1
|
Xie H, He P, Sheng Q, Ma W, Gong Y, Zhang Y, Qiu L. Highlighting cardiovascular manifestations of kleefstra syndrome: literature review and clinical insights. BMC Cardiovasc Disord 2025; 25:175. [PMID: 40075254 PMCID: PMC11899436 DOI: 10.1186/s12872-025-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Kleefstra syndrome (KLEFS1) is a rare genetic disorder primarily caused by the deletion of the chromosome 9q34.3 genomic segment or pathogenic mutations in the euchromatin histone methyltransferase 1 (EHMT1) gene. It is characterized by intellectual disability or impairment, childhood hypotonia, and distinct facial features. Notably, cardiovascular defects especially congenital heart diseases also represent a major feature of KLEFS1. While the neuropsychiatric aspects of KLEFS1 have been extensively documented and researched, the cardiovascular manifestations have not received adequate attention. The majority of KLEFS1 patients often present with a spectrum of cardiovascular defects, including abnormal cardiac structure, arrhythmias, valve abnormalities, cardiomyopathy, and coronary artery abnormalities. Here, we systematically searched and reviewed previously published articles and case reports related to KLEFS1, conducting a comprehensive analysis of the existing literature to highlight the cardiovascular manifestations of this genetic disorder and explore the potential correlations between the cardiac phenotype and KLEFS1. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Haotai Xie
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Pengkang He
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China
| | - Qinhui Sheng
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China
| | - Wei Ma
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China
| | - Yanjun Gong
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China
| | - Lin Qiu
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
2
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
3
|
Bouman A, Geelen JM, Kummeling J, Schenck A, van der Zwan YG, Klein WM, Kleefstra T. Growth, body composition, and endocrine-metabolic profiles of individuals with Kleefstra syndrome provide directions for clinical management and translational studies. Am J Med Genet A 2024; 194:e63472. [PMID: 38155610 PMCID: PMC7617136 DOI: 10.1002/ajmg.a.63472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
Mendelian neurodevelopmental disorders caused by variants in genes encoding chromatin modification can be categorized as Mendelian disorders of the epigenetic machinery (MDEMs). These disorders have significant overlap in molecular pathways and phenotypes including intellectual disability, short stature, and obesity. Among the MDEMs is Kleefstra syndrome (KLFS), which is caused by haploinsufficiency of EHMT1. Preclinical studies have identified metabolic dysregulation and obesity in KLFS models, but proper clinical translation lacks. In this study, we aim to delineate growth, body composition, and endocrine-metabolic characteristics in a total of 62 individuals with KLFS. Our results revealed a high prevalence of childhood-onset overweight/obesity (60%; 28/47) with disproportionately high body fat percentage, which aligns perfectly with previous preclinical studies. Short stature was common (33%), likely due to advanced skeletal maturation. Endocrine-metabolic investigations showed thyroid dysregulation (22%; 9/41), elevated triglycerides, and decreased blood ammonia levels. Moreover, hand radiographs identified decreased bone mineralization (57%; 8/14) and negative ulnar variance (71%; 10/14). Our findings indicate a high (cardio)metabolic risk in KLFS. Therefore, we recommend monitoring of weight and endocrine-metabolic profile. Supporting a healthy lifestyle and screening of bone mineralization is advised. Our comprehensive results support translational research and contribute to a better understanding of MDEM-associated phenotypes.
Collapse
Affiliation(s)
- Arianne Bouman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joyce M. Geelen
- Department of Pediatrics, Developmental and Genetic Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Kummeling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yvonne G. van der Zwan
- Department of Pediatrics, Pediatric Endocrinology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn M. Klein
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| |
Collapse
|
4
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
6
|
Alonso A, Samanta A, van der Meij J, van den Brand L, Negwer M, Navarro Lobato I, Genzel L. Defensive and offensive behaviours in a Kleefstra syndrome mouse model. Anim Cogn 2023; 26:1131-1140. [PMID: 36877418 PMCID: PMC10345049 DOI: 10.1007/s10071-023-01757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
Kleefstra syndrome in humans is characterized by a general delay in development, intellectual disability and autistic features. The mouse model of this disease (Ehmt1±) expresses anxiety, autistic-like traits, and aberrant social interactions with non-cagemates. To investigate how Ehmt1± mice behave with unfamiliar conspecifics, we allowed adult, male animals to freely interact for 10 min in a neutral, novel environment within a host-visitor setting. In trials where the Ehmt1± mice were hosts, there were defensive and offensive behaviors. Our key finding was that Ehmt1± mice displayed defensive postures, attacking and biting; in contrast, wild-type (WT) interacting with other WT did not enact such behaviors. Further, if there was a fight between an Ehmt1± and a WT mouse, the Ehmt1± animal was the most aggressive and always initiated these behaviors.
Collapse
Affiliation(s)
- Alejandra Alonso
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Anumita Samanta
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Jacqueline van der Meij
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Liz van den Brand
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Moritz Negwer
- Donders Institute for Brain, Cognition and Behaviour, RadboudUMC, Nijmegen, The Netherlands
| | - Irene Navarro Lobato
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Lisa Genzel
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Type XXII Collagen Complements Fibrillar Collagens in the Serological Assessment of Tumor Fibrosis and the Outcome in Pancreatic Cancer. Cells 2022; 11:cells11233763. [PMID: 36497023 PMCID: PMC9738409 DOI: 10.3390/cells11233763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Circulating fragments of type III collagen, measured by PRO-C3, has shown promising results as a tumor fibrosis biomarker. However, the fibrotic tumor microenvironment consists of many other collagens with diverse functions and unexplored biomarker potential. One example hereof is type XXII collagen (COL22). In this study, we investigated the biomarker potential of COL22 by measuring this in serum. An ELISA, named PRO-C22, was developed and measured in two serum cohorts consisting of patients with various solid tumors (n = 220) and healthy subjects (n = 33) (Cohort 1), and patients with pancreatic ductal adenocarcinoma (PDAC) (n = 34), and healthy subjects (n = 20) (Cohort 2). In Cohort 1, PRO-C22 was elevated in the serum from patients with solid tumors, compared to healthy subjects (p < 0.01 to p < 0.0001), and the diagnostic accuracy (AUROC) ranged from 0.87 to 0.98, p < 0.0001. In Cohort 2, the high levels of PRO-C22, in patients with PDAC, were predictive of a worse overall survival (HR = 4.52, 95% CI 1.90−10.7, p = 0.0006) and this remained significant after adjusting for PRO-C3 (HR = 4.27, 95% CI 1.24−10.4, p = 0.0013). In conclusion, PRO-C22 has diagnostic biomarker potential in various solid tumor types and prognostic biomarker potential in PDAC. Furthermore, PRO-C22 complemented PRO-C3 in predicting mortality, suggesting an additive prognostic value when quantifying different collagens.
Collapse
|
8
|
Alsaqati M, Davis BA, Wood J, Jones MM, Jones L, Westwood A, Petter O, Isles AR, Linden D, Van den Bree M, Owen M, Hall J, Harwood AJ. NRSF/REST lies at the intersection between epigenetic regulation, miRNA-mediated gene control and neurodevelopmental pathways associated with Intellectual disability (ID) and Schizophrenia. Transl Psychiatry 2022; 12:438. [PMID: 36216811 PMCID: PMC9551101 DOI: 10.1038/s41398-022-02199-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic evidence indicates disrupted epigenetic regulation as a major risk factor for psychiatric disorders, but the molecular mechanisms that drive this association remain to be determined. EHMT1 is an epigenetic repressor that is causal for Kleefstra Syndrome (KS), a genetic disorder linked with neurodevelopmental disorders and associated with schizophrenia. Here, we show that reduced EHMT1 activity decreases NRSF/REST protein leading to abnormal neuronal gene expression and progression of neurodevelopment in human iPSC. We further show that EHMT1 regulates NRSF/REST indirectly via repression of miRNA and leads to aberrant neuronal gene regulation and neurodevelopment timing. Expression of a NRSF/REST mRNA that lacks the miRNA-binding sites restores neuronal gene regulation to EHMT1 deficient cells. Significantly, the EHMT1-regulated miRNA gene set not only controls NRSF/REST but is enriched for association for Intellectual Disability (ID) and schizophrenia. This reveals a broad molecular interaction between H3K9 demethylation, NSRF/REST regulation and risk for ID and Schizophrenia.
