1
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
2
|
Lahmann I, Birchmeier C. Visualizing MyoD Oscillations in Muscle Stem Cells. Methods Mol Biol 2023; 2640:259-276. [PMID: 36995601 DOI: 10.1007/978-1-0716-3036-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bHLH transcription factor MyoD is a master regulator of myogenic differentiation, and its sustained expression in fibroblasts suffices to differentiate them into muscle cells. MyoD expression oscillates in activated muscle stem cells of developing, postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. The oscillatory period is around 3 h and thus much shorter than the cell cycle or circadian rhythm. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed when stem cells undergo myogenic differentiation. The oscillatory expression of MyoD is driven by the oscillatory expression of the bHLH transcription factor Hes1 that periodically represses MyoD. Ablation of the Hes1 oscillator interferes with stable MyoD oscillations and leads to prolonged periods of sustained MyoD expression. This interferes with the maintenance of activated muscle stem cells and impairs muscle growth and repair. Thus, oscillations of MyoD and Hes1 control the balance between the proliferation and differentiation of muscle stem cells. Here, we describe time-lapse imaging methods using luciferase reporters, which can monitor dynamic MyoD gene expression in myogenic cells.
Collapse
Affiliation(s)
- Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany.
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Abstract
Despite the evolutionary loss of tissue regenerative potential, robust skeletal muscle repair processes are largely retained even in higher vertebrates. In mammals, the skeletal muscle regeneration program is driven by resident stem cells termed satellite cells, guided by the coordinated activity of multiple intrinsic and extrinsic factors and other cell types. A thorough understanding of muscle repair mechanisms is crucial not only for combating skeletal myopathies, but for its prospective aid in devising therapeutic strategies to endow regenerative potential on otherwise regeneration-deficient organs. In this review, we discuss skeletal muscle regeneration from an evolutionary perspective, summarize the current knowledge of cellular and molecular mechanisms, and highlight novel paradigms of muscle repair revealed by explorations of the recent decade.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| |
Collapse
|
4
|
Schuster-Gossler K, Boldt K, Bornhorst D, Delany-Heiken P, Ueffing M, Gossler A. Activity of the mouse Notch ligand DLL1 is sensitive to C-terminal tagging in vivo. BMC Res Notes 2021; 14:383. [PMID: 34583743 PMCID: PMC8477538 DOI: 10.1186/s13104-021-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The mammalian Notch ligand DLL1 has essential functions during development. To visualise DLL1 in tissues, for sorting and enrichment of DLL1-expressing cells, and to efficiently purify DLL1 protein complexes we tagged DLL1 in mice with AcGFPHA or Strep/FLAG. RESULTS We generated constructs to express DLL1 that carried C-terminal in-frame an AcGFPHA tag flanked by loxP sites followed by a Strep/FLAG (SF) tag out of frame. Cre-mediated recombination replaced AcGFP-HA by SF. The AcGFPHAstopSF cassette was added to DLL1 for tests in cultured cells and introduced into endogenous DLL1 in mice by homologous recombination. Tagged DLL1 protein was detected by antibodies against GFP and HA or Flag, respectively, both in CHO cells and embryo lysates. In CHO cells the AcGFP fluorophore fused to DLL1 was functional. In vivo AcGFP expression was below the level of detection by direct fluorescence. However, the SF tag allowed us to specifically purify DLL1 complexes from embryo lysates. Homozygous mice expressing AcGFPHA or SF-tagged DLL1 revealed a vertebral column phenotype reminiscent of disturbances in AP polarity during somitogenesis, a process most sensitive to reduced DLL1 function. Thus, even small C-terminal tags can impinge on sensitive developmental processes requiring DLL1 activity.
