1
|
Bradley EW. Boosting Endogenous BMP2 Levels Accelerates Fracture Healing: Commentary on an article by Govindaraj Ellur, PhD, et al.: "4-Aminopyridine Promotes BMP2 Expression and Accelerates Tibial Fracture Healing in Mice". J Bone Joint Surg Am 2025; 107:e45. [PMID: 40332233 DOI: 10.2106/jbjs.24.01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
|
2
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
3
|
Labeille RO, Elliott J, Abdulla H, Seemann F. Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes. Metabolites 2024; 14:525. [PMID: 39452906 PMCID: PMC11509322 DOI: 10.3390/metabo14100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Chronological aging of bone tissues is a multi-faceted process that involves a complex interplay of cellular, biochemical, and molecular mechanisms. Metabolites play a crucial role for bone homeostasis, and a changed metabolome is indicative for bone aging, although bone metabolomics are currently understudied. The vertebral bone metabolome of the model fish Japanese medaka (Oryzias latipes) was employed to identify sex-specific markers of bone aging. 265 and 213 metabolites were differently expressed in 8-month-old vs. 3-month-old female and male fish, respectively. The untargeted metabolomics pathway enrichment analysis indicated a sex-independent increased hyperglycosylation in 8-month-old individuals. The upregulated glycosylation pathways included glycosphingolipids, glycosylphosphatidylinositol anchors, O-glycans, and N-glycans. UDP-sugars and sialic acid were found to be major drivers in regulating glycosylation pathways and metabolic flux. The data indicate a disruption of protein processing at the endoplasmic reticulum and changes in O-glycan biosynthesis. Dysregulation of glycosylation, particularly through the hexosamine biosynthetic pathway, may contribute to bone aging and age-related bone loss. The results warrant further investigation into the functional involvement of increased glycosylation in bone aging. The potential of glycan-based biomarkers as early warning systems for bone aging should be explored and would aid in an advanced understanding of the progression of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Remi O. Labeille
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Justin Elliott
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Hussain Abdulla
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
4
|
Vu EK, Karkache IY, Pham A, Koroth J, Bradley EW. Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice. J Cell Mol Med 2024; 28:e70081. [PMID: 39261913 PMCID: PMC11390340 DOI: 10.1111/jcmm.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Diet-induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti-inflammatory agents. Prior reports show that myeloid progenitor-directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high-fat/high-sugar (HFD) diet. Micro-CT analyses demonstrated that HFD-feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3-ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3-ablated cells exhibited a four-fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2-positve cells within bone defects was significantly higher in Hdac3-deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet-induced obesity, possibly through increased production of CCL2 by macrophages within the defect.
Collapse
Affiliation(s)
- Elizabeth K. Vu
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ismael Y. Karkache
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
| | - Anthony Pham
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Jinsha Koroth
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Elizabeth W. Bradley
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
- Stem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
5
|
Tan WH, Winkler C. Lineage Tracing of Bone Cells in the Regenerating Fin and During Repair of Bone Lesions. Methods Mol Biol 2024; 2707:99-110. [PMID: 37668907 DOI: 10.1007/978-1-0716-3401-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Small teleost fishes such as zebrafish and medaka show remarkable regeneration capabilities upon tissue injury or amputation. To elucidate cellular mechanisms of teleost tissue repair and regeneration processes, the Cre/LoxP recombination system for cell lineage tracing is a widely used technique. In this chapter, we describe protocols used for inducible Cre/LoxP recombination-mediated lineage tracing of osteoblast progenitors during medaka fin regeneration as well as during the repair of osteoporosis-like bone lesions in the medaka vertebral column. Our approach can be adapted for lineage tracing of other cell populations in the regenerating teleost fin or in other tissues undergoing repair.