Collapse
Affiliation(s)
- Mouhamed Alsaqati
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK.,School of Pharmacy, KGVI Building, Newcastle University, Newcastle Upon Tyne, NE1 4LF, UK
| | - Brittany A Davis
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Lieber Institute for Brain Development, Johns Hopkins Medical Campus & Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie Wood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Megan M Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Lora Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Aishah Westwood
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Anthony R Isles
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - David Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Marianne Van den Bree
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Michael Owen
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK. .,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
9
|
Di Fede E, Grazioli P, Lettieri A, Parodi C, Castiglioni S, Taci E, Colombo EA, Ancona S, Priori A, Gervasini C, Massa V. Epigenetic disorders: Lessons from the animals–animal models in chromatinopathies. Front Cell Dev Biol 2022; 10:979512. [PMID: 36225316 PMCID: PMC9548571 DOI: 10.3389/fcell.2022.979512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatinopathies are defined as genetic disorders caused by mutations in genes coding for protein involved in the chromatin state balance. So far 82 human conditions have been described belonging to this group of congenital disorders, sharing some molecular features and clinical signs. For almost all of these conditions, no specific treatment is available. For better understanding the molecular cascade caused by chromatin imbalance and for envisaging possible therapeutic strategies it is fundamental to combine clinical and basic research studies. To this end, animal modelling systems represent an invaluable tool to study chromatinopathies. In this review, we focused on available data in the literature of animal models mimicking the human genetic conditions. Importantly, affected organs and abnormalities are shared in the different animal models and most of these abnormalities are reported as clinical manifestation, underlying the parallelism between clinics and translational research.
Collapse
Affiliation(s)
- Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Valentina Massa,
| |
Collapse
|
10
|
Raghuraman R, Manakkadan A, Richter-Levin G, Sajikumar S. Inhibitory Metaplasticity in Juvenile Stressed Rats Restores Associative Memory in Adulthood by Regulating Epigenetic Complex G9a/GLP. Int J Neuropsychopharmacol 2022; 25:576-589. [PMID: 35089327 PMCID: PMC9352179 DOI: 10.1093/ijnp/pyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Exposure to juvenile stress was found to have long-term effects on the plasticity and quality of associative memory in adulthood, but the underlying mechanisms are still poorly understood. METHODS Three- to four week-old male Wistar rats were subjected to a 3-day juvenile stress paradigm. Their electrophysiological correlates of memory using the adult hippocampal slice were inspected to detect alterations in long-term potentiation and synaptic tagging and capture model of associativity. These cellular alterations were tied in with the behavioral outcome by subjecting the rats to a step-down inhibitory avoidance paradigm to measure strength in their memory. Given the role of epigenetic response in altering plasticity as a repercussion of juvenile stress, we aimed to chart out the possible epigenetic marker and its regulation in the long-term memory mechanisms using quantitative reverse transcription polymerase chain reaction. RESULTS We demonstrate that even long after the elimination of actual stressors, an inhibitory metaplastic state is evident, which promotes synaptic competition over synaptic cooperation and decline in latency of associative memory in the behavioral paradigm despite the exposure to novelty. Mechanistically, juvenile stress led to a heightened expression of the epigenetic marker G9a/GLP complex, which is thus far ascribed to transcriptional silencing and goal-directed behavior. CONCLUSIONS The blockade of the G9a/GLP complex was found to alleviate deficits in long-term plasticity and associative memory during the adulthood of animals exposed to juvenile stress. Our data provide insights on the long-term effects of juvenile stress that involve epigenetic mechanisms, which directly impact long-term plasticity, synaptic tagging and capture, and associative memory.
Collapse
Affiliation(s)
- Radha Raghuraman
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Anoop Manakkadan
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Gal Richter-Levin
- Sagol department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| |
Collapse
|
11
|
Yan S, Lu J, Jiao K. Epigenetic Regulation of Cardiac Neural Crest Cells. Front Cell Dev Biol 2021; 9:678954. [PMID: 33968946 PMCID: PMC8097001 DOI: 10.3389/fcell.2021.678954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
The cardiac neural crest cells (cNCCs) is a transient, migratory cell population that contribute to the formation of major arteries and the septa and valves of the heart. Abnormal development of cNCCs leads to a spectrum of congenital heart defects that mainly affect the outflow region of the hearts. Signaling molecules and transcription factors are the best studied regulatory events controlling cNCC development. In recent years, however, accumulated evidence supports that epigenetic regulation also plays an important role in cNCC development. Here, we summarize the functions of epigenetic regulators during cNCC development as well as cNCC related cardiovascular defects. These factors include ATP-dependent chromatin remodeling factors, histone modifiers and DNA methylation modulators. In many cases, mutations in the genes encoding these factors are known to cause inborn heart diseases. A better understanding of epigenetic regulators, their activities and their roles during heart development will ultimately contribute to the development of new clinical applications for patients with congenital heart disease.
Collapse
Affiliation(s)
| | | | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Parodi C, Di Fede E, Peron A, Viganò I, Grazioli P, Castiglioni S, Finnell RH, Gervasini C, Vignoli A, Massa V. Chromatin Imbalance as the Vertex Between Fetal Valproate Syndrome and Chromatinopathies. Front Cell Dev Biol 2021; 9:654467. [PMID: 33959609 PMCID: PMC8093873 DOI: 10.3389/fcell.2021.654467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal exposure to valproate (VPA), an antiepileptic drug, has been associated with fetal valproate spectrum disorders (FVSD), a clinical condition including congenital malformations, developmental delay, intellectual disability as well as autism spectrum disorder, together with a distinctive facial appearance. VPA is a known inhibitor of histone deacetylase which regulates the chromatin state. Interestingly, perturbations of this epigenetic balance are associated with chromatinopathies, a heterogeneous group of Mendelian disorders arising from mutations in components of the epigenetic machinery. Patients affected from these disorders display a plethora of clinical signs, mainly neurological deficits and intellectual disability, together with distinctive craniofacial dysmorphisms. Remarkably, critically examining the phenotype of FVSD and chromatinopathies, they shared several overlapping features that can be observed despite the different etiologies of these disorders, suggesting the possible existence of a common perturbed mechanism(s) during embryonic development.
Collapse
Affiliation(s)
- Chiara Parodi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Peron
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilaria Viganò
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Cristina Gervasini
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
14
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Hou QQ, Xiao Q, Sun XY, Ju XC, Luo ZG. TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a. SCIENCE ADVANCES 2021; 7:7/3/eaba8053. [PMID: 33523893 PMCID: PMC7810367 DOI: 10.1126/sciadv.aba8053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/23/2020] [Indexed: 05/16/2023]
Abstract
Genomic changes during human linage evolution contribute to the expansion of the cerebral cortex to allow more advanced thought processes. The hominoid-specific gene TBC1D3 displays robust capacity of promoting the generation and proliferation of neural progenitors (NPs), which are thought to contribute to cortical expansion. However, the underlying mechanisms remain unclear. Here, we found that TBC1D3 interacts with G9a, a euchromatic histone lysine N-methyltransferase, which mediates dimethylation of histone 3 in lysine 9 (H3K9me2), a suppressive mark for gene expression. TBC1D3 displayed an inhibitory role in G9a's histone methyltransferase activity. Treatment with G9a inhibitor markedly increased NP proliferation and promoted human cerebral organoid expansion, mimicking the effects caused by TBC1D3 up-regulation. By contrast, blockade of TBC1D3/G9a interaction to disinhibit G9a caused up-regulation of H3K9me2, suppressed NP proliferation, and impaired organoid development. Together, this study has demonstrated a mechanism underlying the role of a hominoid-specific gene in promoting cortical expansion.
