is an important regulator of early animal development. Loss of function mutations of pax6 in a range of animals result in a reduction or complete loss of the eye, a reduction of a subset of neurons, and defects in axon growth. There are no studies focusing on the role of pax6 during development of any lophotrochozoan representative, however, expression of pax6 in the developing eye and nervous system in a number of species suggest that pax6 plays a highly conserved role in eye and nervous system formation. We investigated the functional role of pax6 during development of the marine annelid Capitella teleta. Expression of pax6 transcripts in C. teleta larvae is similar to patterns found in other animals, with distinct subdomains in the brain and ventral nerve cord as well as in the larval and juvenile eye. To perturb pax6 function, two different splice-blocking morpholinos and a translation-blocking morpholino were used. Larvae resulting from microinjections with either splice-blocking morpholino show a reduction of the pax6 transcript. Development of both the larval eyes and the central nervous system architecture are highly disrupted following microinjection of each of the three morpholinos. The less severe phenotype observed when only the homeodomain is disrupted suggests that presence of the paired domain is sufficient for partial function of the Pax6 protein. Preliminary downstream target analysis confirms disruption in expression of some components of the retinal gene regulatory network, as well as disruption of genes involved in nervous system development. Results from this study, taken together with studies from other species, reveal an evolutionarily conserved role for pax6 in eye and neural specification and development.
Collapse
Affiliation(s)
- Marleen Klann
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA.
| |
Collapse
|
21
|
Pechenik JA, Levy M, Allen JD. Instant Ocean Versus Natural Seawater: Impacts on Aspects of Reproduction and Development in Three Marine Invertebrates. THE BIOLOGICAL BULLETIN 2019; 237:16-25. [PMID: 31441700 DOI: 10.1086/705134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Marine invertebrate larvae have often been reared in artificial rather than natural seawater, either for convenience or to avoid potentially confounding effects of unknown contaminants. This study sought to determine the impact of artificial seawater on various aspects of development for three marine invertebrate species. We examined the impact of Instant Ocean on growth, survival, and fecundity of the deposit-feeding polychaete Capitella teleta at 2 salinities: 24 and 34 ppt; the impact on survival, growth rate, and time to metamorphic competence for the slipper limpet Crepidula fornicata; and the impact on larval growth for the sea star Asterias forbesi. Juveniles of C. teleta survived better in natural seawater than in Instant Ocean at both salinities but at the higher salinity grew more quickly in Instant Ocean; fecundity was not significantly affected by the type of seawater used at either salinity. Using Instant Ocean in place of natural seawater had no pronounced impact on the survival of C. fornicata larvae or on how long it took them to become competent to metamorphose; however, larvae grew somewhat more quickly in Instant Ocean than in natural seawater for the first 4 days of development, but by day 7 they were about 4.5% larger if they had been reared in seawater. The type of seawater used affected the growth of A. forbesi larvae, with larvae growing significantly more slowly in Instant Ocean than in natural seawater, no matter how growth was measured. In conclusion, our results suggest that although Instant Ocean may be a reasonable substitute for natural seawater for work with some species, using it may affect experimental outcomes in some aspects of work with other species.
