1
|
Ma Z, Hu N, Zheng L, Xue Y, Zhou C, Wang W, Cheng X, Luo T, Yu J, Hu L. Tanshinone IIA alleviates tri-ortho-cresyl phosphate-induced ovarian damage through Hippo signaling pathway activation in mice. J Ovarian Res 2025; 18:85. [PMID: 40287698 PMCID: PMC12032754 DOI: 10.1186/s13048-025-01671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Tri-ortho-cresyl phosphate (TOCP), a widely used plasticizer, has been shown to impair ovarian function. While tanshinone IIA exhibits ovarian protective effects in aging models, its potential to counteract TOCP-induced ovarian damage and associated signaling mechanisms remains unexplored. This study investigates the therapeutic effects of tanshinone IIA on TOCP-damaged ovaries in mice, with focus on Hippo, AKT, and MAPK pathways. RESULTS TOCP exposure (200 mg/kg/d for 28 days) significantly reduced ovarian follicle counts (primordial, preovulatory, and mature follicles) and disrupted hormone levels (elevated Estrogen(E2), decreased Follicle stimulating hormone(FSH)/ Anti-Mueller tube hormone(AMH)) in mice. Treatment with high-dose tanshinone IIA restored ovarian structure and function: growing follicle counts increased significantly (p < 0.001), FSH (p < 0.001) and AMH (p < 0.001) levels surged to marked degrees, while E2 (p < 0.001) levels decreased significantly. All changes were statistically significant. Immunohistochemistry and Western blot analysis revealed that tanshinone IIA restored ovarian AMH and Follicle-Stimulating Hormone Receptor (FSHR) protein expression, which were suppressed by TOCP. In vitro experiments further demonstrated that TOCP dose-dependently inhibited granulosa cell viability (p < 0.001) and proliferation (p < 0.001). Co-treatment with tanshinone IIA (0.01 mM) rescued cell viability (p < 0.01) and proliferation (p < 0.05). Mechanistically, tanshinone IIA suppressed ovarian apoptosis (p < 0.01) and modulated multiple signaling pathways: it attenuated Hippo signaling (p < 0.05) and reactivated PI3K/AKT (p < 0.05), p38 (p < 0.05), and ERK1/2 (p < 0.01) pathways. CONCLUSIONS Tanshinone IIA alleviates TOCP-induced ovarian dysfunction primarily through coordinated modulation of Hippo signaling and AKT/MAPK pathway activities, offering a potential therapeutic strategy for chemical-induced ovarian injury.
Collapse
Affiliation(s)
- Zhangqiang Ma
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Na Hu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Liping Zheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Xue
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Chong Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Wencan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xiu Cheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Jianlin Yu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 566 Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330036, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Liaoliao Hu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 566 Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330036, China.
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Gingerich IK, Goods BA, Frost HR. Randomized Spatial PCA (RASP): a computationally efficient method for dimensionality reduction of high-resolution spatial transcriptomics data. RESEARCH SQUARE 2025:rs.3.rs-6050441. [PMID: 40034439 PMCID: PMC11875318 DOI: 10.21203/rs.3.rs-6050441/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Spatial transcriptomics (ST) provides critical insights into the spatial organization of gene expression, enabling researchers to unravel the intricate relationship between cellular environments and biological function. Identifying spatial domains within tissues is key to understanding tissue architecture and mechanisms underlying development and disease progression. Here, we present Randomized Spatial PCA (RASP), a novel spatially-aware dimensionality reduction method for ST data. RASP is designed to be orders-of-magnitude faster than existing techniques, scale to datasets with 100, 000+ locations, support flexible integration of non-transcriptomic covariates, and reconstruct de-noised, spatially-smoothed gene expression values. It employs a randomized two-stage PCA framework with sparse matrix operations and configurable spatial smoothing. RASP was compared to BASS, GraphST, SEDR, SpatialPCA, and STAGATE using diverse ST datasets (10x Visium, Stereo-Seq, MERFISH, 10x Xenium) on human and mouse tissues. RASP demonstrates comparable or superior tissue domain detection with substantial improvements in computational speed, enhancing exploration of high-resolution subcellular datasets.