Collapse
Affiliation(s)
- Qiong-Qiong Hou
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Qi Xiao
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China.
| |
Collapse
|
16
|
Negwer M, Piera K, Hesen R, Lütje L, Aarts L, Schubert D, Nadif Kasri N. EHMT1 regulates Parvalbumin-positive interneuron development and GABAergic input in sensory cortical areas. Brain Struct Funct 2020; 225:2701-2716. [PMID: 32975655 PMCID: PMC7674571 DOI: 10.1007/s00429-020-02149-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Mutations in the Euchromatic Histone Methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a rare form of intellectual disability (ID) with strong autistic traits and sensory processing deficits. Proper development of inhibitory interneurons is crucial for sensory function. Here we report a timeline of Parvalbumin-positive (PV+) interneuron development in the three most important sensory cortical areas in the Ehmt1+/- mouse. We find a hitherto unreported delay of PV+ neuron maturation early in sensory development, with layer- and region-specific variability later in development. The delayed PV+ maturation is also reflected in a delayed maturation of GABAergic transmission in Ehmt1+/- auditory cortex, where we find a reduced GABA release probability specifically in putative PV+ synapses. Together with earlier reports of excitatory impairments in Ehmt1+/- neurons, we propose a shift in excitatory-inhibitory balance towards overexcitability in Ehmt1+/- sensory cortices as a consequence of early deficits in inhibitory maturation.
Collapse
Affiliation(s)
- Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Karol Piera
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Rick Hesen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Lukas Lütje
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Lynn Aarts
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Sharma M, Sajikumar S. G9a/GLP Complex Acts as a Bidirectional Switch to Regulate Metabotropic Glutamate Receptor-Dependent Plasticity in Hippocampal CA1 Pyramidal Neurons. Cereb Cortex 2020; 29:2932-2946. [PMID: 29982412 DOI: 10.1093/cercor/bhy161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 02/01/2023] Open
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is conventionally considered to be solely dependent on local protein synthesis. Given the impact of epigenetics on memory, the intriguing question is whether epigenetic regulation influences mGluR-LTD as well. G9a/GLP histone lysine methyltransferase complex is crucial for brain development and goal-directed learning as well as for drug-addiction. In this study, we analyzed whether the epigenetic regulation by G9a/GLP complex affects mGluR-LTD in CA1 hippocampal pyramidal neurons of 5-7 weeks old male Wistar rats. In hippocampal slices with intact CA1 dendritic regions, inhibition of G9a/GLP activity abolished mGluR-LTD. The inhibition of this complex upregulated the expression of plasticity proteins like PKMζ, which mediated the prevention of mGluR-LTD expression by regulating the NSF-GluA2-mediated trafficking of AMPA receptors towards the postsynaptic site. G9a/GLP inhibition during the induction of mGluR-LTD also downregulated the protein levels of phosphorylated-GluA2 and Arc. Interestingly, G9a/GLP inhibition could not impede the mGluR-LTD when the cell-body was severed. Our study highlights the role of G9a/GLP complex in intact neuronal network as a bidirectional switch; when turned on, it facilitates the expression of mGluR-LTD, and when turned off, it promotes the expression of long-term potentiation.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Physiology, National University of Singapore, 2 Medical Drive, MD9, Singapore, Singapore.,Neurobiology/Aging Programme, Life Sciences Institute, Centre for Life Sciences, 28 Medical Drive, Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, 2 Medical Drive, MD9, Singapore, Singapore.,Neurobiology/Aging Programme, Life Sciences Institute, Centre for Life Sciences, 28 Medical Drive, Singapore, Singapore
| |
Collapse
|
18
|
Holdener BC, Percival CJ, Grady RC, Cameron DC, Berardinelli SJ, Zhang A, Neupane S, Takeuchi M, Jimenez-Vega JC, Uddin SMZ, Komatsu DE, Honkanen R, Dubail J, Apte SS, Sato T, Narimatsu H, McClain SA, Haltiwanger RS. ADAMTS9 and ADAMTS20 are differentially affected by loss of B3GLCT in mouse model of Peters plus syndrome. Hum Mol Genet 2020; 28:4053-4066. [PMID: 31600785 DOI: 10.1093/hmg/ddz225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
Peters plus syndrome (MIM #261540 PTRPLS), characterized by defects in eye development, prominent forehead, hypertelorism, short stature and brachydactyly, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. Protein O-fucosyltransferase 2 (POFUT2) and B3GLCT work sequentially to add an O-linked glucose β1-3fucose disaccharide to properly folded thrombospondin type 1 repeats (TSRs). Forty-nine proteins are predicted to be modified by POFUT2, and nearly half are members of the ADAMTS superfamily. Previous studies suggested that O-linked fucose is essential for folding and secretion of POFUT2-modified proteins and that B3GLCT-mediated extension to the disaccharide is essential for only a subset of targets. To test this hypothesis and gain insight into the origin of PTRPLS developmental defects, we developed and characterized two mouse B3glct knockout alleles. Using these models, we tested the role of B3GLCT in enabling function of ADAMTS9 and ADAMTS20, two highly conserved targets whose functions are well characterized in mouse development. The mouse B3glct mutants developed craniofacial and skeletal abnormalities comparable to PTRPLS. In addition, we observed highly penetrant hydrocephalus, white spotting and soft tissue syndactyly. We provide strong genetic and biochemical evidence that hydrocephalus and white spotting in B3glct mutants resulted from loss of ADAMTS20, eye abnormalities from partial reduction of ADAMTS9 and cleft palate from loss of ADAMTS20 and partially reduced ADAMTS9 function. Combined, these results provide compelling evidence that ADAMTS9 and ADAMTS20 were differentially sensitive to B3GLCT inactivation and suggest that the developmental defects in PTRPLS result from disruption of a subset of highly sensitive POFUT2/B3GLCT targets such as ADAMTS20.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Richard C Grady
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel C Cameron
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven J Berardinelli
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ao Zhang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Megumi Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Institute, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Institute, Cleveland, OH 44195, USA
| | - Takashi Sato
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hisashi Narimatsu
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Steve A McClain
- Department of Dermatology and Department of Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Schut EHS, Alonso A, Smits S, Khamassi M, Samanta A, Negwer M, Kasri NN, Navarro Lobato I, Genzel L. The Object Space Task reveals increased expression of cumulative memory in a mouse model of Kleefstra syndrome. Neurobiol Learn Mem 2020; 173:107265. [PMID: 32531423 DOI: 10.1016/j.nlm.2020.107265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/06/2020] [Accepted: 05/30/2020] [Indexed: 11/27/2022]
Abstract
Kleefstra syndrome is a disorder caused by a mutation in the EHMT1 gene characterized in humans by general developmental delay, mild to severe intellectual disability and autism. Here, we characterized cumulative memory in the Ehmt1+/- mouse model using the Object Space Task. We combined conventional behavioral analysis with automated analysis by deep-learning networks, a session-based computational learning model, and a trial-based classifier. Ehmt1+/- mice showed more anxiety-like features and generally explored objects less, but the difference decreased over time. Interestingly, when analyzing memory-specific exploration, Ehmt1+/- show increased expression of cumulative memory, but a deficit in a more simple, control memory condition. Using our automatic classifier to differentiate between genotypes, we found that cumulative memory features are better suited for classification than general exploration differences. Thus, detailed behavioral classification with the Object Space Task produced a more detailed behavioral phenotype of the Ehmt1+/- mouse model.