Collapse
Affiliation(s)
- Karin Schuster-Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Karsten Boldt
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Dorothee Bornhorst
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Patricia Delany-Heiken
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Marius Ueffing
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Zhang J, Lin C, Song Y, Zhang Y, Chen J. Augmented BMP4 signal impairs tongue myogenesis. J Mol Histol 2021; 52:651-659. [PMID: 34076834 DOI: 10.1007/s10735-021-09987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Tongue muscles are derived from mesodermal cells, while signals driven by cranial neural crest cells (CNCCs) regulate tongue myogenesis via tissue-tissue interaction. Based on such mechanisms of interaction, congenital tongue defects occur in CNC-related syndromes in humans. This study utilized a pathologic model for the syndrome of congenital bony syngnathia, Wnt1-Cre;pMes-Bmp4 mouse line, to explore impacts of enhanced CNCCs-originated BMP4 signal on tongue myogenesis via tissue-tissue interaction. Our results revealed that microglossia, a clinical phenotype of congenital bony syngnathia in humans exhibited in Wnt1-Cre;pMes-Bmp4 mice due to impaired myogenesis. The augmented BMP4 signal affected the distal distribution, proliferation, and differentiation of myogenic cells as well as tendon patterning, resulting in disarrangement and atrophy of tongue muscles and the loss of the anterior digastric muscle. This study demonstrated how a CNCCs-originated ligand impaired tongue myogenesis via a non-autonomous way, which provided potential formation mechanisms for understanding tongue abnormalities in CNC-related syndromes.
Collapse
Affiliation(s)
- Jian Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Yingnan Song
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
6
|
Harzer W, Augstein A, Olbert C, Juenger D, Keil C, Weiland B. Satellite cell capacity for functional adaptation of masseter muscle in Class II and Class III patients after orthognathic surgery-a pilot study. Eur J Orthod 2021; 43:234-240. [PMID: 32452521 DOI: 10.1093/ejo/cjaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The aim of the prospective pilot study was to analyze the biomarkers CD34, Pax7, Myf5, and MyoD for stimulation of satellite cells (SCs), which are responsible for functional adaptation. SUBJECTS AND METHODS Forty-five Caucasian patients were consecutively recruited from the Maxillo-Facial-Surgery at TU Dresden. Eleven orthognathic Class III patients, 24 Class II patients, and 10 controls with Class I were involved in the study. Tissue samples from masseter muscle were taken from the patients pre-surgically (T1) and 7 months later (T2). Samples from controls were taken during the extraction of third molars in the mandible. Polymerase chain reaction (PCR) for relative quantification of gene expression was calculated with the delta delta cycle threshold (ΔΔCT) method. RESULTS The results show significant differences for the marker of SC stimulation between the controls, the patient groups, males, and females. The gene expression of CD34 was post-surgically upregulated for Class III (0.35-0.77, standard deviation [SD] = 0.39, P < 0.05) in comparison with controls. For Pax7, there was a significant difference shown between the retrognathic and the prognathic group because of downregulation in Class II patients (1.64-0.76, SD = 0.55, P < 0.05). In Class III patients, there was a significant upregulation for Myf5 (0.56-1.05, SD = 0.52, P < 0.05) after surgery too. CONCLUSIONS The significant decline of Pax7 in Class II patients indicates a deficiency of stimulated SC post-surgically. The expression of CD34 and Myf5 in Class II stayed unchanged. In contrast, there was an upregulation for all Class III patients, mainly in females, shown post-surgically. This may be one reason for weak functional adaptation and relapse in Class II patients.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Antje Augstein
- Center for Heart Diseases, Technical University of Dresden, Germany
| | - Christin Olbert
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| |
Collapse
|
7
|
Okuhara S, Birjandi AA, Adel Al-Lami H, Sagai T, Amano T, Shiroishi T, Xavier GM, Liu KJ, Cobourne MT, Iseki S. Temporospatial sonic hedgehog signalling is essential for neural crest-dependent patterning of the intrinsic tongue musculature. Development 2019; 146:146/21/dev180075. [PMID: 31719045 DOI: 10.1242/dev.180075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/17/2019] [Indexed: 01/20/2023]
Abstract
The tongue is a highly specialised muscular organ with a complex anatomy required for normal function. We have utilised multiple genetic approaches to investigate local temporospatial requirements for sonic hedgehog (SHH) signalling during tongue development. Mice lacking a Shh cis-enhancer, MFCS4 (ShhMFCS4/-), with reduced SHH in dorsal tongue epithelium have perturbed lingual septum tendon formation and disrupted intrinsic muscle patterning, with these defects reproduced following global Shh deletion from E10.5 in pCag-CreERTM; Shhflox/flox embryos. SHH responsiveness was diminished in local cranial neural crest cell (CNCC) populations in both mutants, with SHH targeting these cells through the primary cilium. CNCC-specific deletion of orofaciodigital syndrome 1 (Ofd1), which encodes a ciliary protein, in Wnt1-Cre; Ofdfl/Y mice led to a complete loss of normal myotube arrangement and hypoglossia. In contrast, mesoderm-specific deletion of Ofd1 in Mesp1-Cre; Ofdfl/Y embryos resulted in normal intrinsic muscle arrangement. Collectively, these findings suggest key temporospatial requirements for local SHH signalling in tongue development (specifically, lingual tendon differentiation and intrinsic muscle patterning through signalling to CNCCs) and provide further mechanistic insight into the tongue anomalies seen in patients with disrupted hedgehog signalling.