Collapse
Affiliation(s)
- Wen Hui Tan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Qiu M, Li C, Cai Z, Li C, Yang K, Tulufu N, Chen B, Cheng L, Zhuang C, Liu Z, Qi J, Cui W, Deng L. 3D Biomimetic Calcified Cartilaginous Callus that Induces Type H Vessels Formation and Osteoclastogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207089. [PMID: 36999832 PMCID: PMC10238192 DOI: 10.1002/advs.202207089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Indexed: 06/04/2023]
Abstract
The formation of a calcified cartilaginous callus (CACC) is crucial during bone repair. CACC can stimulate the invasion of type H vessels into the callus to couple angiogenesis and osteogenesis, induce osteoclastogenesis to resorb the calcified matrix, and promote osteoclast secretion of factors to enhance osteogenesis, ultimately achieving the replacement of cartilage with bone. In this study, a porous polycaprolactone/hydroxyapatite-iminodiacetic acid-deferoxamine (PCL/HA-SF-DFO) 3D biomimetic CACC is developed using 3D printing. The porous structure can mimic the pores formed by the matrix metalloproteinase degradation of the cartilaginous matrix, HA-containing PCL can mimic the calcified cartilaginous matrix, and SF anchors DFO onto HA for the slow release of DFO. The in vitro results show that the scaffold significantly enhances angiogenesis, promotes osteoclastogenesis and resorption by osteoclasts, and enhances the osteogenic differentiation of bone marrow stromal stem cells by promoting collagen triple helix repeat-containing 1 expression by osteoclasts. The in vivo results show that the scaffold significantly promotes type H vessels formation and the expression of coupling factors to promote osteogenesis, ultimately enhancing the regeneration of large-segment bone defects in rats and preventing dislodging of the internal fixation screw. In conclusion, the scaffold inspired by biological bone repair processes effectively promotes bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Cuidi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Kai Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Bo Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Cheng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chengyu Zhuang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhihong Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
7
|
Brimsholm M, Fjelldal PG, Hansen T, Trangerud C, Knutsen GM, Asserson CF, Koppang EO, Bjørgen H. Anatomical and pathological characteristics of ribs in the Atlantic salmon (Salmo salar L.) and its relevance to soft tissue changes. Anat Histol Embryol 2023; 52:421-436. [PMID: 36637047 DOI: 10.1111/ahe.12900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Studies on the anatomical and pathological characteristics of ribs in farmed Atlantic salmon (Salmo salar L.) are warranted due to their possible association with red and melanized focal changes (RFC and MFC) in the fillet, a major quality and animal welfare concern. In this work, we provide an anatomical description of ribs based on radiographical and histological analyses. We also address various pathological rib changes and their association to RFC and MFC. In total, 129 fish were investigated; captured wild (n = 10) and hatchery reared (n = 119) Atlantic salmon (3.5-6.1 kg). The fish were selected based on the macroscopic presence of RFC, MFC or no changes (controls). Radiographic results revealed costal abnormalities in all fish groups. By histological investigations of the variations herein, our results provide new insight into the anatomical characteristics including vascularization within the ribs; a potential site for haemorrhage following costal fractures. Costal fractures were detected by radiology in 40 of 129 samples (RFC: 38.4%, MFC: 47.2%, controls: 9.5 %). A statistically significant association was found between costal fractures and red (p = 0.007) and melanized changes (p = 0.000). However, red and melanized changes were also observed in samples with no costal fractures (n = 45), indicating that also other factors influence the development of RFC/MFC.
Collapse
Affiliation(s)
- Malin Brimsholm
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Tom Hansen
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Cathrine Trangerud
- Unit of Radiology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
8
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
9
|
Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Sci Rep 2021; 11:10298. [PMID: 33986415 PMCID: PMC8119462 DOI: 10.1038/s41598-021-89672-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Ultrasound stimulation is a type of mechanical stress, and low-intensity pulsed ultrasound (LIPUS) devices have been used clinically to promote fracture healing. However, it remains unclear which skeletal cells, in particular osteocytes or osteoblasts, primarily respond to LIPUS stimulation and how they contribute to fracture healing. To examine this, we utilized medaka, whose bone lacks osteocytes, and zebrafish, whose bone has osteocytes, as in vivo models. Fracture healing was accelerated by ultrasound stimulation in zebrafish, but not in medaka. To examine the molecular events induced by LIPUS stimulation in osteocytes, we performed RNA sequencing of a murine osteocytic cell line exposed to LIPUS. 179 genes reacted to LIPUS stimulation, and functional cluster analysis identified among them several molecular signatures related to immunity, secretion, and transcription. Notably, most of the isolated transcription-related genes were also modulated by LIPUS in vivo in zebrafish. However, expression levels of early growth response protein 1 and 2 (Egr1, 2), JunB, forkhead box Q1 (FoxQ1), and nuclear factor of activated T cells c1 (NFATc1) were not altered by LIPUS in medaka, suggesting that these genes are key transcriptional regulators of LIPUS-dependent fracture healing via osteocytes. We therefore show that bone-embedded osteocytes are necessary for LIPUS-induced promotion of fracture healing via transcriptional control of target genes, which presumably activates neighboring cells involved in fracture healing processes.