Collapse
Affiliation(s)
- Evelien H S Schut
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands
| | - Alejandra Alonso
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Steven Smits
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Mehdi Khamassi
- Institute of Intelligent Systems and Robotics, Sorbonne Université, CNRS, Paris, France
| | - Anumita Samanta
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Moritz Negwer
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands
| | - Irene Navarro Lobato
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands.
| |
Collapse
|
20
|
Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10:11. [PMID: 32025282 PMCID: PMC6996187 DOI: 10.1186/s13578-020-0378-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered the most promising seed cells for regenerative medicine because of their considerable therapeutic properties and accessibility. Fine-tuning of cell biological processes, including differentiation and senescence, is essential for achievement of the expected regenerative efficacy. Researchers have recently made great advances in understanding the spatiotemporal gene expression dynamics that occur during osteogenic, adipogenic and chondrogenic differentiation of MSCs and the intrinsic and environmental factors that affect these processes. In this context, histone modifications have been intensively studied in recent years and have already been indicated to play significant and universal roles in MSC fate determination and differentiation. In this review, we summarize recent discoveries regarding the effects of histone modifications on MSC biology. Moreover, we also provide our insights and perspectives for future applications.
Collapse
Affiliation(s)
- Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| |
Collapse
|
21
|
Davis BA, David F, O’Regan C, Adam MA, Harwood AJ, Crunelli V, Isles AR. Impairments in sensory-motor gating and information processing in a mouse model of Ehmt1 haploinsufficiency. Brain Neurosci Adv 2020; 4:2398212820928647. [PMID: 32954001 PMCID: PMC7479861 DOI: 10.1177/2398212820928647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Regulators of chromatin dynamics and transcription are increasingly implicated in the aetiology of neurodevelopmental disorders. Haploinsufficiency of EHMT1, encoding a histone methyltransferase, is associated with several neurodevelopmental disorders, including Kleefstra syndrome, developmental delay and autism spectrum disorder. Using a mouse model of Ehmt1 haploinsufficiency (Ehmt1 D6Cre/+), we examined a number of brain and behavioural endophenotypes of relevance to neurodevelopmental disorders. Specifically, we show that Ehmt1 D6Cre/+ mice have deficits in information processing, evidenced by abnormal sensory-motor gating, a complete absence of object recognition memory, and a reduced magnitude of auditory evoked potentials in both paired-pulse inhibition and mismatch negativity. The electrophysiological experiments show that differences in magnitude response to auditory stimulus were associated with marked reductions in total and evoked beta- and gamma-band oscillatory activity, as well as significant reductions in phase synchronisation. The pattern of electrophysiological deficits in Ehmt1 D6Cre/+ matches those seen in control mice following administration of the selective NMDA-R antagonist, ketamine. This, coupled with reduction of Grin1 mRNA expression in Ehmt1 D6Cre/+ hippocampus, suggests that Ehmt1 haploinsufficiency may lead to disruption in NMDA-R. Taken together, these data indicate that reduced Ehmt1 dosage during forebrain development leads to abnormal circuitry formation, which in turn results in profound information processing deficits. Such information processing deficits are likely paramount to our understanding of the cognitive and neurological dysfunctions shared across the neurodevelopmental disorders associated with EHMT1 haploinsufficiency.
Collapse
Affiliation(s)
- Brittany A Davis
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - François David
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - Ciara O’Regan
- MRC Centre for Neuropsychiatric
Genetics and Genomics, School of Medicine, Cardiff University, Cardiff,
UK
| | - Manal A Adam
- MRC Centre for Neuropsychiatric
Genetics and Genomics, School of Medicine, Cardiff University, Cardiff,
UK
| | - Adrian J Harwood
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - Vincenzo Crunelli
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric
Genetics and Genomics, School of Medicine, Cardiff University, Cardiff,
UK
| |
Collapse
|
22
|
Okayasu T, Quesnel AM, Reinshagen KL, Nadol JB. Otopathology in Kleefstra Syndrome: A Case Report. Laryngoscope 2019; 130:2028-2033. [DOI: 10.1002/lary.28380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tadao Okayasu
- Otopathology Laboratory, Department of Otolaryngology–Head and Neck Surgery Massachusetts Eye and Ear Boston Massachusetts
- Department of Otolaryngology–Head and Neck Surgery Harvard Medical School Boston Massachusetts
| | - Alicia M. Quesnel
- Otopathology Laboratory, Department of Otolaryngology–Head and Neck Surgery Massachusetts Eye and Ear Boston Massachusetts
- Department of Otolaryngology–Head and Neck Surgery Harvard Medical School Boston Massachusetts
| | - Katherine L. Reinshagen
- Department of Radiology Massachusetts Eye and Ear, Harvard Medical School Boston Massachusetts U.S.A
| | - Joseph B. Nadol
- Otopathology Laboratory, Department of Otolaryngology–Head and Neck Surgery Massachusetts Eye and Ear Boston Massachusetts
- Department of Otolaryngology–Head and Neck Surgery Harvard Medical School Boston Massachusetts
| |
Collapse
|
23
|
Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun 2019; 10:4928. [PMID: 31666522 PMCID: PMC6821803 DOI: 10.1038/s41467-019-12947-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS.
Collapse
|
24
|
Cytrynbaum C, Choufani S, Weksberg R. Epigenetic signatures in overgrowth syndromes: Translational opportunities. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:491-501. [PMID: 31828978 DOI: 10.1002/ajmg.c.31745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
In recent years, numerous overgrowth syndromes have been found to be caused by pathogenic DNA sequence variants in "epigenes," genes that encode proteins that function in epigenetic regulation. Epigenetic marks, including DNA methylation (DNAm), histone modifications and chromatin conformation, have emerged as a vital genome-wide regulatory mechanism that modulate the transcriptome temporally and spatially to drive normal developmental and cellular processes. Evidence suggests that epigenetic marks are layered and engage in crosstalk, in that disruptions of any one component of the epigenetic machinery impact the others. This interdependence of epigenetic marks underpins the recent identification of gene-specific DNAm signatures for a variety of disorders caused by pathogenic variants in epigenes. Here, we discuss the power of DNAm signatures with respect to furthering our understanding of disease pathophysiology, enhancing the efficacy of molecular diagnostics and identifying new targets for therapeutics of overgrowth syndromes. These findings highlight the promise of the field of epigenomics to provide unprecedented insights into disease mechanisms generating a host of opportunities to advance precision medicine.
Collapse
Affiliation(s)
- Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario.,Department of Pediatrics, University of Toronto, Toronto, Ontario.,Institute of Medical Science, University of Toronto, Toronto, Ontario
| |
Collapse
|
25
|
Iacono G, Dubos A, Méziane H, Benevento M, Habibi E, Mandoli A, Riet F, Selloum M, Feil R, Zhou H, Kleefstra T, Kasri NN, van Bokhoven H, Herault Y, Stunnenberg HG. Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Res 2019; 46:4950-4965. [PMID: 29554304 PMCID: PMC6007260 DOI: 10.1093/nar/gky196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Kleefstra syndrome, a disease with intellectual disability, autism spectrum disorders and other developmental defects is caused in humans by haploinsufficiency of EHMT1. Although EHMT1 and its paralog EHMT2 were shown to be histone methyltransferases responsible for deposition of the di-methylated H3K9 (H3K9me2), the exact nature of epigenetic dysfunctions in Kleefstra syndrome remains unknown. Here, we found that the epigenome of Ehmt1+/- adult mouse brain displays a marked increase of H3K9me2/3 which correlates with impaired expression of protocadherins, master regulators of neuronal diversity. Increased H3K9me3 was present already at birth, indicating that aberrant methylation patterns are established during embryogenesis. Interestingly, we found that Ehmt2+/- mice do not present neither the marked increase of H3K9me2/3 nor the cognitive deficits found in Ehmt1+/- mice, indicating an evolutionary diversification of functions. Our finding of increased H3K9me3 in Ehmt1+/- mice is the first one supporting the notion that EHMT1 can quench the deposition of tri-methylation by other Histone methyltransferases, ultimately leading to impaired neurocognitive functioning. Our insights into the epigenetic pathophysiology of Kleefstra syndrome may offer guidance for future developments of therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Giovanni Iacono
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- To whom correspondence should be addressed. Tel: +31 24 3610524; . Correspondence may also be addressed to Giovanni Iacono.