Collapse
Affiliation(s)
- Ian K. Gingerich
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - H. Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
3
|
Diesch-Furlanetto T, Sanchez C, Atkinson A, Pondarré C, Dhedin N, Neven B, Arnaud C, Kamdem A, Pirenne F, Lenaour G, Brocheriou I, Terris B, Bernaudin F, Dalle JH, Poirot C. Impact of hydroxyurea on follicle density in patients with sickle cell disease. Blood Adv 2024; 8:5227-5235. [PMID: 39023361 PMCID: PMC11530394 DOI: 10.1182/bloodadvances.2023011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
ABSTRACT The impact of hydroxyurea (HU) on the ovarian reserve of female patients with sickle cell disease (SCD) remains poorly elucidated. Only direct histological analysis of ovarian follicle density can effectively evaluate HU's effect on ovarian reserve. By analyzing digitized slides of ovarian tissue from girls and young women with SCD who underwent ovarian tissue cryopreservation (OTC) before hematological stem cell transplantation, we meticulously counted follicles and categorized them based on their growth stage. We then calculated the densities of different follicle types and assessed their correlation with patient characteristics, clinical manifestations, and treatments extracted from medical records. Seventy-six patients with SCD participated in the study, with a median age at OTC of 10.2 years (interquartile range [IQR], 7.5-14.6), and 50 (65.8%) were prepubertal. Of these, 35 patients (46.1%) had received HU, with a median daily dosage of 23.0 mg/kg (IQR, 20.0-25.0) and median exposure time of 44 months (IQR, 24.0-54.0). Primordial follicle density was comparable between the HU and non-HU groups (5.8 follicles per mm2 [IQR, 1.0-13.3] vs 4.2 follicles per mm2 [IQR, 1.1-14.4], respectively; P = .95). However, in the HU group, after adjusting for age, the density of growing follicles was marginally lower than that in the non-HU group (P = .09). Notably, other parameters such as vaso-occlusive crisis did not affect follicular density. In conclusion, exposure to HU did not demonstrate a reduction in ovarian reserve in girls or women with SCD. Therefore, fertility preservation measures before initiating HU treatment do not seem necessary.
Collapse
Affiliation(s)
- Tamara Diesch-Furlanetto
- Division of Pediatric Oncology/Hematology, University Children’s Hospital of Basel (UKBB), Basel, Switzerland
| | - Carlos Sanchez
- Pediatric Research Center, University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Atkinson
- Pediatric Research Center, University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Corinne Pondarré
- Division of Pediatric Hematology, French Referral Center for Sickle Cell Disease, Centre Hospitalier Intercommunal Créteil, Université Paris XII, Créteil, France
| | - Nathalie Dhedin
- Department of Hematology, Adolscents and Young Adults Unit, Saint Louis Hospital, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Enfants Malades Hospital, Paris, France
| | - Cécile Arnaud
- Division of Pediatric Hematology, French Referral Center for Sickle Cell Disease, Centre Hospitalier Intercommunal Créteil, Université Paris XII, Créteil, France
| | - Annie Kamdem
- Division of Pediatric Hematology, French Referral Center for Sickle Cell Disease, Centre Hospitalier Intercommunal Créteil, Université Paris XII, Créteil, France
| | - France Pirenne
- Division of Transfusion Hematology, Etablissement Français du Sang d’Ile de France, Henri Mondor Hospital, Créteil, France
| | - Gilles Lenaour
- Department of Pathology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Isabelle Brocheriou
- Department of Pathology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Benoit Terris
- Department of Pathology, Cochin-Port Royal Hospital, Paris, France
| | - Françoise Bernaudin
- Division of Pediatric Hematology, French Referral Center for Sickle Cell Disease, Centre Hospitalier Intercommunal Créteil, Université Paris XII, Créteil, France
| | - Jean-Hugues Dalle
- Hematology and Immunology Pediatric Unit, Robert Debré Hospital, Groupes hospitalo-universitaires Assistance Publique-Hôpitaux de Paris-Nord, Paris, France
- Division of Pediatric Hematology/immunology, Université Paris Cité, Paris, France
| | - Catherine Poirot
- Department of Hematology, Adolscents and Young Adults Unit, Saint Louis Hospital, Paris, France
- Department of Reproductive Bioloyg, Sorbonne University, Paris, France
| |
Collapse
|
4
|