Collapse
|
10
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
11
|
Anastasio AT, Paniagua A, Diamond C, Ferlauto HR, Fernandez-Moure JS. Nanomaterial Nitric Oxide Delivery in Traumatic Orthopedic Regenerative Medicine. Front Bioeng Biotechnol 2021; 8:592008. [PMID: 33537289 PMCID: PMC7849904 DOI: 10.3389/fbioe.2020.592008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Achieving bone fracture union after trauma represents a major challenge for the orthopedic surgeon. Fracture non-healing has a multifactorial etiology and there are many risk factors for non-fusion. Environmental factors such as wound contamination, infection, and open fractures can contribute to non-healing, as can patient specific factors such as poor vascular status and improper immunologic response to fracture. Nitric oxide (NO) is a small, neutral, hydrophobic, highly reactive free radical that can diffuse across local cell membranes and exert paracrine functions in the vascular wall. This molecule plays a role in many biologic pathways, and participates in wound healing through decontamination, mediating inflammation, angiogenesis, and tissue remodeling. Additionally, NO is thought to play a role in fighting wound infection by mitigating growth of both Gram negative and Gram positive pathogens. Herein, we discuss recent developments in NO delivery mechanisms and potential implications for patients with bone fractures. NO donors are functional groups that store and release NO, independent of the enzymatic actions of NOS. Donor molecules include organic nitrates/nitrites, metal-NO complexes, and low molecular weight NO donors such as NONOates. Numerous advancements have also been made in developing mechanisms for localized nanomaterial delivery of nitric oxide to bone. NO-releasing aerogels, sol- gel derived nanomaterials, dendrimers, NO-releasing micelles, and core cross linked star (CCS) polymers are all discussed as potential avenues of NO delivery to bone. As a further target for improved fracture healing, 3d bone scaffolds have been developed to include potential for nanoparticulated NO release. These advancements are discussed in detail, and their potential therapeutic advantages are explored. This review aims to provide valuable insight for translational researchers who wish to improve the armamentarium of the feature trauma surgeon through use of NO mediated augmentation of bone healing.
Collapse
Affiliation(s)
| | - Ariana Paniagua
- Duke University School of Medicine, Durham, NC, United States
| | - Carrie Diamond
- Duke University School of Medicine, Durham, NC, United States
| | | | | |
Collapse
|
12
|
Skeletal Anomalies in Senegalese Sole ( Solea senegalensis, Kaup) Fed with Different Commercial Enriched Artemia: A Study in Postlarvae and Juveniles. Animals (Basel) 2020; 11:ani11010022. [PMID: 33374441 PMCID: PMC7823604 DOI: 10.3390/ani11010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Enrichment products for Artemia spp. metanauplii are commonly used to enhance the nutritional quality of this live prey offered to fish during conventional larval feeding. However, there are few reports on the influence of such enrichments on the development of skeletal anomalies in Senegalese sole, a major problem for this flatfish aquaculture. This study evaluated the frequency of vertebral anomalies in postlarvae and juvenile Senegalese sole fed with Artemia spp. metanauplii enriched with four commercial products (EA, EB, EC, and ED) in a fish farm. The results show a high percentage of individuals with skeletal anomalies in every dietary group. Some types of anomalies were very frequent in all diet-age groups, indicating the presence of a common trend or mainstay of vertebral deformities. Despite some variations in the frequency of anomalies among diets, it was not possible to establish a clear effect of the enrichment products on the development of vertebral deformities at both rearing stages, probably for the “masking effect” of other rearing conditions. The multivariate statistical technique, as the correspondence analysis, indicated a different anomaly pattern among ages, where bone adaptative responses may be implied. Abstract The high incidence of skeletal anomalies in Senegalese sole (Solea senegalensis) still constitutes a bottleneck constraining its production. There are diverse commercially available products for the enrichment of live preys, but few reports of their influence on skeletogenesis in Senegalese sole. This study evaluated the presence of vertebral anomalies in postlarvae and juvenile Senegalese sole fed with Artemia spp. metanauplii enriched with four commercial products (EA, EB, EC, and ED) in a fish farm. The most frequent alterations consisted of deformations of the neural/haemal arches and spines and fusions and deformations of hypurals, epural, or parhypural. The correspondence analysis ordered fish from each age in separated semiaxis, indicating the presence of different anomaly patterns for the two sampled stages. The results showed only very light changes in the frequency of vertebral abnormalities among tested enrichment products, i.e., individuals from EC and EA lots displayed less vertebral body anomalies and/or vertebral column deviations at 31 and 105 days after hatching, respectively. The existence of a large shared malformation pattern in all the experimental groups leads to impute to the rearing conditions as the main driving factor of the onset of such group of anomalies, probably masking some dietary effect.
Collapse
|
13
|
Kobayashi-Sun J, Yamamori S, Kondo M, Kuroda J, Ikegame M, Suzuki N, Kitamura KI, Hattori A, Yamaguchi M, Kobayashi I. Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale. Commun Biol 2020; 3:190. [PMID: 32327701 PMCID: PMC7181839 DOI: 10.1038/s42003-020-0925-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Differentiation of osteoclasts (OCs) from hematopoietic cells requires cellular interaction with osteoblasts (OBs). Due to the difficulty of live-imaging in the bone, however, the cellular and molecular mechanisms underlying intercellular communication involved in OC differentiation are still elusive. Here, we develop a fracture healing model using the scale of trap:GFP; osterix:mCherry transgenic zebrafish to visualize the interaction between OCs and OBs. Transplantation assays followed by flow cytometric analysis reveal that most trap:GFPhigh OCs in the fractured scale are detected in the osterix:mCherry+ fraction because of uptake of OB-derived extracellular vesicles (EVs). In vivo live-imaging shows that immature OCs actively interact with osterix:mCherry+ OBs and engulf EVs prior to convergence at the fracture site. In vitro cell culture assays show that OB-derived EVs promote OC differentiation via Rankl signaling. Collectively, these data suggest that EV-mediated intercellular communication with OBs plays an important role in the differentiation of OCs in bone tissue.