| | - Aline Dubos
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Hamid Méziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marco Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Ehsan Habibi
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
| | - Amit Mandoli
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR5535, Centre National de Recherche Scientifique (CNRS), 1919 Route de Mende, 34293 Montpellier, France
- The University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Huiqing Zhou
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Hendrik G Stunnenberg
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- To whom correspondence should be addressed. Tel: +31 24 3610524; . Correspondence may also be addressed to Giovanni Iacono.
| |
Collapse
|
26
|
Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu Rev Anim Biosci 2019; 7:263-287. [DOI: 10.1146/annurev-animal-020518-115206] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One-carbon (1C) metabolism comprises a series of interlinking metabolic pathways that include the methionine and folate cycles that are central to cellular function, providing 1C units (methyl groups) for the synthesis of DNA, polyamines, amino acids, creatine, and phospholipids. S-adenosylmethionine is a potent aminopropyl and methyl donor within these cycles and serves as the principal substrate for methylation of DNA, associated proteins, and RNA. We propose that 1C metabolism functions as a key biochemical conduit between parental environment and epigenetic regulation of early development and that interindividual and ethnic variability in epigenetic-gene regulation arises because of genetic variants within 1C genes, associated epigenetic regulators, and differentially methylated target DNA sequences. We present evidence to support these propositions, drawing upon studies undertaken in humans and animals. We conclude that future studies should assess the epigenetic effects of cumulative (multigenerational) dietary imbalances contemporaneously in both parents, as this better represents the human experience.
Collapse
Affiliation(s)
- Constance E. Clare
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Amey H. Brassington
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
27
|
Jeon SJ, Gonzales EL, Mabunga DFN, Valencia ST, Kim DG, Kim Y, Adil KJL, Shin D, Park D, Shin CY. Sex-specific Behavioral Features of Rodent Models of Autism Spectrum Disorder. Exp Neurobiol 2018; 27:321-343. [PMID: 30429643 PMCID: PMC6221834 DOI: 10.5607/en.2018.27.5.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Sex is an important factor in understanding the clinical presentation, management, and developmental trajectory of children with neuropsychiatric disorders. While much is known about the clinical and neurobehavioral profiles of males with neuropsychiatric disorders, surprisingly little is known about females in this respect. Animal models may provide detailed mechanistic information about sex differences in autism spectrum disorder (ASD) in terms of manifestation, disease progression, and development of therapeutic options. This review aims to widen our understanding of the role of sex in autism spectrum disorder, by summarizing and comparing behavioral characteristics of animal models. Our current understanding of how differences emerge in boys and girls with neuropsychiatric disorders is limited: Information derived from animal studies will stimulate future research on the role of biological maturation rates, sex hormones, sex-selective protective (or aggravating) factors and psychosocial factors, which are essential to devise sex precision medicine and to improve diagnostic accuracy. Moreover, there is a strong need of novel strategies to elucidate the major mechanisms leading to sex-specific autism features, as well as novel models or methods to examine these sex differences.
Collapse
Affiliation(s)
- Se Jin Jeon
- Center for Neuroscience, Korea Institute of Science & Technology, Seoul 02792, Korea.,Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Edson Luck Gonzales
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Darine Froy N Mabunga
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Schley T Valencia
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Do Gyeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Yujeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Keremkleroo Jym L Adil
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Dongpil Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Donghyun Park
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea.,KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
28
|
Sharma M, Razali NB, Sajikumar S. Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons. Cereb Cortex 2018; 27:3161-3171. [PMID: 27252354 DOI: 10.1093/cercor/bhw170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic regulations play an important role in regulating the learning and memory processes. G9a/G9a-like protein (GLP) lysine dimethyltransferase complex controls a prominent histone H3 lysine9 dimethylation (H3K9me2) that results in transcriptional silencing of the chromatin. Here, we report that the inhibition of G9a/GLP complex by either of the substrate competitive inhibitors UNC 0638 or BIX 01294 reinforces protein synthesis-independent long-term potentiation (early-LTP) to protein synthesis-dependent long-term potentiation (late-LTP). The reinforcement effect was observed if the inhibitors were present during the induction of early-LTP and in addition when G9a/GLP complex inhibition was carried out by priming of synapses within an interval of 30 min before or after the induction of early-LTP. Surprisingly, the reinforced LTP by G9a/GLP complex inhibition was able to associate with a weak plasticity event from nearby independent synaptic populations, resulting in synaptic tagging/capture (STC). We have identified brain-derived neurotrophic factor (BDNF) as a critical plasticity protein that maintains G9a/GLP complex inhibition-mediated LTP facilitation and its STC. Our study reveals an epigenetic mechanism for promoting plasticity and associativity by G9a/GLP complex inhibition, and it may engender a promising epigenetic target for enhancing memory in neural networks.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Nuralyah Bte Razali
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
29
|
Huang H, Dou L, Song J, Luo J. CBFA2T2 is required for BMP-2-induced osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2018; 496:1095-1101. [DOI: 10.1016/j.bbrc.2018.01.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
|
30
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
31
|
Koemans TS, Kleefstra T, Chubak MC, Stone MH, Reijnders MRF, de Munnik S, Willemsen MH, Fenckova M, Stumpel CTRM, Bok LA, Sifuentes Saenz M, Byerly KA, Baughn LB, Stegmann APA, Pfundt R, Zhou H, van Bokhoven H, Schenck A, Kramer JM. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet 2017; 13:e1006864. [PMID: 29069077 PMCID: PMC5656305 DOI: 10.1371/journal.pgen.1006864] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022] Open
Abstract
Kleefstra syndrome, caused by haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1), is characterized by intellectual disability (ID), autism spectrum disorder (ASD), characteristic facial dysmorphisms, and other variable clinical features. In addition to EHMT1 mutations, de novo variants were reported in four additional genes (MBD5, SMARCB1, NR1I3, and KMT2C), in single individuals with clinical characteristics overlapping Kleefstra syndrome. Here, we present a novel cohort of five patients with de novo loss of function mutations affecting the histone methyltransferase KMT2C. Our clinical data delineates the KMT2C phenotypic spectrum and reinforces the phenotypic overlap with Kleefstra syndrome and other related ID disorders. To elucidate the common molecular basis of the neuropathology associated with mutations in KMT2C and EHMT1, we characterized the role of the Drosophila KMT2C ortholog, trithorax related (trr), in the nervous system. Similar to the Drosophila EHMT1 ortholog, G9a, trr is required in the mushroom body for short term memory. Trr ChIP-seq identified 3371 binding sites, mainly in the promoter of genes involved in neuronal processes. Transcriptional profiling of pan-neuronal trr knockdown and G9a null mutant fly heads identified 613 and 1123 misregulated genes, respectively. These gene sets show a significant overlap and are associated with nearly identical gene ontology enrichments. The majority of the observed biological convergence is derived from predicted indirect target genes. However, trr and G9a also have common direct targets, including the Drosophila ortholog of Arc (Arc1), a key regulator of synaptic plasticity. Our data highlight the clinical and molecular convergence between the KMT2 and EHMT protein families, which may contribute to a molecular network underlying a larger group of ID/ASD-related disorders. Neurodevelopmental disorders (NDDs) like intellectual disability (ID) and autism spectrum disorder (ASD) present an enormous challenge to affected individuals, their families, and society. Understanding the mechanisms underlying NDDs may lead to the development of targeted therapeutics, but this is complicated by the great clinical and genetic heterogeneity seen in patients. Mutations in hundreds of genes have been implicated in NDDs, giving rise to diverse clinical presentations. However, evidence suggests that many of these genes lie in common biological pathways, and mutations in genes that are involved in similar biological functions give rise to more similar clinical phenotypes. Here, we define a novel ID disorder with comorbid ASD (ID/ASD) caused by mutations in KMT2C. This disorder is defined by clinical features that overlap with a group of other disorders, including Kleefstra syndrome, which is caused by EHMT1 mutations. In the fruit fly, we show that the KMT2 and EHMT protein families regulate a highly converging set of biological processes. Both EHMT1 and KMT2C encode histone methyltransferases, which regulate gene transcription by modifying chromatin structure. Further understanding of the common gene regulatory networks associated with this group of ID- and ASD-related disorders may lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tom S. Koemans