Soygur B, Gaylord EA, Foecke MH, Cincotta SA, Horan TS, Wood A, Cohen PE, Laird DJ. Sustained fertility from first-wave follicle oocytes that pause their growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609995. [PMID: 39253445 PMCID: PMC11383281 DOI: 10.1101/2024.08.27.609995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ovulation results from the cyclical recruitment of non-renewing, quiescent oocytes for growth. Therefore, the primordial follicles that are established during development from an oocyte encapsulated by granulosa cells are thought to comprise the lifelong ovarian reserve 1-4. However, using oocyte lineage tracing in mice, we observed that a subset of oocytes recruited for growth in the first juvenile wave remain paused for many months before continuing growth, ovulation, fertilization and development into healthy offspring. This small subset of genetically-labeled fetal oocytes, labeled with Sycp3-CreERT2, is distinguished by earlier entry and slower dynamics of meiotic prophase I. While labeled oocytes were initially found in both primordial follicles and growing follicles of the first wave, they disappeared from primordial follicles by puberty. Unexpectedly, these first-wave labeled growing oocytes persisted throughout reproductive lifespan and contributed to offspring at a steady rate beyond 12 months of age, suggesting that follicles can pause mid-growth for extended periods then successfully resume. These results challenge the conclusion from lineage tracing of granulosa cells that first-wave follicles make a limited contribution to fertility5 and furthermore suggest that growth-paused oocytes comprise a second and previously unrecognized ovarian reserve.
Collapse
Affiliation(s)
- Bikem Soygur
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Mariko H. Foecke
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Steven A. Cincotta
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Tegan S. Horan
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Anna Wood
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
5
|
Folts L, Martinez AS, McKey J. Tissue clearing and imaging approaches for in toto analysis of the reproductive system†. Biol Reprod 2024; 110:1041-1054. [PMID: 38159104 PMCID: PMC11180619 DOI: 10.1093/biolre/ioad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.
Collapse
Affiliation(s)
- Lillian Folts
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Anthony S Martinez
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Jennifer McKey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
6
|
Folts L, Martinez AS, Bunce C, Capel B, McKey J. OoCount: A Machine-Learning Based Approach to Mouse Ovarian Follicle Counting and Classification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593993. [PMID: 38798456 PMCID: PMC11118501 DOI: 10.1101/2024.05.13.593993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The number and distribution of ovarian follicles in each growth stage provides a reliable readout of ovarian health and function. Leveraging techniques for three-dimensional (3D) imaging of ovaries in toto has the potential to uncover total, accurate ovarian follicle counts. However, because of the size and holistic nature of these images, counting oocytes is time consuming and difficult. The advent of deep-learning algorithms has allowed for the rapid development of ultra-fast, automated methods to analyze microscopy images. In recent years, these pipelines have become more user-friendly and accessible to non-specialists. We used these tools to create OoCount, a high-throughput, open-source method for automatic oocyte segmentation and classification from fluorescent 3D microscopy images of whole mouse ovaries using a deep-learning convolutional neural network (CNN) based approach. We developed a fast tissue-clearing and spinning disk confocal-based imaging protocol to obtain 3D images of whole mount perinatal and adult mouse ovaries. Fluorescently labeled oocytes from 3D images of ovaries were manually annotated in Napari to develop a machine learning training dataset. This dataset was used to retrain StarDist using a CNN within DL4MicEverywhere to automatically label all oocytes in the ovary. In a second phase, we utilize Accelerated Pixel and Object Classification, a Napari plugin, to classify labeled oocytes and sort them into growth stages. Here, we provide an end-to-end protocol for producing high-quality 3D images of the perinatal and adult mouse ovary, obtaining follicle counts and staging. We also demonstrate how to customize OoCount to fit images produced in any lab. Using OoCount, we can obtain accurate counts of oocytes in each growth stage in the perinatal and adult ovary, improving our ability to study ovarian function and fertility. Summary sentence This protocol introduces OoCount, a high-throughput, open-source method for automatic oocyte segmentation and classification from fluorescent 3D microscopy images of whole mouse ovaries using a machine learning-based approach.
