1
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
2
|
DW14383 is an irreversible pan-FGFR inhibitor that suppresses FGFR-dependent tumor growth in vitro and in vivo. Acta Pharmacol Sin 2021; 42:1498-1506. [PMID: 33288861 PMCID: PMC8379184 DOI: 10.1038/s41401-020-00567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Fibroblast growth factor receptor (FGFR) is a promising anticancer target. Currently, most FGFR inhibitors lack sufficient selectivity and have nonnegligible activity against kinase insert domain receptor (KDR), limiting their feasibility due to the serious side effects. Notably, compensatory activation occurs among FGFR1-4, suggesting the urgent need to develop selective pan-FGFR1-4 inhibitors. Here, we explored the antitumor activity of DW14383, a novel irreversible FGFR1-4 inhibitor. DW14383 exhibited equivalently high potent inhibition against FGFR1, 2, 3 and 4, with IC50 values of less than 0.3, 1.1, less than 0.3, and 0.5 nmol/L, respectively. It is a selective FGFR inhibitor, exhibiting more than 1100-fold selectivity for FGFR1 over recombinant KDR, making it one of the most selective FGFR inhibitors over KDR described to date. Furthermore, DW14383 significantly inhibited cellular FGFR1-4 signaling, inducing G1/S cell cycle arrest, which in turn antagonized FGFR-dependent tumor cell proliferation. In contrast, DW14383 had no obvious antiproliferative effect against cancer cell lines without FGFR aberration, further confirming its selectivity against FGFR. In representative FGFR-dependent xenograft models, DW14383 oral administration substantially suppressed tumor growth by simultaneously inhibiting tumor proliferation and angiogenesis via inhibiting FGFR signaling. In summary, DW14383 is a promising selective irreversible pan-FGFR inhibitor with pan-tumor spectrum potential in FGFR1-4 aberrant cancers, which has the potential to overcome compensatory activation among FGFR1-4.
Collapse
|
3
|
Alternative pathways control actomyosin contractility in epitheliomuscle cells during morphogenesis and body contraction. Dev Biol 2020; 463:88-98. [PMID: 32361004 DOI: 10.1016/j.ydbio.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022]
Abstract
In adult Hydra, epitheliomuscle cells form the monolayered ecto- and endodermal epithelia. Their basal myonemes function as a longitudinal and circular muscle, respectively. Based on the observation that a Rho/Rock pathway, controlling the cell shape changes during detachment of Hydra buds, is not involved in body movement, at least two actomyosin compartments must exist in these cells: a basal one for body movement and a cortical one for cell shape changes. We therefore analyzed the regional and subcellular localization of the Ser19-phosphorylated myosin regulatory light chain (pMLC20). Along the body column, pMLC20 was detected strongly in the basal myonemes and weakly in the apical cell compartments of ectodermal epitheliomuscle cells. In cells of the bud base undergoing morphogenesis, pMLC20 was localized to intracellular stress fibers as well as to the apical and additionally to the lateral cortical compartment. Pharmacological inhibition revealed that pMLC20 is induced in these compartments by at least two independent pathways. In myonemes, MLC is phosphorylated mainly by myosin light chain kinase (MLCK). In contrast, the cortical apical and lateral MLC phosphorylation in constricting ectodermal cells of the bud base is stimulated via the Rho/ROCK pathway.
Collapse
|
4
|
What lies beneath: Hydra provides cnidarian perspectives into the evolution of FGFR docking proteins. Dev Genes Evol 2020; 230:227-238. [PMID: 32198667 PMCID: PMC7260276 DOI: 10.1007/s00427-020-00659-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/27/2020] [Indexed: 12/03/2022]
Abstract
Across the Bilateria, FGF/FGFR signaling is critical for normal development, and in both Drosophila and vertebrates, docking proteins are required to connect activated FGFRs with downstream pathways. While vertebrates use Frs2 to dock FGFR to the RAS/MAPK or PI3K pathways, the unrelated protein, downstream of FGFR (Dof/stumps/heartbroken), fulfills the corresponding function in Drosophila. To better understand the evolution of the signaling pathway downstream of FGFR, the available sequence databases were screened to identify Frs2, Dof, and other key pathway components in phyla that diverged early in animal evolution. While Frs2 homologues were detected only in members of the Bilateria, canonical Dof sequences (containing Dof, ankyrin, and SH2/SH3 domains) were present in cnidarians as well as bilaterians (but not in other animals or holozoans), correlating with the appearance of FGFR. Although these data suggested that Dof coupling might be ancestral, gene expression analysis in the cnidarian Hydra revealed that Dof is not upregulated in the zone of strong FGFRa and FGFRb expression at the bud base, where FGFR signaling controls detachment. In contrast, transcripts encoding other, known elements of FGFR signaling in Bilateria, namely the FGFR adaptors Grb2 and Crkl, which are acting downstream of Dof (and Frs2), as well as the guanyl nucleotide exchange factor Sos, and the tyrosine phosphatase Csw/Shp2, were strongly upregulated at the bud base. Our expression analysis, thus, identified transcriptional upregulation of known elements of FGFR signaling at the Hydra bud base indicating a highly conserved toolkit. Lack of transcriptional Dof upregulation raises the interesting question, whether Hydra FGFR signaling requires either of the docking proteins known from Bilateria.