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Melissa C. Chubak
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Max H. Stone
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children’s Health Research Institute, London, Ontario, Canada
| | - Margot R. F. Reijnders
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Marjolein H. Willemsen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Michaela Fenckova
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Connie T. R. M. Stumpel
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Levinus A. Bok
- Department of Pediatrics, Máxima Medical Centre, Veldhoven, The Netherlands
| | | | - Kyna A. Byerly
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Linda B. Baughn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Alexander P. A. Stegmann
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
- * E-mail: (AS); (JMK)
| | - Jamie M. Kramer
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children’s Health Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail: (AS); (JMK)
| |
Collapse
|
32
|
Theofanopoulou C, Gastaldon S, O’Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One 2017; 12:e0185306. [PMID: 29045412 PMCID: PMC5646786 DOI: 10.1371/journal.pone.0185306] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
| | - Simone Gastaldon
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- School of Psychology, University of Padova, Padova, Italy
| | - Thomas O’Rourke
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Bridget D. Samuels
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Angela Messner
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Francesco Delogu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Saleh Alamri
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
33
|
Abstract
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
34
|
Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation. Sci Rep 2017; 7:40284. [PMID: 28071689 PMCID: PMC5223204 DOI: 10.1038/srep40284] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
Heterozygous mutations or deletions of the human Euchromatin Histone Methyltransferase 1 (EHMT1) gene are the main causes of Kleefstra syndrome, a neurodevelopmental disorder that is characterized by impaired memory, autistic features and mostly severe intellectual disability. Previously, Ehmt1+/− heterozygous knockout mice were found to exhibit cranial abnormalities and decreased sociability, phenotypes similar to those observed in Kleefstra syndrome patients. In addition, Ehmt1+/− knockout mice were impaired at fear extinction and novel- and spatial object recognition. In this study, Ehmt1+/− and wild-type mice were tested on several cognitive tests in a touchscreen-equipped operant chamber to further investigate the nature of learning and memory changes. Performance of Ehmt1+/− mice in the Visual Discrimination & Reversal learning, object-location Paired-Associates learning- and Extinction learning tasks was found to be unimpaired. Remarkably, Ehmt1+/− mice showed enhanced performance on the Location Discrimination test of pattern separation. In line with improved Location Discrimination ability, an increase in BrdU-labelled cells in the subgranular zone of the dentate gyrus was observed. In conclusion, reduced levels of EHMT1 protein in Ehmt1+/− mice does not result in general learning deficits in a touchscreen-based battery, but leads to increased adult cell proliferation in the hippocampus and enhanced pattern separation ability.
Collapse
|
35
|
Mitra AK, Dodge J, Van Ness J, Sokeye I, Van Ness B. A de novo splice site mutation in EHMT1 resulting in Kleefstra syndrome with pharmacogenomics screening and behavior therapy for regressive behaviors. Mol Genet Genomic Med 2016; 5:130-140. [PMID: 28361099 PMCID: PMC5370220 DOI: 10.1002/mgg3.265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background Kleefstra syndrome (KS) is a rare autosomal dominant developmental disability, caused by microdeletions or intragenic mutations within the epigenetic regulator gene EHMT1 (euchromatic histone lysine N‐methyltransferase 1). In addition to common features of autism, young adult regressive behaviors have been reported. However, the genetic downstream effects of the reported deletions or mutations on KS phenotype have not yet been completely explored. While genetic backgrounds affecting drug metabolism can have a profound effect on therapeutic interventions, pharmacogenomic variations are seldom considered in directing psychotropic therapies. Methods In this report, we used next‐generation sequencing (exome sequencing and high‐throughput RNA sequencing) in a patient and his parents to identify causative genetic variants followed by pharmacogenomics‐guided clinical decision‐making for making positive changes toward his treatment strategies. The patient had an early autism diagnosis and showed significant regressive behaviors and physical aberrations at age 23. Results Exome sequencing identified a novel, de novo splice site variant NM_024757.4: c.2750‐1G>T in EHMT1, a candidate gene for Kleefstra syndrome, in the patient that results in exon skipping and downstream frameshift and termination. Gene expression results from the patient showed, when compared to his parents, there was a significant decreased expression of several reported gene variants associated with autism risk. Further, using a pharmacogenomics genotyping panel, we discovered that the patient had the CYP2D6 nonfunctioning variant genotype *4/*4 that results in very low metabolic activity on a number of psychotropic drugs, including fluvoxamine which he was prescribed. As reported here, a change in psychotropic drugs and intense behavior therapies resulted in a significant reversal of the regressive behaviors and physical aberrations. Conclusion These results demonstrate an individualized approach that integrated genetic information and behavior therapies, resulting in a dramatic improvement in regressive behaviors associated with KS.
Collapse
Affiliation(s)
- Amit Kumar Mitra
- Department of Genetics, Cell Biology & Development University of Minnesota Minneapolis Minnesota
| | | | - Jody Van Ness
- Eyebox Tools, Inc.MinneapolisMinnesota; Present address: Jody Van Ness, Institute for Community IntegrationUniversity of MinnesotaMinneapolisMinnesota
| | | | - Brian Van Ness
- Department of Genetics, Cell Biology & Development University of Minnesota Minneapolis Minnesota
| |
Collapse
|
36
|
Targeted next generation sequencing of a panel of autism-related genes identifies an EHMT1 mutation in a Kleefstra syndrome patient with autism and normal intellectual performance. Gene 2016; 595:131-141. [PMID: 27651234 DOI: 10.1016/j.gene.2016.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 11/21/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with unknown genetic and environmental causation in most of the affected individuals. On the other hand, there are a growing number of ASD-associated syndromes, where the exact genetic origin can be revealed. Here we report a method, which included the targeted next generation sequencing (NGS) and filtering of 101 ASD associated genes, followed by database search. Next, RNA sequencing was used to study the region of interest at the transcriptional level. Using this workflow, we identified a de novo mutation in the euchromatic histone-lysine N-methyltransferase 1 gene (EHMT1) of an autistic patient with dysmorphisms. Sequencing of EHMT1 transcripts showed that the premature termination codon (Trp1138Ter) created by a single nucleotide change elicited nonsense-mediated mRNA decay, which led to haploinsufficiency already at the transcriptional level. Database and literature search provided evidence that this mutation caused Kleefstra syndrome (KS), which was confirmed by the presence of the disorder-specific phenotype in the patient. We provide a proof of principle that the implemented method is capable to elucidate the genetic etiology of individuals with syndromic autism. The novel mutation detected in the EHMT1 gene is responsible for KS's symptoms. In addition, further genetic factors might be involved in the ASD pathogenesis of the patient including a missense DPP6 mutation (Arg322Cys), which segregated with the autistic phenotype within the family.