Collapse
Affiliation(s)
- Jingjing Kobayashi-Sun
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shiori Yamamori
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mao Kondo
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Junpei Kuroda
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, 700-8525, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa, 927-0553, Japan
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-0942, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| | - Masaaki Yamaguchi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
14
|
Dodo Y, Chatani M, Azetsu Y, Hosonuma M, Karakawa A, Sakai N, Negishi-Koga T, Tsuji M, Inagaki K, Kiuchi Y, Takami M. Myelination during fracture healing in vivo in myelin protein zero (p0) transgenic medaka line. Bone 2020; 133:115225. [PMID: 31923703 DOI: 10.1016/j.bone.2020.115225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
During the fracture healing process, osteoblasts and osteoclasts, as well as the nervous system are known to play important roles for signaling in the body. Glia cells contribute to the healing process by myelination, which can increase the speed of signals transmitted between neurons. However, the behavior of myelinating cells at a fracture site remains unclear. We developed a myelin protein zero (mpz)-EGFP transgenic medaka line for tracing myelinating cells. Mpz-enhanced green fluorescence protein (EGFP)-positive (mpz+) cells are driven by the 2.9-kb promoter of the medaka mpz gene, which is distributed throughout the nervous system, such as the brain, spinal cord, lateral line, and peripheral nerves. In the caudal fin region, mpz+ cells were found localized parallel with the fin ray (bone) in the adult stage. mpz+ cells were not distributed with fli-DsRed positive (fli+) blood vessels, but with some nerve fibers, and were dyed with the anti-acetylated tubulin antibody. We then fractured one side of the caudal lepidotrichia in a caudal fin of mpz-EGFP medaka and found a unique phenomenon, in that mpz+ cells were accumulated at 1 bone away from the fracture site. This mpz+ cell accumulation phenomenon started from 4 days after fracture of the proximal bone. Thereafter, mpz+ cells became elongated from the proximal bone to the distal bone and finally showed a crosslink connection crossing the fracture site to the distal bone at 28 days after fracture. Finally, the effects of rapamycin, known as a mTOR inhibitor, on myelination was examined. Rapamycin treatment of mpz-EGFP/osterix-DsRed double transgenic medaka inhibited not only the crosslink connection of mpz+ cells but also osterix+ osteoblast accumulation at the fracture site, accompanied with a fracture healing defect. These findings indicated that mTOR signaling plays important roles in bone formation and neural networking during fracture healing. Taken together, the present results are the first to show the dynamics of myelinating cells in vivo.
Collapse
Affiliation(s)
- Yusuke Dodo
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan; Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan.
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Masahiro Hosonuma
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Takako Negishi-Koga
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan; Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
15
|
Zandi M, Dehghan A, Bigonah N, Doulati S, Mohammad Gholi Mezerji N. Histological assessment of the effects of teriparatide therapy on mandibular fracture healing: A preclinical study. J Craniomaxillofac Surg 2020; 48:211-216. [PMID: 32014386 DOI: 10.1016/j.jcms.2020.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE This study was performed to evaluate the effects of teriparatide therapy on mandibular fracture healing in a rat model. SUBJECTS AND METHODS A unilateral mandibular fracture, 5 mm posterior to the last molar tooth, was surgically created in 120 rats. Half of the animals received a daily subcutaneous injection of 2 μg/kg teriparatide while the control rats received normal saline, starting from the day of surgery until sacrifice. Twenty rats from each group were sacrificed on postoperative days 10, 20, and 30. The healing process was evaluated histologically and scored using a grading system (ranging from 1 to 10). RESULTS On day 10 the fracture gaps of the control and teriparatide groups were mainly filled with fibrous tissue and new trabecular bone, respectively. On day 20 a large amount of new trabecular bone and some areas of fibrocartilaginous tissue were seen in the fracture gaps of the control rats. In the teriparatide group the fracture area was entirely filled with trabecular bone, which in some areas had been replaced by mature bone. On day 30 the fracture gaps of the control group were entirely bridged by new trabecular bone, while in the teriparatide group they was predominantly filled with mature bone. At all three time-points the mean healing scores for the teriparatide group (6.20 ± 0.70, 8.50 ± 0.69, and 9.85 ± 0.37, respectively) were significantly higher (p < 0.001) than for the control group (4.90 ± 0.55, 7.15 ± 0.59, and 8.90 ± 0.64, respectively). CONCLUSION Based on the results of this study, teriparatide should be tested in humans in order to establish whether comparable results can be achieved.