Collapse
|
22
|
Regeneration of the germline in the annelid Capitella teleta. Dev Biol 2018; 440:74-87. [DOI: 10.1016/j.ydbio.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
|
23
|
Lanza AR, Seaver EC. An organizing role for the TGF-β signaling pathway in axes formation of the annelid Capitella teleta. Dev Biol 2018; 435:26-40. [DOI: 10.1016/j.ydbio.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 01/12/2023]
|
24
|
Henry JQ, Lyons DC, Perry KJ, Osborne C. Establishment and activity of the D quadrant organizer in the marine gastropod Crepidula fornicata. Dev Biol 2017; 431:282-296. [DOI: 10.1016/j.ydbio.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
|
25
|
Carrillo-Baltodano AM, Meyer NP. Decoupling brain from nerve cord development in the annelid Capitella teleta: Insights into the evolution of nervous systems. Dev Biol 2017; 431:134-144. [DOI: 10.1016/j.ydbio.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
26
|
Expansion of TALE homeobox genes and the evolution of spiralian development. Nat Ecol Evol 2017; 1:1942-1949. [PMID: 29085062 DOI: 10.1038/s41559-017-0351-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022]
Abstract
Spiralians, including molluscs, annelids and platyhelminths, share a unique development process that includes the typical geometry of early cleavage and early segregation of cell fate in blastomeres along the animal-vegetal axis. However, the molecular mechanisms underlying this early cell fate segregation are largely unknown. Here, we report spiralian-specific expansion of the three-amino-acid loop extension (TALE) class of homeobox genes. During early development, some of these TALE genes are expressed in staggered domains along the animal-vegetal axis in the limpet Nipponacmea fuscoviridis and the polychaete Spirobranchus kraussii. Inhibition or overexpression of these genes alters the developmental fate of blastomeres, as predicted by the gene expression patterns. These results suggest that the expansion of novel TALE genes plays a critical role in the establishment of a novel cell fate segregation mechanism in spiralians.
Collapse
|
27
|
Abstract
Spiralian development is characterized by stereotypic cell geometry and spindle orientation in early cleavage stage embryos, as well as conservation of ultimate fates of descendent clones. Diverse taxa such as molluscs, annelids, flatworms, and nemerteans exhibit spiralian development, but it is a mystery how such a conserved developmental program gives rise to such diverse body plans. This review highlights examples of variation during early development among spiralians, emphasizing recent experimental studies in the annelid Capitella teleta Blake, Grassle and Eckelbarger, 2009. Intracellular fate mapping studies in C. teleta reveal that many of its cells’ fates are shared among spiralians, but it also has a novel origin for trunk mesoderm (3c and 3d micromeres). Studies have identified an inductive signal in spiralians that has “organizing activity” and that influences cell fates in the surrounding embryo. Capitella teleta also has an organizing activity; however, surprisingly, it is localized to a different cell, it signals at a different developmental stage, and likely utilizes a distinct molecular signaling pathway compared with that in molluscs. A model is presented to provide a mechanistic explanation of evolutionary changes in the cellular identity of the organizer. Detailed experimental investigations in spiralian embryos demonstrate variation in developmental features that may influence the evolution of novel forms.
Collapse
Affiliation(s)
- Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| |
Collapse
|
28
|
Lyons DC, Perry KJ, Henry JQ. Morphogenesis along the animal-vegetal axis: fates of primary quartet micromere daughters in the gastropod Crepidula fornicata. BMC Evol Biol 2017; 17:217. [PMID: 28915788 PMCID: PMC5603038 DOI: 10.1186/s12862-017-1057-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
Background The Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo. Results This study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a2-1d2 cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole. Conclusions This is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a2-1d2 cells (in addition to two cells derived from 1d12, and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, USA.
| | - Kimberly J Perry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Jonathan Q Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
29
|
Lesoway MP, Collin R, Abouheif E. Early Activation of MAPK and Apoptosis in Nutritive Embryos of Calyptraeid Gastropods. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:449-461. [DOI: 10.1002/jez.b.22745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Maryna P. Lesoway
- Department of Biology McGill University Montreal Quebec Canada
- Smithsonian Tropical Research Institute Balboa Ancón Panamá
| | - Rachel Collin
- Smithsonian Tropical Research Institute Balboa Ancón Panamá
| | - Ehab Abouheif
- Department of Biology McGill University Montreal Quebec Canada
| |
Collapse
|
30
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
31
|
Jones C, Stankowich T, Pernet B. Allocation of cytoplasm to macromeres in embryos of annelids and molluscs is positively correlated with egg size. Evol Dev 2017; 18:156-70. [PMID: 27161947 DOI: 10.1111/ede.12189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evolutionary transitions between feeding and nonfeeding larval development have occurred many times in marine invertebrates, but the developmental changes underlying these frequent and ecologically important transitions are poorly known, especially in spiralians. We use phylogenetic comparative methods to test the hypothesis that evolutionary changes in egg size and larval nutritional mode are associated with parallel changes in allocation of cytoplasm to macromere cell lineages in diverse annelids and molluscs. Our analyses show that embryos of species with large eggs and nonfeeding larvae tend to allocate relatively more embryonic cytoplasm to macromeres at 3rd cleavage than do embryos of species with small eggs and feeding larvae. The association between egg size and allocation to macromeres in these spiralians may be driven by constraints associated with mitotic spindle positioning and size, or may be a result of "adaptation in cleavage" to maintain rapid cell cycles in micromeres, position yolk in cell lineages where it can be most efficiently used, or adjust allocation to ectoderm to accommodate changes in embryonic surface area/volume ratio.