Collapse
|
37
|
Olsen JB, Wong L, Deimling S, Miles A, Guo H, Li Y, Zhang Z, Greenblatt JF, Emili A, Tropepe V. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports 2016; 7:454-470. [PMID: 27546533 PMCID: PMC5031922 DOI: 10.1016/j.stemcr.2016.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Proliferating progenitor cells undergo changes in competence to give rise to post-mitotic progeny of specialized function. These cell-fate transitions typically involve dynamic regulation of gene expression by histone methyltransferase (HMT) complexes. However, the composition, roles, and regulation of these assemblies in regulating cell-fate decisions in vivo are poorly understood. Using unbiased affinity purification and mass spectrometry, we identified the uncharacterized C2H2-like zinc finger protein ZNF644 as a G9a/GLP-interacting protein and co-regulator of histone methylation. In zebrafish, functional characterization of ZNF644 orthologs, znf644a and znf644b, revealed complementary roles in regulating G9a/H3K9me2-mediated gene silencing during neurogenesis. The non-overlapping requirements for znf644a and znf644b during retinal differentiation demarcate critical aspects of retinal differentiation programs regulated by differential G9a-ZNF644 associations, such as transitioning proliferating progenitor cells toward differentiation. Collectively, our data point to ZNF644 as a critical co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation.
Collapse
Affiliation(s)
- Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada
| | - Loksum Wong
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Steven Deimling
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yue Li
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Medical Science Building, Toronto, ON M5S 3E1, Canada.
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
38
|
Abstract
The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a common phenotype; however, this is often seen in association with other more specific features in respective disorders. The specificity of some of the clinical features raises the question whether specific cell types are particularly sensitive to the loss of these factors. Most of these disorders demonstrate dosage sensitivity as loss of a single allele appears to be sufficient to cause the observed phenotypes. Although the pathogenic sequence is unknown for most of these disorders, there are several examples where disrupted expression of downstream target genes accounts for a substantial portion of the phenotype; hence, it may be useful to systematically map such disease-relevant target genes. Finally, two of these disorders (Rubinstein-Taybi and Kabuki syndromes) have shown post-natal rescue of markers of the neurological dysfunction with drugs that lead to histone deacetylase inhibition, indicating that some of these disorders may be treatable causes of intellectual disability.
Collapse
Affiliation(s)
- Hans Tomas Bjornsson
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
39
|
Benevento M, Iacono G, Selten M, Ba W, Oudakker A, Frega M, Keller J, Mancini R, Lewerissa E, Kleefstra T, Stunnenberg HG, Zhou H, van Bokhoven H, Nadif Kasri N. Histone Methylation by the Kleefstra Syndrome Protein EHMT1 Mediates Homeostatic Synaptic Scaling. Neuron 2016; 91:341-55. [PMID: 27373831 DOI: 10.1016/j.neuron.2016.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 02/01/2023]
Abstract
Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra-syndrome-associated protein EHMT1 plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vitro and in vivo. Our findings suggest that H3K9me2-mediated changes in chromatin structure govern a repressive program that controls synaptic scaling.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Giovanni Iacono
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Martijn Selten
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Wei Ba
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Astrid Oudakker
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Monica Frega
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Jason Keller
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Roberta Mancini
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Elly Lewerissa
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Henk G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
40
|
Multiple Coronary Artery Microfistulas in a Girl with Kleefstra Syndrome. Case Rep Genet 2016; 2016:3056053. [PMID: 27239352 PMCID: PMC4867054 DOI: 10.1155/2016/3056053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
Kleefstra syndrome is characterized by hypotonia, developmental delay, dysmorphic features, congenital heart defects, and so forth. It is caused by 9q34.3 microdeletions or EHMT1 mutations. Herein a 20-month-old girl with Kleefstra syndrome, due to a de novo subterminal deletion, is described. She exhibits a rare and complex cardiopathy, encompassing multiple coronary artery microfistulas, VSD/ASD, and PFO.
Collapse
|
41
|
Perinatal reduction of functional serotonin transporters results in developmental delay. Neuropharmacology 2016; 109:96-111. [PMID: 27208789 DOI: 10.1016/j.neuropharm.2016.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/25/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
Abstract
While there is strong evidence from rodent and human studies that a reduction in serotonin transporter (5-HTT) function in early-life can increase the risk for several neuropsychiatric disorders in adulthood, the effects of reduced 5-HTT function on behavior across developmental stages are underinvestigated. To elucidate how perinatal pharmacological and lifelong genetic inactivation of the 5-HTT affects behavior across development, we conducted a battery of behavioral tests in rats perinatally exposed to fluoxetine or vehicle and in 5-HTT(-/-) versus 5-HTT(+/+) rats. We measured motor-related behavior, olfactory function, grooming behavior, sensorimotor gating, object directed behavior and novel object recognition in the first three postnatal weeks and if possible the tests were repeated in adolescence and adulthood. We also measured developmental milestones such as eye opening, reflex development and body weight. We observed that both pharmacological and genetic inactivation of 5-HTT resulted in a developmental delay. Except for hypo-locomotion, most of the observed early-life effects were normalized later in life. In adolescence and adulthood we observed object directed behavior and decreased novel object recognition in the 5-HTT(-/-) rats, which might be related to the lifelong inactivation of 5-HTT. Together, these data provide an important contribution to the understanding of the effects of perinatal and lifelong 5-HTT inactivation on behavior across developmental stages.
Collapse
|
42
|
Mirabella AC, Foster BM, Bartke T. Chromatin deregulation in disease. Chromosoma 2016; 125:75-93. [PMID: 26188466 PMCID: PMC4761009 DOI: 10.1007/s00412-015-0530-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies.
Collapse
Affiliation(s)
- Anne C Mirabella
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Benjamin M Foster
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Till Bartke
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
43
|
Hadzsiev K, Komlosi K, Czako M, Duga B, Szalai R, Szabo A, Postyeni E, Szabo T, Kosztolanyi G, Melegh B. Kleefstra syndrome in Hungarian patients: additional symptoms besides the classic phenotype. Mol Cytogenet 2016; 9:22. [PMID: 26918030 PMCID: PMC4766673 DOI: 10.1186/s13039-016-0231-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
Background Kleefstra syndrome is a rare genetic disorder, with core phenotypic features encompassing developmental delay/intellectual disability, characteristic facial features – brachy(micro)cephaly, unusual shaped eyebrows, flat face with hypertelorism, short nose with anteverted nostrils, thickened lower lip, carpmouth with macroglossia - and childhood hypotonia. Some additional symptoms are observed in different percentage of the patients. Epilepsy is common symptom as well. The underlying cause of the syndrome is a submicroscopic deletion in the chromosomal region 9q34.3 or disruption of the euchromatin histone methyl transferase 1. Case presentation We describe two Hungarian Kleefstra syndrome patients, one with the classic phenotype of the syndrome, the diagnosis was confirmed by subtelomeric FISH. Meanwhile in our second patient beside the classic phenotype a new symptom – abnormal antiepileptic drug metabolic response – could be observed. Subtelomere FISH confirmed the 9q34.3 terminal deletion. Because of the abnormal drug metabolism in our second patient, we performed array CGH analysis as well searching for other rearrangements. Array CGH analysis indicated a large – 1.211 Mb -, deletion only in the 9q subtelomeric region with breakpoints ch9:139,641,471-140,852,911. Conclusions This is the first report on Kleefstra syndrome in patients describing a classical and a complex phenotype involving altered drug metabolism.