Collapse
Affiliation(s)
- Shigeru Okuhara
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Anahid A Birjandi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Hadeel Adel Al-Lami
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Tomoko Sagai
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Takanori Amano
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Guilherme M Xavier
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
8
|
Rosero Salazar DH, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Orofacial Muscles: Embryonic Development and Regeneration after Injury. J Dent Res 2019; 99:125-132. [PMID: 31675262 PMCID: PMC6977159 DOI: 10.1177/0022034519883673] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Orofacial congenital defects such as cleft lip and/or palate are associated with impaired muscle regeneration and fibrosis after surgery. Also, other orofacial reconstructions or trauma may end up in defective muscle regeneration and fibrosis. The aim of this review is to discuss current knowledge on the development and regeneration of orofacial muscles in comparison to trunk and limb muscles. The orofacial muscles include the tongue muscles and the branchiomeric muscles in the lower face. Their main functions are chewing, swallowing, and speech. All orofacial muscles originate from the mesoderm of the pharyngeal arches under the control of cranial neural crest cells. Research in vertebrate models indicates that the molecular regulation of orofacial muscle development is different from that of trunk and limb muscles. In addition, the regenerative ability of orofacial muscles is lower, and they develop more fibrosis than other skeletal muscles. Therefore, specific approaches need to be developed to stimulate orofacial muscle regeneration. Regeneration may be stimulated by growth factors such fibroblast growth factors and hepatocyte growth factor, while fibrosis may be reduced by targeting the transforming growth factor β1 (TGFβ1)/myofibroblast axis. New approaches that combine these 2 aspects will improve the surgical treatment of orofacial muscle defects.
Collapse
Affiliation(s)
- D H Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - P L Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - F A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Lahmann I, Bröhl D, Zyrianova T, Isomura A, Czajkowski MT, Kapoor V, Griger J, Ruffault PL, Mademtzoglou D, Zammit PS, Wunderlich T, Spuler S, Kühn R, Preibisch S, Wolf J, Kageyama R, Birchmeier C. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes Dev 2019; 33:524-535. [PMID: 30862660 PMCID: PMC6499323 DOI: 10.1101/gad.322818.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
Lahmann et al. show that Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. Hes1 is expressed in an oscillatory manner in activated stem cells, where it drives the oscillatory expression of MyoD. The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.
Collapse
Affiliation(s)
- Ines Lahmann
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Dominique Bröhl
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tatiana Zyrianova
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Maciej T Czajkowski
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Varun Kapoor
- Microscopy/Image Analysis, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Despoina Mademtzoglou
- IMRB U955-E10, Institut National de la Santé et de la Recherche Médicale (INSERM), Faculté de Medicine, Université Paris Est, 94000 Creteil, France
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Thomas Wunderlich
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Max-Delbrück-Center, Charité Medical Faculty, 13125 Berlin, Germany
| | - Ralf Kühn
- Transgenic Core Facility, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Stephan Preibisch
- Microscopy/Image Analysis, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
10
|
How to make a tongue: Cellular and molecular regulation of muscle and connective tissue formation during mammalian tongue development. Semin Cell Dev Biol 2018; 91:45-54. [PMID: 29784581 DOI: 10.1016/j.semcdb.2018.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
Abstract
The vertebrate tongue is a complex muscular organ situated in the oral cavity and involved in multiple functions including mastication, taste sensation, articulation and the maintenance of oral health. Although the gross embryological contributions to tongue formation have been known for many years, it is only relatively recently that the molecular pathways regulating these processes have begun to be discovered. In particular, there is now evidence that the Hedgehog, TGF-Beta, Wnt and Notch signaling pathways all play an important role in mediating appropriate signaling interactions between the epithelial, cranial neural crest and mesodermal cell populations that are required to form the tongue. In humans, a number of congenital abnormalities that affect gross morphology of the tongue have also been described, occurring in isolation or as part of a developmental syndrome, which can greatly impact on the health and well-being of affected individuals. These anomalies can range from an absence of tongue formation (aglossia) through to diminutive (microglossia), enlarged (macroglossia) or bifid tongue. Here, we present an overview of the gross anatomy and embryology of mammalian tongue development, focusing on the molecular processes underlying formation of the musculature and connective tissues within this organ. We also survey the clinical presentation of tongue anomalies seen in human populations, whilst considering their developmental and genetic etiology.