Collapse
Affiliation(s)
- Caleb Jones
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| | - Theodore Stankowich
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| | - Bruno Pernet
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| |
Collapse
|
32
|
Boilly B, Boilly‐Marer Y, Bely AE. Regulation of dorso-ventral polarity by the nerve cord during annelid regeneration: A review of experimental evidence. REGENERATION (OXFORD, ENGLAND) 2017; 4:54-68. [PMID: 28616245 PMCID: PMC5469730 DOI: 10.1002/reg2.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
An important goal for understanding regeneration is determining how polarity is conferred to the regenerate. Here we review findings in two groups of polychaete annelids that implicate the ventral nerve cord in assigning dorso-ventral polarity, and specifically ventral identity, to the regenerate. In nereids, surgical manipulations indicate that parapodia develop where dorsal and ventral body wall territories contact. Without a nerve cord at the wound site, the regenerate differentiates no evident polarity (with no parapodia) and only dorsal identity, while with two nerve cords the regenerate develops a twinned dorso-ventral axis (with four parapodia per segment instead of the normal two). In sabellids, a striking natural dorso-ventral inversion in parapodial morphology occurs along the body axis and this inversion is morphologically correlated with the position of the nerve cord. Parapodial inversion also occurs in segments in which the nerve cord has been removed, even without any segment amputation. Together, these data strongly support a role for the nerve cord in annelid dorso-ventral pattern regulation, with the nerve cord conferring ventral identity.
Collapse
Affiliation(s)
- Bénoni Boilly
- UFR de BiologieUniversité de Lille59655 Villeneuve d'AscqFrance
| | | | | |
Collapse
|
33
|
Martín-Durán JM, Passamaneck YJ, Martindale MQ, Hejnol A. The developmental basis for the recurrent evolution of deuterostomy and protostomy. Nat Ecol Evol 2016; 1:5. [PMID: 28812551 DOI: 10.1038/s41559-016-0005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
The mouth opening of bilaterian animals develops either separate from (deuterostomy) or connected to (protostomy) the embryonic blastopore, the site of endomesoderm internalization. Although this distinction preluded the classification of bilaterian animals in Deuterostomia and Protostomia, and has influenced major scenarios of bilaterian evolution, the developmental basis for the appearance of these different embryonic patterns remains unclear. To identify the underlying mechanisms, we compared the development of two brachiopod species that show deuterostomy (Novocrania anomala) and protostomy (Terebratalia transversa), respectively. We show that the differential activity of Wnt signalling, together with the timing and location of mesoderm formation, correlate with the differential behaviour and fate of the blastopore. We further assess these principles in the spiral-cleaving group Annelida, and propose that the developmental relationships of mouth and blastoporal openings are secondary by-products of variations in axial and mesoderm development. This challenges the previous evolutionary emphasis on extant blastoporal behaviours to explain the origin and diversification of bilaterian animals.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5006, Norway
| | - Yale J Passamaneck
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, Florida 32080, USA.,Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, Florida 32080, USA.,Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5006, Norway
| |
Collapse
|
34
|
Kerbl A, Martín-Durán JM, Worsaae K, Hejnol A. Molecular regionalization in the compact brain of the meiofaunal annelid Dinophilus gyrociliatus (Dinophilidae). EvoDevo 2016; 7:20. [PMID: 27583125 PMCID: PMC5006589 DOI: 10.1186/s13227-016-0058-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Annelida is a morphologically diverse animal group that exhibits a remarkable variety in nervous system architecture (e.g., number and location of longitudinal cords, architecture of the brain). Despite this heterogeneity of neural arrangements, the molecular profiles related to central nervous system patterning seem to be conserved even between distantly related annelids. In particular, comparative molecular studies on brain and anterior neural region patterning genes have focused so far mainly on indirect-developing macrofaunal taxa. Therefore, analyses on microscopic, direct-developing annelids are important to attain a general picture of the evolutionary events underlying the vast