Collapse
Affiliation(s)
- Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Center, University of Pecs, Ifjusag 20, H-7624 Pecs, Hungary
| | - Katalin Komlosi
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Center, University of Pecs, Ifjusag 20, H-7624 Pecs, Hungary
| | - Marta Czako
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Center, University of Pecs, Ifjusag 20, H-7624 Pecs, Hungary
| | - Balazs Duga
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Center, University of Pecs, Ifjusag 20, H-7624 Pecs, Hungary
| | - Renata Szalai
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Center, University of Pecs, Ifjusag 20, H-7624 Pecs, Hungary
| | - Andras Szabo
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary
| | - Etelka Postyeni
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary
| | - Titanilla Szabo
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary
| | - Gyorgy Kosztolanyi
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Center, University of Pecs, Ifjusag 20, H-7624 Pecs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Clinical Center, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary ; Szentagothai Research Center, University of Pecs, Ifjusag 20, H-7624 Pecs, Hungary
| |
Collapse
|
44
|
The role of chromatin repressive marks in cognition and disease: A focus on the repressive complex GLP/G9a. Neurobiol Learn Mem 2015; 124:88-96. [DOI: 10.1016/j.nlm.2015.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 11/23/2022]
|
45
|
Kramer JM. Regulation of cell differentiation and function by the euchromatin histone methyltranserfases G9a and GLP. Biochem Cell Biol 2015. [PMID: 26198080 DOI: 10.1139/bcb-2015-0017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The euchromatin histone methyltransferases (EHMTs) are an evolutionarily conserved protein family that are known for their ability to dimethylate histone 3 at lysine 9 in euchromatic regions of the genome. In mammals there are two EHMT proteins, G9a, encoded by EHMT2, and GLP, encoded by EHMT1. EHMTs have diverse roles in the differentiation of different tissues and cell types and are involved in adult-specific processes like memory, drug addiction, and immune response. This review discusses recent findings from rodent and Drosophila models that are beginning to reveal the broad biological role and complex mechanistic functioning of EHMT proteins.
Collapse
Affiliation(s)
- Jamie M Kramer
- Department of Physiology and Pharmacology, Department of Biology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
46
|
Iyer J, Girirajan S. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Brief Funct Genomics 2015; 14:315-28. [DOI: 10.1093/bfgp/elv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Wada S, Ideno H, Shimada A, Kamiunten T, Nakamura Y, Nakashima K, Kimura H, Shinkai Y, Tachibana M, Nifuji A. H3K9MTase G9a is essential for the differentiation and growth of tenocytes in vitro. Histochem Cell Biol 2015; 144:13-20. [PMID: 25812847 DOI: 10.1007/s00418-015-1318-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Cell differentiation is controlled by specific transcription factors. The functions and expression levels of these transcription factors are regulated by epigenetic modifications, such as histone modifications and cytosine methylation of the genome. In tendon tissue, tendon-specific transcription factors have been shown to play functional roles in the regulation of tenocyte differentiation. However, the effects of epigenetic modifications on gene expression and differentiation in tenocytes are unclear. In this study, we investigated the epigenetic regulation of tenocyte differentiation, focusing on the enzymes mediating histone 3 lysine 9 (H3K9) methylation. In primary mouse tenocytes, six H3K9 methyltransferase (H3K9MTase) genes, i.e., G9a, G9a-like protein (GLP), PR domain zinc finger protein 2 (PRDM2), SUV39H1, SUV39H2, and SETDB1/ESET were all expressed, with increased mRNA levels observed during tenocyte differentiation. In mouse embryos, G9a and Prdm2 mRNAs were expressed in tenocyte precursor cells, which were overlapped with or were adjacent to cells expressing a tenocyte-specific marker, tenomodulin. Using tenocytes isolated from G9a-flox/flox mice, we deleted G9a by infecting the cells with Cre-expressing adenoviruses. Proliferation of G9a-null tenocytes was significantly decreased compared with that of control cells infected with GFP-expressing adenoviruses. Moreover, the expression levels of tendon transcription factors gene, i.e., Scleraxis (Scx), Mohawk (Mkx), Egr1, Six1, and Six2 were all suppressed in G9a-null tenocytes. The tendon-related genes Col1a1, tenomodulin, and periostin were also downregulated. Consistent with this, Western blot analysis showed that tenomodulin protein expression was significantly suppressed by G9a deletion. These results suggested that expression of the H3K9MTase G9a was essential for the differentiation and growth of tenocytes and that H3K9MTases may play important roles in tendinogenesis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, Zheng Y, Chen S, Cai T, Gao S, Zhu B. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 2015; 29:379-93. [PMID: 25637356 PMCID: PMC4335294 DOI: 10.1101/gad.254425.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GLP and G9a are major H3K9 dimethylases essential for mouse early embryonic development. Here, Liu et al. report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. In mouse embryonic stem cells harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes displayed inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Mice carrying the H3K9me1-binding mutant form of GLP displayed embryonic growth retardation and defects in calvaria bone formation. GLP and G9a are major H3K9 dimethylases and are essential for mouse early embryonic development. GLP and G9a both harbor ankyrin repeat domains that are capable of binding H3K9 methylation. However, the functional significance of their recognition of H3K9 methylation is unknown. Here, we report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. These stimulation events function in cis and are dependent on the H3K9 methylation binding activities of ankyrin repeat domains of GLP and G9a. Disruption of the H3K9 methylation-binding activity of GLP in mice causes growth retardation of embryos, ossification defects of calvaria, and postnatal lethality due to starvation of the pups. In mouse embryonic stem cells (ESCs) harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes, including Oct4 and Nanog, display inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Collectively, our study reveals a new activation mechanism for GLP and G9a that plays an important role in ESC differentiation and mouse viability.
Collapse
Affiliation(s)
- Nan Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province 130012, China;
| | - Yonghua Jiang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lingjun Meng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Xiong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zuodong Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaohua Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jia Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hong Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong Zheng
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bing Zhu
- National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
49
|
Campbell CL, Collins RT, Zarate YA. Severe neonatal presentation of Kleefstra syndrome in a patient with hypoplastic left heart syndrome and 9q34.3 microdeletion. ACTA ACUST UNITED AC 2014; 100:985-90. [DOI: 10.1002/bdra.23324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Candace L. Campbell
- University of Arkansas for Medical Sciences; Department of Pediatrics; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Division of Cardiology; Little Rock Arkansas
| | - R. Thomas Collins
- University of Arkansas for Medical Sciences; Department of Pediatrics; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Division of Cardiology; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Department of Internal Medicine; Little Rock Arkansas
| | - Yuri A. Zarate
- University of Arkansas for Medical Sciences; Department of Pediatrics; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Division of Genetics; Little Rock Arkansas
| |
Collapse
|
50
|
Chen E, Gigek C, Rosenfeld J, Diallo A, Maussion G, Chen G, Vaillancourt K, Lopez J, Crapper L, Poujol R, Shaffer L, Bourque G, Ernst C. Molecular convergence of neurodevelopmental disorders. Am J Hum Genet 2014; 95:490-508. [PMID: 25307298 DOI: 10.1016/j.ajhg.2014.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/19/2014] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are caused by mutations in diverse genes involved in different cellular functions, although there can be crosstalk, or convergence, between molecular pathways affected by different NDDs. To assess molecular convergence, we generated human neural progenitor cell models of 9q34 deletion syndrome, caused by haploinsufficiency of EHMT1, and 18q21 deletion syndrome, caused by haploinsufficiency of TCF4. Using next-generation RNA sequencing, methylation sequencing, chromatin immunoprecipitation sequencing, and whole-genome miRNA analysis, we identified several levels of convergence. We found mRNA and miRNA expression patterns that were more characteristic of differentiating cells than of proliferating cells, and we identified CpG clusters that had similar methylation states in both models of reduced gene dosage. There was significant overlap of gene targets of TCF4 and EHMT1, whereby 8.3% of TCF4 gene targets and 4.2% of EHMT1 gene targets were identical. These data suggest that 18q21 and 9q34 deletion syndromes show significant molecular convergence but distinct expression and methylation profiles. Common intersection points might highlight the most salient features of disease and provide avenues for similar treatments for NDDs caused by different genetic mutations.
Collapse
|