Collapse
|
11
|
Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle. Proc Natl Acad Sci U S A 2018; 114:5830-5837. [PMID: 28584083 DOI: 10.1073/pnas.1610605114] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle in vertebrates is formed by two major routes, as illustrated by the mouse embryo. Somites give rise to myogenic progenitors that form all of the muscles of the trunk and limbs. The behavior of these cells and their entry into the myogenic program is controlled by gene regulatory networks, where paired box gene 3 (Pax3) plays a predominant role. Head and some neck muscles do not derive from somites, but mainly form from mesoderm in the pharyngeal region. Entry into the myogenic program also depends on the myogenic determination factor (MyoD) family of genes, but Pax3 is not expressed in these myogenic progenitors, where different gene regulatory networks function, with T-box factor 1 (Tbx1) and paired-like homeodomain factor 2 (Pitx2) as key upstream genes. The regulatory genes that underlie the formation of these muscles are also important players in cardiogenesis, expressed in the second heart field, which is a major source of myocardium and of the pharyngeal arch mesoderm that gives rise to skeletal muscles. The demonstration that both types of striated muscle derive from common progenitors comes from clonal analyses that have established a lineage tree for parts of the myocardium and different head and neck muscles. Evolutionary conservation of the two routes to skeletal muscle in vertebrates extends to chordates, to trunk muscles in the cephlochordate Amphioxus and to muscles derived from cardiopharyngeal mesoderm in the urochordate Ciona, where a related gene regulatory network determines cardiac or skeletal muscle cell fates. In conclusion, Eric Davidson's visionary contribution to our understanding of gene regulatory networks and their evolution is acknowledged.
Collapse
|
12
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Maldonado E, López-Gordillo Y, Partearroyo T, Varela-Moreiras G, Martínez-Álvarez C, Pérez-Miguelsanz J. Tongue Abnormalities Are Associated to a Maternal Folic Acid Deficient Diet in Mice. Nutrients 2017; 10:nu10010026. [PMID: 29283374 PMCID: PMC5793254 DOI: 10.3390/nu10010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/25/2017] [Indexed: 12/27/2022] Open
Abstract
It is widely accepted that maternal folic acid (FA) deficiency during pregnancy is a risk factor for abnormal development. The tongue, with multiple genes working together in a coordinated cascade in time and place, has emerged as a target organ for testing the effect of FA during development. A FA-deficient (FAD) diet was administered to eight-week-old C57/BL/6J mouse females for 2–16 weeks. Pregnant dams were sacrificed at gestational day 17 (E17). The tongues and heads of 15 control and 210 experimental fetuses were studied. In the tongues, the maximum width, base width, height and area were compared with width, height and area of the head. All measurements decreased from 10% to 38% with increasing number of weeks on maternal FAD diet. Decreased head and tongue areas showed a harmonic reduction (Spearman nonparametric correlation, Rho = 0.802) with respect to weeks on a maternal FAD diet. Tongue congenital abnormalities showed a 10.9% prevalence, divided in aglossia (3.3%) and microglossia (7.6%), always accompanied by agnathia (5.6%) or micrognathia (5.2%). This is the first time that tongue alterations have been related experimentally to maternal FAD diet in mice. We propose that the tongue should be included in the list of FA-sensitive birth defect organs due to its relevance in several key food and nutrition processes.