diversity of annelid neuroanatomy. RESULTS We have analyzed the expression domains of 11 evolutionarily conserved genes involved in brain and anterior neural patterning in adult females of the direct-developing meiofaunal annelid Dinophilus gyrociliatus. The small, compact brain shows expression of dimmed, foxg, goosecoid, homeobrain, nk2.1, orthodenticle, orthopedia, pax6, six3/6 and synaptotagmin-1. Although most of the studied markers localize to specific brain areas, the genes six3/6 and synaptotagmin-1 are expressed in nearly all perikarya of the brain. All genes except for goosecoid, pax6 and nk2.2 overlap in the anterior brain region, while the respective expression domains are more separated in the posterior brain. CONCLUSIONS Our findings reveal that the expression patterns of the genes foxg, orthodenticle, orthopedia and six3/6 correlate with those described in Platynereis dumerilii larvae, and homeobrain, nk2.1, orthodenticle and synaptotagmin-1 resemble the pattern of late larvae of Capitella teleta. Although data on other annelids are limited, molecular similarities between adult Dinophilus and larval Platynereis and Capitella suggest an overall conservation of molecular mechanisms patterning the anterior neural regions, independent from developmental and ecological strategies, or of the size and configuration of the nervous system.
Collapse
Affiliation(s)
- Alexandra Kerbl
- Marine Biology Section, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate, 55, 5006 Bergen, Norway
| | - Katrine Worsaae
- Marine Biology Section, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate, 55, 5006 Bergen, Norway
| |
Collapse
|
35
|
Özpolat BD, Bely AE. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Curr Opin Genet Dev 2016; 40:144-153. [PMID: 27505269 DOI: 10.1016/j.gde.2016.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
Abstract
Studies of annelid regeneration have greatly increased in frequency in recent years, providing new insights into the developmental basis and evolution of regeneration. In this review, we summarize recent findings related to regeneration in annelids, focusing on molecular and developmental studies of epimorphic (blastema-based) regeneration, morphallactic (tissue-remodeling based) regeneration, and development and regeneration of putative stem cells of the posterior growth zone and germline. Regeneration is being investigated in a broad range of annelids spanning the phylum, and comparing findings among species reveals both widely conserved features that may be ancestral for the phylum as well as features that are variable across the group.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - Alexandra E Bely
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
36
|
Dpp/BMP2-4 Mediates Signaling from the D-Quadrant Organizer in a Spiralian Embryo. Curr Biol 2016; 26:2003-2010. [DOI: 10.1016/j.cub.2016.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
|
37
|
Seaver EC. Annelid models I: Capitella teleta. Curr Opin Genet Dev 2016; 39:35-41. [DOI: 10.1016/j.gde.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
|
38
|
Kozin VV, Kostyuchenko RP. Evolutionary conservation and variability of the mesoderm development in spiralia: A peculiar pattern of nereid polychaetes. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016030079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Kraus Y, Aman A, Technau U, Genikhovich G. Pre-bilaterian origin of the blastoporal axial organizer. Nat Commun 2016; 7:11694. [PMID: 27229764 PMCID: PMC4895019 DOI: 10.1038/ncomms11694] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/12/2016] [Indexed: 01/07/2023] Open
Abstract
The startling capacity of the amphibian Spemann organizer to induce naïve cells to form a Siamese twin embryo with a second set of body axes is one of the hallmarks of developmental biology. However, the axis-inducing potential of the blastopore-associated tissue is commonly regarded as a chordate feature. Here we show that the blastopore lip of a non-bilaterian metazoan, the anthozoan cnidarian Nematostella vectensis, possesses the same capacity and uses the same molecular mechanism for inducing extra axes as chordates: Wnt/β-catenin signaling. We also demonstrate that the establishment of the secondary, directive axis in Nematostella by BMP signaling is sensitive to an initial Wnt signal, but once established the directive axis becomes Wnt-independent. By combining molecular analysis with experimental embryology, we provide evidence that the emergence of the Wnt/β-catenin driven blastopore-associated axial organizer predated the cnidarian-bilaterian split over 600 million years ago.