Collapse
|
7
|
Silva JR, Souza-Fabjan JMG, Bento TFM, Silva RC, Moura CRF, Bartlewski PM, Batista RITP. The effects of heat stress on intrauterine development, reproductive function, and ovarian gene expression of F1 female mice as well as gene expression of F2 embryos†. Biol Reprod 2024; 110:33-47. [PMID: 37812452 DOI: 10.1093/biolre/ioad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/30/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to heat stress (HS) in utero was postulated to trigger an adaptive molecular response that can be transmitted to the next generation. Hence, this study assessed the impact of HS exposure at different stages of the gestational period of mice on the female F1 population and their offspring. Heat stress exposure (41°C and 65% relative humidity-RH) occurred during the first half (FP), the second half (SP), or the entire pregnancy (TP). A control group (C) was maintained in normothermic conditions (25°C, 45% RH) throughout the experiment. Heat stress had a significant negative effect on intrauterine development, mainly when HS exposure occurred in the first half of pregnancy (FP and TP groups). Postnatal growth of FP and TP mice was hindered until 4 weeks of age. The total number of follicles per ovary did not vary (P > 0.05) between the control and HS-exposed groups. Mean numbers of primordial follicles were lower (P < 0.05) in the sexually mature FP than those in SP and TP F1 females. However, the mean number of viable embryos after superovulation was lower (P < 0.05) in TP compared with C group. The expression of genes associated with physiological and cellular response to HS, autophagy, and apoptosis was significantly affected in the ovarian tissue of F1 females and F2 in vivo-derived blastocysts in all HS-exposed groups. In conclusion, exposure to HS during pregnancy compromised somatic development and reproductive parameters as well as altered gene expression profile that was then transmitted to the next generation of mice.
Collapse
Affiliation(s)
- José R Silva
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Joanna M G Souza-Fabjan
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Tays F M Bento
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Robson Campos Silva
- Departamento de Ciências Básicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Cristiane R F Moura
- Departamento de Ciências Básicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Pawel M Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ribrio I T P Batista
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
8
|
Sheikh S, Lo BKM, Kaune H, Bansal J, Deleva A, Williams SA. Rescue of follicle development after oocyte-induced ovary dysfunction and infertility in a model of POI. Front Cell Dev Biol 2023; 11:1202411. [PMID: 37614224 PMCID: PMC10443433 DOI: 10.3389/fcell.2023.1202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
The mechanisms and aetiology underlying the development of premature ovarian insufficiency (POI) are poorly understood. However, the oocyte clearly has a role as demonstrated by the Double Mutant (DM) mouse model where ovarian dysfunction (6 weeks) is followed by POI (3 months) due to oocyte-specific deletion of complex and hybrid N- and O-glycans. The ovaries of DM mice contain more primary follicles (3a stage) accompanied by fewer developing follicles, indicating a block in follicle development. To investigate this block, we first analysed early follicle development in postnatal (8-day), pre-pubertal (3-week) and post-pubertal (6-week and 3-month) DM (C1galt1 F/F Mgat1 F/F:ZP3Cre) and Control (C1galt1 F/F Mgat1 F/F) mice. Second, we investigated if transplantation of DM ovaries into a "normal" endocrine environment would restore follicle development. Third, we determined if replacing DM ovarian somatic cells would rescue development of DM oocytes. At 3-week, DM primary 3a follicles contain large oocytes accompanied by early development of a second GC layer and increased GC proliferation. At 6-week, DM primary 3a follicles contain abnormally large oocytes, accompanied with decreased GC proliferation. Transplantation of DM ovaries into a 'normal' endocrine environment did not restore normal follicle development. However, replacing somatic cells by generating reaggregated ovaries (ROs) did enable follicle development to progress and thus highlighted intra-ovarian factors were responsible for the onset of POI in DM females. Thus, these studies demonstrate oocyte-initiated altered communication between GCs and oocytes results in abnormal primary follicles which fail to progress and leads to POI.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzannah A. Williams
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Soygur B, Foecke MH, Gaylord EA, Fries A, Li J, Arora R, Laird DJ. A Roadmap for Three-Dimensional Analysis of the Intact Mouse Ovary. Methods Mol Biol 2023; 2677:203-219. [PMID: 37464244 PMCID: PMC10796149 DOI: 10.1007/978-1-0716-3259-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Recent advances in tissue clearing methodologies have enabled three-dimensional (3D) visualization of the ovary and, consequently, in-depth exploration of the dynamic changes occurring at the single-cell level. Here we describe methods for whole-mount immunofluorescence, clearing, imaging, and analysis of whole ovarian tissue in 3D throughout murine development and aging.