Collapse
Affiliation(s)
- Mohammad Zandi
- Department of Oral and Maxillofacial Surgery, Hamadan University of Medical Sciences, Hamadan, Iran; Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Dehghan
- Department of Pathology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nemat Bigonah
- Department of Oral and Maxillofacial Surgery, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Shideh Doulati
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
16
|
Goel PN, Moharrer Y, Hebb JH, Egol AJ, Kaur G, Hankenson KD, Ahn J, Ashley JW. Suppression of Notch Signaling in Osteoclasts Improves Bone Regeneration and Healing. J Orthop Res 2019; 37:2089-2103. [PMID: 31166033 PMCID: PMC6739141 DOI: 10.1002/jor.24384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Owing to the central role of osteoclasts in bone physiology and remodeling, manipulation of their maturation process provides a potential therapeutic strategy for treating bone diseases. To investigate this, we genetically inhibited the Notch signaling pathway in the myeloid lineage, which includes osteoclast precursors, using a dominant negative form of MAML (dnMAML) that inhibits the transcriptional complex required for downstream Notch signaling. Osteoclasts derived from dnMAML mice showed no significant differences in early osteoclastic gene expression compared to the wild type. Further, these demonstrated significantly lowered resorption activity using bone surfaces while retaining their osteoblast stimulating ability using ex vivo techniques. Using in vivo approaches, we detected significantly higher bone formation rates and osteoblast gene expression in dnMAML cohorts. Further, these mice exhibited increased bone/tissue mineral density compared to wild type and larger bony calluses in later stages of fracture healing. These observations suggest that therapeutic suppression of osteoclast Notch signaling could reduce, but not eliminate, osteoclastic resorption without suppression of restorative bone remodeling and, therefore, presents a balanced paradigm for increasing bone formation, regeneration, and healing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2089-2103, 2019.
Collapse
Affiliation(s)
- Peeyush N Goel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Yasaman Moharrer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - John H Hebb
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Georgetown University School of Medicine, Washington D.C
| | - Alexander J Egol
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | | | | | - Jaimo Ahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Co-corresponding Author: Jaimo Ahn, MD, PhD, FACS, FAOA, Advisory Dean, MSTP Steering Committee, Perelman School of Medicine, Co-Director, Orthopaedic Trauma, University of Pennsylvania Health System, Perelman School of Medicine, University of Pennsylvania, Investigator, Translational Musculoskeletal Research Center, Philadelphia Veterans Affairs Medical Center, 3737 Market Street, Floor 6, Philadelphia, PA-19104, Phone # +1 (215)-662-3340, Fax # +1 (215)-349-5890,
| | - Jason W Ashley
- Eastern Washington University, Cheney, WA,Corresponding Author: Jason Waid Ashley, PhD, Assistant Professor, Biology Department, 526 5th Street, SCI236, Eastern Washington University, Cheney, WA 99004, Phone # +1(509)-359-4665,
| |
Collapse
|
17
|
Treatment with synthetic glucocorticoid impairs bone metabolism, as revealed by in vivo imaging of osteoblasts and osteoclasts in medaka fish. Biomed Pharmacother 2019; 118:109101. [PMID: 31315073 DOI: 10.1016/j.biopha.2019.109101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/28/2023] Open
Abstract
Glucocorticoids (GCs) play an important role in the stress reaction and function in the development of multiple tissues in our body. When given chronically in supraphysiologic doses, GCs are associated with orthodontic tooth movement, with serious side effects and particularly adverse effects on bone metabolism. However, the effects of steroids on bone cell dynamics are incompletely understood. Therefore, in this present study we examined the participation of osteoblasts and osteoclasts in osterix-DsRed/TRAP-EGFP double transgenic (Tg) medaka treated with synthetic GCs. Chronic continuous administration of prednisolone (PN) significantly reduced the fluorescence signals in the whole body of both osterix-DsRed and TRAP-EGFP medaka at 18 days, and those of the pharyngeal bone and tooth region at 32 days. To examine the capacity of the medaka for fracture healing during chronic administration of PN, we caused a fracture of a part of the bony fin ray at 18 days after the initiation of PN continuous administration. The bone fracture healing was significantly delayed by 32 days, accompanied by decreased signal area of both osterix-DsRed and TRAP-EGFP compared with that of the control. Next, to investigate the effect of acute administration of GC on the fracture healing, we started administration of dexamethasone (DX) immediately after the bone fracture, and this administration lasted during the 11 days of fracture healing. The results showed that the TRAP-EGFP-positive osteoclasts were reduced in area, but not the osterix-DsRed-positive osteoblasts. Lastly, to confirm the function of the glucocorticoid receptor in bone healing, we generated glucocorticoid receptor 2-deficient medaka (gr2-/-). The fluorescent signal area of osterix-DsRed and TRAP-EGFP were increased at bone fracture sites in these fish, and DX treatment of them decreased the TRAP-EGFP signal area compared with that for the control fish. Our results indicate that GRs negatively regulated osteoclast recruitment and the accumulation of osteoblasts in bone fracture healing.