Collapse
Affiliation(s)
- Yulia Kraus
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, Leninskiye gory 1/12, Moscow 119234, Russia
| | - Andy Aman
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| | - Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| |
Collapse
|
40
|
Kozin VV, Filimonova DA, Kupriashova EE, Kostyuchenko RP. Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling. Mech Dev 2016; 140:1-11. [PMID: 27000638 DOI: 10.1016/j.mod.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Mesoderm represents the evolutionary youngest germ layer and forms numerous novel tissues in bilaterian animals. Despite the established conservation of the gene regulatory networks that drive mesoderm differentiation (e.g. myogenesis), mechanisms of mesoderm specification are highly variable in distant model species. Thus, broader phylogenetic sampling is required to reveal common features of mesoderm formation across bilaterians. Here we focus on a representative of Spiralia, the marine annelid Alitta virens, whose mesoderm development is still poorly investigated on the molecular level. We characterize three novel early mesodermal markers for A. virens - Twist, Mox, and Evx - which are differentially expressed within the mesodermal lineages. The Twist mRNA is ubiquitously distributed in the fertilized egg and exhibits specific expression in endomesodermal- and ectomesodermal-founder cells at gastrulation. Twist is expressed around the blastopore and later in a segmental metameric pattern. We consider this expression to be ancestral, and in support of the enterocoelic hypothesis of mesoderm evolution. We also revealed an early pattern of the MAPK activation in A. virens that is different from the previously reported pattern in spiralians. Inhibition of the MAPK pathway by U0126 disrupts the metameric Twist and Mox expression, indicating an early requirement of the MAPK cascade for proper morphogenesis of endomesodermal tissues.
Collapse
Affiliation(s)
- Vitaly V Kozin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| | - Daria A Filimonova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina E Kupriashova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| |
Collapse
|
41
|
Yamaguchi E, Dannenberg LC, Amiel AR, Seaver EC. Regulative capacity for eye formation by first quartet micromeres of the polychaete Capitella teleta. Dev Biol 2016; 410:119-30. [DOI: 10.1016/j.ydbio.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 01/27/2023]
|
42
|
Meyer NP, Carrillo-Baltodano A, Moore RE, Seaver EC. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta. Front Zool 2015; 12:15. [PMID: 26167198 PMCID: PMC4498530 DOI: 10.1186/s12983-015-0108-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022] Open
Abstract
Background Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. Results We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25–53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95–8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Conclusions Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development. Electronic supplementary material The online version of this article (doi:10.1186/s12983-015-0108-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | | | - Richard E Moore
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-west Road, Honolulu, HI 96822 USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080 USA
| |
Collapse
|
43
|
Organizer regions in marine colonial hydrozoans. ZOOLOGY 2015; 118:89-101. [DOI: 10.1016/j.zool.2014.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/20/2014] [Accepted: 12/21/2014] [Indexed: 01/08/2023]
|
44
|