Collapse
Affiliation(s)
- Bikem Soygur
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Mariko H Foecke
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Eliza A Gaylord
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Adam Fries
- Genomics and Cell Characterization Core Facility, Institute of Molecular Biology, Eugene, OR, USA
| | - Jing Li
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ripla Arora
- Institute for Quantitative Health Science and Engineering, Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.
| |
Collapse
|
10
|
Hyde KA, Aguiar FLN, Alvarenga PB, Rezende AL, Alves BG, Alves KA, Gastal GDA, Gastal MO, Gastal EL. Characterization of preantral follicle clustering and neighborhood patterns in the equine ovary. PLoS One 2022; 17:e0275396. [PMID: 36194590 PMCID: PMC9531796 DOI: 10.1371/journal.pone.0275396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding the transition from quiescent primordial follicles to activated primary follicles is vital for characterizing ovarian folliculogenesis and improving assisted reproductive techniques. To date, no study has investigated preantral follicle crowding in the ovaries of livestock or characterized these crowds according to follicular morphology and ovarian location (portions and regions) in any species. Therefore, the present study aimed to assess the crowding (clustering and neighborhood) patterns of preantral follicles in the equine ovary according to mare age, follicular morphology and developmental stage, and spatial location in the ovary. Ovaries from mares (n = 8) were collected at an abattoir and processed histologically for evaluation of follicular clustering using the Morisita Index and follicular neighborhoods in ovarian sections. Young mares were found to have a large number of preantral follicles with neighbors (n = 2,626), while old mares had a small number (n = 305). Moreover, young mares had a higher number of neighbors per follicle (2.6 ± 0.0) than old mares (1.2 ± 0.1). Follicle clustering was shown to be present in all areas of the ovary, with young mares having more clustering overall than old mares and a tendency for higher clustering in the ventral region when ages were combined. Furthermore, follicles with neighbors were more likely to be morphologically normal (76.5 ± 6.5%) than abnormal (23.5 ± 6.5%). Additionally, morphologically normal activated follicles had increased odds of having neighbors than normal resting follicles, and these normal activated follicles had more neighbors (2.6 ± 0.1) than normal resting follicles (2.3 ± 0.1 neighbors). In the present study, it was demonstrated that preantral follicles do crowd in the mare ovary and that clustering/neighborhood patterns are dynamic and differ depending on mare age, follicular morphology, and follicular developmental stage.