Collapse
Affiliation(s)
- Estela Maldonado
- Laboratorio de Desarrollo y Crecimiento Craneofacial, Facultad de Odontología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.); (Y.L.-G.); (C.M.-Á.)
| | - Yamila López-Gordillo
- Laboratorio de Desarrollo y Crecimiento Craneofacial, Facultad de Odontología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.); (Y.L.-G.); (C.M.-Á.)
| | - Teresa Partearroyo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28003 Madrid, Spain; (T.P.); (G.V.-M.)
| | - Gregorio Varela-Moreiras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28003 Madrid, Spain; (T.P.); (G.V.-M.)
| | - Concepción Martínez-Álvarez
- Laboratorio de Desarrollo y Crecimiento Craneofacial, Facultad de Odontología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.); (Y.L.-G.); (C.M.-Á.)
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juliana Pérez-Miguelsanz
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-941-380
| |
Collapse
|
14
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
15
|
Kim M, Minoux M, Piaia A, Kueng B, Gapp B, Weber D, Haller C, Barbieri S, Namoto K, Lorenz T, Wirsching J, Bassilana F, Dietrich W, Rijli FM, Ksiazek I. DPP9 enzyme activity controls survival of mouse migratory tongue muscle progenitors and its absence leads to neonatal lethality due to suckling defect. Dev Biol 2017; 431:297-308. [PMID: 28887018 DOI: 10.1016/j.ydbio.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/16/2017] [Accepted: 09/03/2017] [Indexed: 01/23/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an intracellular N-terminal post-proline-cleaving enzyme whose physiological function remains largely unknown. We investigated the role of DPP9 enzyme in vivo by characterizing knock-in mice expressing a catalytically inactive mutant form of DPP9 (S729A; DPP9ki/ki mice). We show that DPP9ki/ki mice die within 12-18h after birth. The neonatal lethality can be rescued by manual feeding, indicating that a suckling defect is the primary cause of neonatal lethality. The suckling defect results from microglossia, and is characterized by abnormal formation of intrinsic muscles at the distal tongue. In DPP9ki/ki mice, the number of occipital somite-derived migratory muscle progenitors, forming distal tongue intrinsic muscles, is reduced due to increased apoptosis. In contrast, intrinsic muscles of the proximal tongue and extrinsic tongue muscles, which derive from head mesoderm, develop normally in DPP9ki/ki mice. Thus, lack of DPP9 activity in mice leads to impaired tongue development, suckling defect and subsequent neonatal lethality due to impaired survival of a specific subset of migratory tongue muscle progenitors.
Collapse
Affiliation(s)
- Munkyung Kim
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Alessandro Piaia
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Benjamin Kueng
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Berangere Gapp
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Delphine Weber
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Corinne Haller
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Samuel Barbieri
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Kenji Namoto
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Thorsten Lorenz
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Johann Wirsching
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | | | | | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|
16
|
Esteves de Lima J, Bonnin MA, Birchmeier C, Duprez D. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis. eLife 2016; 5. [PMID: 27554485 PMCID: PMC5030091 DOI: 10.7554/elife.15593] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced-activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non-cell-autonomous manner. DOI:http://dx.doi.org/10.7554/eLife.15593.001 Skeletal muscle is attached to the skeleton and allows the body to move. Making a new muscle, or repairing an existing one, relies on stem cells that are present inside muscles. A major goal of skeletal muscle research is to understand the signals that regulate the abilities of muscle stem cells to divide and give rise to more stem cells or to become muscle cells. Molecular signals are known to regulate the numbers of stem cells in the muscle. Skeletal muscles become larger if they are exercised, but it is not clear if mechanical forces generated by muscle contractions directly affect the number of muscle stem cells. The NOTCH signaling pathway contributes to maintaining the population of stem cells in muscles by forcing the stem cells to divide and preventing them from becoming muscle cells. Here, Esteves de Lima et al. investigated whether muscle contraction regulates NOTCH signaling during muscle formation in chick fetuses. The experiments show that muscle contraction stimulates the activity of a protein called YAP in muscle cells, which in turn, activates a gene in the NOTCH signaling pathway known as JAG2. This increases NOTCH signaling activity in the neighboring stem cells and maintains the number of stem cells in the muscle. The next step following this work will be to establish if this mechanism also operates during muscle formation and regeneration in other animals such as mice and zebrafish. DOI:http://dx.doi.org/10.7554/eLife.15593.002