Collapse
|
18
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Fjelldal PG, van der Meeren T, Fraser TWK, Sambraus F, Jawad L, Hansen TJ. Radiological changes during fracture and repair in neural and haemal spines of Atlantic cod (Gadus morhua). JOURNAL OF FISH DISEASES 2018; 41:1871-1875. [PMID: 30294918 DOI: 10.1111/jfd.12899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Although spinal injuries in fish have been associated with electric stimuli applied during electrofishing and electrotrawling, bone fracture and repair in the axial skeleton have yet not been studied. To study this, we radiographed a group (n = 64) of individually tagged farmed cod twice, with a 1-year interval (∼36 cm at first and ∼ 50 cm at second inspection). The study focus was on the neural and haemal spines. These structures are un-paired and are not covered by other bones laterally, making them useful for radiological studies on axial skeletal fracture in live fish. At the first examination, four animals showed radiological changes in their neural and haemal spines. Two animals had fractures, and two had callus formations. One year later, at the second radiological examination, the fractures had developed into calluses or into normal morphology, and calluses either remained as calluses or had developed into normal morphology. A further 14 animals that were all normal at the first inspection had developed changes in their neural and haemal spines, both fractures and callus formations. This is the first record of spontaneous bone fracture in fish; the fractures observed occurred under normal farming conditions and were not induced. The results show that cod have a functional fracture healing mechanism in their neural and haemal spines. The findings are discussed in relation to fish hyperostosis.
Collapse
Affiliation(s)
- Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Thomas W K Fraser
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Florian Sambraus
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Tom Johnny Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
20
|
Ando K, Shibata E, Hans S, Brand M, Kawakami A. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance. Dev Cell 2017; 43:643-650.e3. [PMID: 29103952 DOI: 10.1016/j.devcel.2017.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration.
Collapse
Affiliation(s)
- Kazunori Ando
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Stefan Hans
- Developmental Genetics, DFG-Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Michael Brand
- Developmental Genetics, DFG-Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
21
|
de Azevedo AM, Losada AP, Barreiro A, Barreiro JD, Ferreiro I, Riaza A, Vázquez S, Quiroga MI. Skeletal anomalies in reared Senegalese sole Solea senegalensis juveniles: a radiographic approach. DISEASES OF AQUATIC ORGANISMS 2017; 124:117-129. [PMID: 28425425 DOI: 10.3354/dao03110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reared Senegalese sole Solea senegalensis Kaup show a high incidence of vertebral anomalies; however, little is known about its skeletal anomaly profile in the later farming phases. The purpose of this study was to provide a detailed description and quantification of the most common skeletal anomalies in reared Senegalese sole in the juvenile stage by means of computed radiography. A total of 374 Senegalese sole were classified according to the external morphology of the fish as normal or altered and then radiographed in latero-lateral and in dorso-ventral projections. Radiographic evaluation of anomalies focused especially on vertebral body anomalies (VBA) and vertebral column deviations (VCD). The 2 orthogonal projections provided a more complete visualization of the skeleton. Approximately 75% of the individuals showed at least 1 anomaly, while VBA and/or VCD were detected in 48.9% of the specimens. Regarding external morphology, 88% of the fish were categorized as normal, although about 72% of these normal fish displayed abnormalities in radiographies. The most frequent anomalies consisted of deformations of the caudal complex plates (hypurals, parhypural and epural), preurals and caudal vertebrae. Scoliosis was the most prevalent among VCD, affecting the caudal area in almost 15% of the individuals. The anomaly profile at the juvenile stages showed some differences compared to what has been reported previously in earlier stages of development. In light of these results, further investigation into the progression of skeletal anomalies over time and the causative factors at later stages is required.