Collapse
|
5
|
Courtial L, Picco V, Pagès G, Ferrier-Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res 2017; 6:577. [PMID: 28690832 PMCID: PMC5482343 DOI: 10.12688/f1000research.11365.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated protein kinase (ERK) signalling pathway controls key cellular processes, such as cell cycle regulation, cell fate determination and the response to external stressors. Although ERK functions are well studied in a variety of living organisms ranging from yeast to mammals, its functions in corals are still poorly known. The present work aims to give practical tools to study the expression level of ERK protein and the activity of the ERK signalling pathway in corals. The antibody characterisation experiment was performed five times and identical results were obtained. The present study validated the immune-reactivity of commercially available antibodies directed against ERK and its phosphorylated/activated forms on protein extracts of the reef-building coral
Stylophora pistillata.
Collapse
Affiliation(s)
- Lucile Courtial
- Marine Department, Centre Scientifique de Monaco, Monaco, MC-98000, Monaco.,Sorbonne Universités, Pierre and Marie Curie University, Paris, 75252, France.,Laboratoire d'Excellence, UMR ENTROPIE, Nouméa, 98848, New Caledonia
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, Monaco, MC-98000, Monaco
| | - Gilles Pagès
- Biomedical Department, Centre Scientifique de Monaco, Monaco, MC-98000, Monaco.,Institute for Research on Cancer and Aging of Nice (IRCAN), University Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Centre Antoine Lacassagne, Nice, 06189, France
| | | |
Collapse
|
6
|
Holz O, Apel D, Steinmetz P, Lange E, Hopfenmüller S, Ohler K, Sudhop S, Hassel M. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho-ROCK-myosin II signaling pathway to ensure formation of a basal constriction. Dev Dyn 2017; 246:502-516. [PMID: 28411398 PMCID: PMC5518445 DOI: 10.1002/dvdy.24508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/20/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023] Open
Abstract
Background:Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto‐ and endodermal epithelia is unknown. Results: Histological sections and staining of F‐actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F‐actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Conclusions: Our data suggest an essential role of FGFR and a Rho‐ROCK‐myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502–516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists Hydra bud detachment involves the separation of two intact epithelia without cell death. Remarkable cell shape changes and multicellular rosettes at the bud base indicate functional specification and strong mechanical forces. mRNA colocalization, phospho‐myosin analysis and similar phenotypes obtained by pharmacological inhibition suggest a tight correlation between FGFR and a Rho‐ROCK‐Myosin II candidate signaling pathway.
Collapse
Affiliation(s)
- Oliver Holz
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany
| | - David Apel
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany
| | - Patrick Steinmetz
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Ellen Lange
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany
| | - Simon Hopfenmüller
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany
| | - Kerstin Ohler
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
| | - Monika Hassel
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany
| |
Collapse
|
7
|
Ke J, Yao YL, Zheng J, Wang P, Liu YH, Ma J, Li Z, Liu XB, Li ZQ, Wang ZH, Xue YX. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 2016; 6:21934-49. [PMID: 26183397 PMCID: PMC4673137 DOI: 10.18632/oncotarget.4290] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/17/2015] [Indexed: 01/17/2023] Open
Abstract
Glioma is the most common and aggressive primary adult brain tumor. Long non-coding RNAs (lncRNAs) have important roles in a variety of biological properties of cancers. Here, we elucidated the function and the possible molecular mechanisms of lncRNA HOTAIR in human glioma U87 and U251 cell lines. Quantitative RT-PCR demonstrated that HOTAIR expression was up-regulated in glioma tissues and cell lines. Knockdown of HOTAIR exerted tumor-suppressive function in glioma cells. Further, HOTAIR was confirmed to be the target of miR-326 and miR-326 mediated the tumor-suppressive effects of HOTAIR knockdown on glioma cell lines. Moreover, over-expressed miR-326 reduced the FGF1 expression which played an oncogenic role in glioma by activating PI3K/AKT and MEK 1/2 pathways. In addition, the in vivo studies also supported the above findings. Taken together, knockdown of HOTAIR up-regulated miR-326 expression, and further inducing the decreased expression of FGF1, these results provided a comprehensive analysis of HOTAIR-miR-326-FGF1 axis in human glioma and provided a new potential therapeutic strategy for glioma treatment.
Collapse
Affiliation(s)
- Jing Ke
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China
| | - Yi-long Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China
| | - Yun-hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiao-bai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhi-qing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China
| | - Zhen-hua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Yi-xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China
| |
Collapse
|