Collapse
Affiliation(s)
- Joana Esteves de Lima
- CNRS UMR 7622, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,IBPS-Developmental Biology Laboratory, Paris, France.,Inserm U1156, F-75005, Paris, France
| | - Marie-Ange Bonnin
- CNRS UMR 7622, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,IBPS-Developmental Biology Laboratory, Paris, France.,Inserm U1156, F-75005, Paris, France
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Delphine Duprez
- CNRS UMR 7622, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,IBPS-Developmental Biology Laboratory, Paris, France.,Inserm U1156, F-75005, Paris, France
| |
Collapse
|
17
|
Kalamgi RC, Larsson L. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Front Physiol 2016; 7:23. [PMID: 26869939 PMCID: PMC4740381 DOI: 10.3389/fphys.2016.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
The complete loss of mechanical stimuli of skeletal muscles, i.e., the loss of external strain, related to weight bearing, and internal strain, related to the contraction of muscle cells, is uniquely observed in pharmacologically paralyzed or deeply sedated mechanically ventilated intensive care unit (ICU) patients. The preferential loss of myosin and myosin associated proteins in limb and trunk muscles is a significant characteristic of critical illness myopathy (CIM) which separates CIM from other types of acquired muscle weaknesses in ICU patients. Mechanical silencing is an important factor triggering CIM. Microgravity or ground based microgravity models form the basis of research on the effect of muscle unloading-reloading, but the mechanisms and effects may differ from the ICU conditions. In order to understand how mechanical tension regulates muscle mass, it is critical to know how muscles sense mechanical information and convert stimulus to intracellular biochemical actions and changes in gene expression, a process called cellular mechanotransduction. In adult skeletal muscles and muscle fibers, this process may differ, the same stimulus can cause divergent response and the same fiber type may undergo opposite changes in different muscles. Skeletal muscle contains multiple types of mechano-sensors and numerous structures that can be affected differently and hence respond differently in distinct muscles.
Collapse
Affiliation(s)
- Rebeca C Kalamgi
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
18
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
19
|
Abstract
The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S. The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. Front Aging Neurosci 2015; 7:62. [PMID: 26042028 PMCID: PMC4436886 DOI: 10.3389/fnagi.2015.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
Pax7 expressing muscle stem cells accompany all skeletal muscles in the body and in healthy individuals, efficiently repair muscle after injury. Currently, the in vitro manipulation and culture of these cells is still in its infancy, yet muscle stem cells may be the most promising route toward the therapy of muscle diseases such as muscular dystrophies. It is often overlooked that muscular dystrophies affect head and body skeletal muscle differently. Moreover, these muscles develop differently. Specifically, head muscle and its stem cells develop from the non-somitic head mesoderm which also has cardiac competence. To which extent head muscle stem cells retain properties of the early head mesoderm and might even be able to switch between a skeletal muscle and cardiac fate is not known. This is due to the fact that the timing and mechanisms underlying head muscle stem cell development are still obscure. Consequently, it is not clear at which time point one should compare the properties of head mesodermal cells and head muscle stem cells. To shed light on this, we traced the emergence of head muscle stem cells in the key vertebrate models for myogenesis, chicken, mouse, frog and zebrafish, using Pax7 as key marker. Our study reveals a common theme of head muscle stem cell development that is quite different from the trunk. Unlike trunk muscle stem cells, head muscle stem cells do not have a previous history of Pax7 expression, instead Pax7 expression emerges de-novo. The cells develop late, and well after the head mesoderm has committed to myogenesis. We propose that this unique mechanism of muscle stem cell development is a legacy of the evolutionary history of the chordate head mesoderm.
Collapse
Affiliation(s)
- Julia Meireles Nogueira
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK ; Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Katarzyna Hawrot
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK
| | - Colin Sharpe
- School of Biological Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK
| | - Anna Noble
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth Portsmouth, UK
| | - William M Wood
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut Storrs, CT, USA
| | - Erika C Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut Storrs, CT, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah Salt Lake City, UT, USA
| | - Susanne Dietrich
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK
| |
Collapse
|