Collapse
Affiliation(s)
- A M de Azevedo
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Seemann F, Jeong CB, Zhang G, Wan MT, Guo B, Peterson DR, Lee JS, Au DWT. Ancestral benzo[a]pyrene exposure affects bone integrity in F3 adult fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:127-134. [PMID: 28061388 DOI: 10.1016/j.aquatox.2016.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
Benzo[a]pyrene (BaP) at an environmentally relevant concentration (1μg/L) has previously been shown to affect bone development in a transgenerational manner in F3 medaka (Oryzias latipes) larvae (17dph). Here, we provide novel histomorphometric data demonstrating that the impaired bone formation at an early life stage is not recoverable and can result in a persistent transgenerational impairment of bone metabolism in F3 adult fish. A decrease in bone thickness and the occurrence of microcracks in ancestrally BaP-treated adult male fish (F3) were revealed by MicroCt measurement and histopathological analysis. The expression of twenty conserved bone miRNAs were screened in medaka and their relative expression (in the F3 ancestral BaP treatment vs the F3 control fish) were determined by quantitative real-time PCR. Attempt was made to link bone miRNA expression with the potential target bone mRNA expression in medaka. Five functional pairs of mRNA/miRNA were identified (Osx/miR-214, Col2a1b/miR-29b, Runx2/miR-204, Sox9b/miR-199a-3p, APC/miR-27b). Unique knowledge of bone-related miRNA expression in medaka in response to ancestral BaP-exposure in the F3 generation is presented. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant which exerts a far-reaching impact on fish survival and fitness. Given that the underlying mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on skeletal disorders in mammals/humans.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Miles Teng Wan
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Drew Ryan Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Doris Wai-Ting Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong.
| |
Collapse
|
23
|
Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity. Sci Rep 2016; 6:39545. [PMID: 28004797 PMCID: PMC5177882 DOI: 10.1038/srep39545] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts.
Collapse
|
24
|
Paul S, Crump JG. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BONEKEY REPORTS 2016; 5:853. [PMID: 27867499 DOI: 10.1038/bonekey.2016.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023]
Abstract
Three major mesenchymal cell types have important roles in determining the shapes of vertebrate animals: bone-producing osteoblasts, cartilage-producing chondrocytes, and fat-producing adipocytes. Although often considered discrete cell types, accumulating evidence is revealing mesenchymal cells of intermediate identities and interconversion of cell types. Such plasticity is particularly evident during adult skeletal repair. In this Review, we highlight recent work in zebrafish showing a role for hybrid cartilage-bone cells in large-scale regeneration of the adult jawbone, as well as their origins in the periosteum. An emerging theme is that the unique mechanical and signaling environment of the adult wound causes skeletal cell differentiation to diverge from the discrete lineages seen during development, which may aid in rapid and extensive regeneration of bone.
Collapse
Affiliation(s)
- Sandeep Paul
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|
25
|
Takeyama K, Chatani M, Inohaya K, Kudo A. TGFβ-2 signaling is essential for osteoblast migration and differentiation during fracture healing in medaka fish. Bone 2016; 86:68-78. [PMID: 26947892 DOI: 10.1016/j.bone.2016.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/15/2023]
Abstract
TGFβ is known as a canonical coupling factor based on its effects on bone formation and bone resorption. There are 3 different isoforms of it related to bone metabolism in mammals. TGFβ function in vivo is complicated, and each isoform shows a different function. Since TGFβs are secreted during inflammation accompanied by the release of latent TGFβ from inside of the bones where they are stored in the extracellular matrix, TGFβ function is potentially related to fracture healing. Although a few reports examined the TGFβ expression during fracture healing, the function of TGFβ in this process is poorly understood. To investigate TGFβ function during fracture healing in vivo, we used the fracture healing model of the medaka fish, which enabled us to observe the behavior and function of living cells in response to a bone-specific injury. RNA in-situ hybridization analysis showed that only tgfβ-2 of the 4 TGFβ isoforms in medaka was expressed in the bone-forming region. To examine the TGFβ-2 function for bone formation by osteoblasts, we used a medaka transgenic line, Tg (type X collagen: GFP); and the results revealed that type X collagen-positive immature osteoblasts migrated to the fracture site and differentiated to osterix-positive osteoblasts. However, only a few type X collagen-positive osteoblasts exhibited BrdU incorporation after the fracture. Then we inhibited TGFβ signaling by using a chemical TGFβ receptor kinase inhibitor (SB431542), and demonstrated that inhibition of TGFβ strongly impaired osteoblast migration and differentiation. In addition, this TGFβ inhibitor reduced the RANKL expression and caused a delay of osteoclast differentiation. Our findings thus demonstrated that TGFβ-2 functioned specifically during fracture healing to stimulate the migration of osteoblasts as well as the differentiation of osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Kazuhiro Takeyama
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Masahiro Chatani
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Keiji Inohaya
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
26
|
Yu T, Witten PE, Huysseune A, Buettner A, To TT, Winkler C. Live imaging of osteoclast inhibition by bisphosphonates in a medaka osteoporosis model. Dis Model Mech 2015; 9:155-63. [PMID: 26704995 PMCID: PMC4770141 DOI: 10.1242/dmm.019091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
Osteoclasts are bone-resorbing cells derived from the monocyte/macrophage lineage. Excess osteoclast activity leads to reduced bone mineral density, a hallmark of diseases such as osteoporosis. Processes that regulate osteoclast activity are therefore targeted in current osteoporosis therapies. To identify and characterize drugs for treatment of bone diseases, suitable in vivo models are needed to complement cell-culture assays. We have previously reported transgenic medaka lines expressing the osteoclast-inducing factor receptor activator of nuclear factor κB ligand (Rankl) under control of a heat shock-inducible promoter. Forced Rankl expression resulted in ectopic osteoclast formation, as visualized by live imaging in fluorescent reporter lines. This led to increased bone resorption and a dramatic reduction of mineralized matrix similar to the situation in humans with osteoporosis. In an attempt to establish the medaka as an in vivo model for osteoporosis drug screening, we treated Rankl-expressing larvae with etidronate and alendronate, two bisphosphonates commonly used in human osteoporosis therapy. Using live imaging, we observed an efficient, dose-dependent inhibition of osteoclast activity, which resulted in the maintenance of bone integrity despite an excess of osteoclast formation. Strikingly, we also found that bone recovery was efficiently promoted after inhibition of osteoclast activity and that osteoblast distribution was altered, suggesting effects on osteoblast-osteoclast coupling. Our data show that transgenic medaka lines are suitable in vivo models for the characterization of antiresorptive or bone-anabolic compounds by live imaging and for screening of novel osteoporosis drugs.