Pernet B, Harris LH, Schroeder P. Development and larval feeding in the capitellid annelid Notomastus cf. tenuis. THE BIOLOGICAL BULLETIN 2015; 228:25-38. [PMID: 25745098 DOI: 10.1086/bblv228n1p25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Making inferences about the evolution of larval nutritional mode and feeding mechanisms in annelids requires data on the form and function of the larvae, but such data are lacking for many taxa. Though some capitellid annelids are known or suspected to have planktotrophic larvae, these larvae have not previously been described in sufficient detail to understand how they feed. Here we describe embryos and larvae of the capitellid Notomastus cf. tenuis from San Juan Island, Washington State. Fertilized oocytes average about 58 μm in equivalent spherical diameter. Early embryos undergo spiral cleavage and develop into larvae that feed for about 5 weeks before metamorphosis. Larvae of N. cf. tenuis capture food particles between prototrochal and metatrochal ciliary bands and transport them to the mouth in an intermediate food groove; this arrangement is typical of "opposed band" larval feeding systems. Surprisingly, however, larvae of N. cf. tenuis appeared to have only simple cilia in the prototrochal ciliary band; among planktotrophic larvae of annelids, simple cilia in the prototroch were previously known only from members of Oweniidae. The anteriormost tier of prototrochal cilia in N. cf. tenuis appears to be non-motile; its role in swimming or particle capture is unclear. Like some planktotrophic larvae in the closely related Echiuridae and Opheliidae, larvae of N. cf. tenuis can capture relatively large particles (up to at least 45 μm in diameter), suggesting that they may use an alternative particle capture mechanism in addition to opposed bands of cilia.
Collapse
Affiliation(s)
- Bruno Pernet
- Department of Biological Sciences, California State University Long Beach, Long Beach, California 90840;
| | - Leslie H Harris
- Natural History Museum of Los Angeles County, Los Angeles, California 90007; and
| | - Paul Schroeder
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
45
|
Burke RD, Moller DJ, Krupke OA, Taylor VJ. Sea urchin neural development and the metazoan paradigm of neurogenesis. Genesis 2014; 52:208-21. [PMID: 25368883 DOI: 10.1002/dvg.22750] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Summary:Urchin embryos continue to prove useful as a means of studying embryonic signaling and gene regulatory networks, which together control early development. Recent progress in understanding the molecular mechanisms underlying the patterning of ectoderm has renewed interest in urchin neurogenesis. We have employed an emerging model of neurogenesis that appears to be broadly shared by metazoans as a framework for this review. We use the model to provide context and summarize what is known about neurogenesis in urchin embryos. We review morphological features of the differentiation phase of neurogenesis and summarize current understanding of neural specification and regulation of proneural networks. Delta-Notch signaling is a common feature of metazoan neurogenesis that produces committed progenitors and it appears to be a critical phase of neurogenesis in urchin embryos. Descriptions of the differentiation phase of neurogenesis indicate a stereotypic sequence of neural differentiation and patterns of axonal growth. Features of neural differentiation are consistent with localized signals guiding growth cones with trophic, adhesive, and tropic cues. Urchins are a facile, postgenomic model with the potential of revealing many shared and derived features of deuterostome neurogenesis.