Collapse
Affiliation(s)
- Tingsheng Yu
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| | | | - Ann Huysseune
- Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Anita Buettner
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| | - Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| |
Collapse
|
27
|
Seemann F, Peterson DR, Witten PE, Guo BS, Shanthanagouda AH, Ye RR, Zhang G, Au DWT. Insight into the transgenerational effect of benzo[a]pyrene on bone formation in a teleost fish (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:60-67. [PMID: 26456900 DOI: 10.1016/j.cbpc.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023]
Abstract
Recent cross-generational studies in teleost fish have raised the awareness that high levels of benzo[a]pyrene (BaP) could affect skeletal integrity in the directly exposed F0 and their F1-F2. However, no further details were provided about the causes for abnormalities on the molecular and cellular level and the persistence of such sub-organismal impairments at the transgenerational scale (beyond F2). Adult Oryzias latipes were exposed to 1μg/L BaP for 21days. The F1-F3 were examined for skeletal deformities, histopathological alterations of vertebral bodies and differential expression of key genes of bone metabolism. Significant increase of dorsal-ventral vertebral compression was evident in ancestrally exposed larvae. Histopathological analysis revealed abnormal loss of notochord sheath, a lack of notochord epithelial integrity, reduced bone tissue and decreased osteoblast abundance. A significant downregulation of ATF4 and/or osterix and a high biological variability of COL10, coupled with a significant deregulation of SOX9a/b in the F1-F3 suggest that ancestral BaP exposure most likely perturbed chordoblasts, chondroblast and osteoblast differentiation, resulting in defective notochord sheath repair and rendering the vertebral column more vulnerable to compression. The present findings provide novel molecular and cellular insights into BaP-induced transgenerational bone impairment in the unexposed F3. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant, which exerts a far-reaching impact on fish survival and fitness. Given that basic mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on the genesis of skeletal diseases in humans.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - P Eckhard Witten
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bao-Sheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Adamane H Shanthanagouda
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Rui R Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
28
|
Blum N, Begemann G. Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration. Development 2015; 142:2894-903. [PMID: 26253409 DOI: 10.1242/dev.120204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 07/27/2015] [Indexed: 12/25/2022]
Abstract
Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineage-specific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration, osteoblasts revert from a non-cycling, mature state to a cycling, preosteoblastic state to establish a pool of progenitors within the blastema. After several rounds of proliferation, preosteoblasts redifferentiate to produce new bone. Blastema formation and proliferation are driven by the continued synthesis of retinoic acid (RA). Here, we find that osteoblast dedifferentiation and redifferentiation are inhibited by RA signaling, and we uncover how the bone regenerative program is achieved against a background of massive RA synthesis. Stump osteoblasts manage to contribute to the blastema by upregulating expression of the RA-degrading enzyme cyp26b1. Redifferentiation is controlled by a presumptive gradient of RA, in which high RA levels towards the distal tip of the blastema suppress redifferentiation. We show that this might be achieved through a mechanism involving repression of Bmp signaling and promotion of Wnt/β-catenin signaling. In turn, cyp26b1(+) fibroblast-derived blastema cells in the more proximal regenerate serve as a sink to reduce RA levels, thereby allowing differentiation of neighboring preosteoblasts. Our findings reveal a mechanism explaining how the osteoblast regenerative program is protected from adverse crosstalk with neighboring fibroblasts that advances our understanding of the regulation of bone repair by RA.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany RTG1331, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|