Collapse
Affiliation(s)
- Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC Canada
| | | | | | | |
Collapse
|
46
|
Pfeifer K, Schaub C, Domsch K, Dorresteijn A, Wolfstetter G. Maternal inheritance of twist and analysis of MAPK activation in embryos of the polychaete annelid Platynereis dumerilii. PLoS One 2014; 9:e96702. [PMID: 24792484 PMCID: PMC4008618 DOI: 10.1371/journal.pone.0096702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to identify molecular mechanisms involved in the specification of the 4d (mesentoblast) lineage in Platynereis dumerilii. We employ RT-PCR and in situ hybridization against the Platynereis dumerilii twist homolog (Pdu-twist) to reveal mesodermal specification within this lineage. We show that Pdu-twist mRNA is already maternally distributed. After fertilization, ooplasmatic segregation leads to relocation of Pdu-twist transcripts into the somatoblast (2d) lineage and 4d, indicating that the maternal component of Pdu-twist might be an important prerequisite for further mesoderm specification but does not represent a defining characteristic of the mesentoblast. However, after the primordial germ cells have separated from the 4d lineage, zygotic transcription of Pdu-twist is exclusively observed in the myogenic progenitors, suggesting that mesodermal specification occurs after the 4d stage. Previous studies on spiral cleaving embryos revealed a spatio-temporal correlation between the 4d lineage and the activity of an embryonic organizer that is capable to induce the developmental fates of certain micromeres. This has raised the question if specification of the 4d lineage could be connected to the organizer activity. Therefore, we aimed to reveal the existence of such a proposed conserved organizer in Platynereis employing antibody staining against dpERK. In contrast to former observations in other spiralian embryos, activation of MAPK signaling during 2d and 4d formation cannot be detected which questions the existence of a conserved connection between organizer function and specification of the 4d lineage. However, our experiments unveil robust MAPK activation in the prospective nephroblasts as well as in the macromeres and some micromeres at the blastopore in gastrulating embryos. Inhibition of MAPK activation leads to larvae with a shortened body axis, defects in trunk muscle spreading and improper nervous system condensation, indicating a critical function for MAPK signaling for the reorganization of embryonic tissues during the gastrulation process.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Christoph Schaub
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Katrin Domsch
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Adriaan Dorresteijn
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
- * E-mail:
| |
Collapse
|
47
|
WEISBLAT DAVIDA, KUO DIANHAN. Developmental biology of the leech Helobdella. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 58:429-43. [PMID: 25690960 PMCID: PMC4416490 DOI: 10.1387/ijdb.140132dw] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glossiphoniid leeches of the genus Helobdella provide experimentally tractable models for studies in evolutionary developmental biology (Evo-Devo). Here, after a brief rationale, we will summarize our current understanding of Helobdella development and highlight the near term prospects for future investigations, with respect to the issues of: D quadrant specification; the transition from spiral to bilaterally symmetric cleavage; segmentation, and the connections between segmental and non-segmental tissues; modifications of BMP signaling in dorsoventral patterning and the O-P equivalence group; germ line specification and genome rearrangements. The goal of this contribution is to serve as a summary of, and guide to, published work.
Collapse
Affiliation(s)
- DAVID A. WEISBLAT
- Dept. of Molecular and Cell Biology, University of California, Berkeley, USA
| | - DIAN-HAN KUO
- Dept. of Life Science, National Taiwan University, Taiwan
| |
Collapse
|
48
|
Schmerer MW, Null RW, Shankland M. Developmental transition to bilaterally symmetric cell divisions is regulated by Pax-mediated transcription in embryos of the leech Helobdella austinensis. Dev Biol 2013; 382:149-59. [PMID: 23891819 DOI: 10.1016/j.ydbio.2013.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/08/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
The leech embryo develops by spiral cleavage, and establishes the symmetry properties of its adult body plan through the bilaterally symmetric divisions of mesodermal proteloblast DM″ and ectodermal proteloblast DNOPQ‴. We here show that transcriptional inhibitors α-amanitin and actinomycin D specifically disrupt the symmetry and orientation of these two proteloblast cell divisions while having no apparent effect on the timing or geometry of other divisions. Transcriptional inhibition had a similar effect on both proteloblasts, i.e. cytokinesis was highly asymmetric and the cleavage plane roughly orthogonal to that seen during normal development. These findings suggest that zygotic gene product(s) are required, either directly or indirectly, for the correct placement of the proteloblast cleavage furrow. The same phenotypes were also observed following in vivo expression of dominant-negative Pax gene constructs. These dominant-negative phenotypes depended on protein/DNA interaction, and could be rescued by coexpression of full length Pax proteins. However, symmetric cleavage of the mesodermal proteloblast was rescued by full length constructs of either Hau-Paxβ1 or Hau-Pax2/5/8, while only Hau-Paxβ1 rescued the symmetry of ectodermal cleavage. We conclude that both proteloblasts need Pax-mediated transcription to adopt their normally symmetric cleavage patterns, but differ in terms of the specific Pax proteins required. The implication of these findings for the evolution of spiral cleavage is discussed.
Collapse
Affiliation(s)
- Matthew W Schmerer
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|