Collapse
Affiliation(s)
- Kendall A. Hyde
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Francisco L. N. Aguiar
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Paula B. Alvarenga
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Amanda L. Rezende
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Benner G. Alves
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Kele A. Alves
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Gustavo D. A. Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Melba O. Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Eduardo L. Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Nakata H, Iseki S, Mizokami A. Three-dimensional reconstruction of testis cords/seminiferous tubules. Reprod Med Biol 2021; 20:402-409. [PMID: 34646067 PMCID: PMC8499590 DOI: 10.1002/rmb2.12413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to the development of novel equipment for the acquisition of two-dimensional serial images and software capable of displaying three-dimensional (3D) images from serial images, the accurate 3D reconstruction of organs and tissues has become possible. METHODS Based on published studies, this review summarizes techniques for the 3D reconstruction of the testis cords/seminiferous tubules, with special reference to our method using serial paraffin sections and 3D visualization software. MAIN FINDINGS The testes of mice, rats, and hamsters of various ages were 3D reconstructed and species and age differences in the structures of the testis cords/seminiferous tubules were analyzed. Our method is advantageous because conventional paraffin-embedded normal and pathological specimens may be utilized for the 3D analysis without the need for complicated and expensive equipment. CONCLUSION By further decreasing the time and labor required for the procedure and adding information on molecular localization, the technique for 3D reconstruction will contribute to the elucidation of not only the structures, but also the functions of various organs, including the testis.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell Biology Graduate School of Medical Sciences Kanazawa University Kanazawa Japan
| | - Shoichi Iseki
- Department of Clinical Engineering Faculty of Health Sciences Komatsu University Komatsu Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology Kanazawa University Graduate School of Medical Science Kanazawa Japan
| |
Collapse
|
12
|
Lee S, Kang HG, Ryou C, Cheon YP. Spatiotemporal expression of aquaporin 9 is critical for the antral growth of mouse ovarian follicles†. Biol Reprod 2021; 103:828-839. [PMID: 32577722 DOI: 10.1093/biolre/ioaa108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Although a few aquaporins (AQPs) expressed in granulosa cells have been postulated to mediate fluid passage into the antrum, the specific expression of AQPs in different follicle cell types and stages and their roles have not been evaluated extensively. The spatiotemporal expression of aquaporin (Aqp) 7, 8, and 9 and the functional roles of Aqp9 in antral growth and ovulation were examined using a superovulation model and 3-dimensional follicle culture. Aqp9 was expressed at a high level in the rapid growth phase (24-48 h post equine chorionic gonadotropin (eCG) for superovulation induction) compared to Aqp7 (after human chorionic gonadotropin (hCG)) and Aqp8 (8-24 h post eCG and 24 h post hCG). A dramatic increase in the expression and localization of Aqp9 mRNA in theca cells was observed, as evaluated using quantitative reverse transcription-polymerase (RT-PCR) coupled with laser capture microdissection and immunohistochemistry. AQP9 was located primarily on the theca cells of the tertiary and preovulatory follicles but not on the ovulated follicles. In phloretin-treated mice, the diameter of the preovulatory follicles and the number of ovulated oocytes decreased. Consistent with these findings, knocking down Aqp9 expression with an Aqp9 siRNA inhibited follicle growth (0.28:1 = siRNA:control) and decreased the number of ovulated follicles (0.36:1 = siRNA:control) during in vitro growth and ovulation induction. Based on these results, the expression of AQPs is under the control of the physiological status, and AQP9 expression in theca during folliculogenesis is required for antral growth and ovulation in a tissue-specific and stage-dependent manner.
Collapse
Affiliation(s)
- Sungeun Lee
- Department of Biotechnology, Sungshin University, Seoul, Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Engineering and Institute of Pharmaceutical Science and Technology, Eulji University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Yong-Pil Cheon
- Department of Biotechnology, Sungshin University, Seoul, Korea
| |
Collapse
|
13
|
Soygur B, Laird DJ. Ovary Development: Insights From a Three-Dimensional Imaging Revolution. Front Cell Dev Biol 2021; 9:698315. [PMID: 34381780 PMCID: PMC8351467 DOI: 10.3389/fcell.2021.698315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
The ovary is an indispensable unit of female reproduction and health. However, the study of ovarian function in mammals is hindered by unique challenges, which include the desynchronized development of oocytes, irregular distribution and vast size discrepancy of follicles, and dynamic tissue remodeling during each hormonal cycle. Overcoming the limitations of traditional histology, recent advances in optical tissue clearing and three-dimensional (3D) visualization offer an advanced platform to explore the architecture of intact organs at a single cell level and reveal new relationships and levels of organization. Here we summarize the development and function of ovarian compartments that have been delineated by conventional two-dimensional (2D) methods and the limits of what can be learned by these approaches. We compare types of optical tissue clearing, 3D analysis technologies, and their application to the mammalian ovary. We discuss how 3D modeling of the ovary has extended our knowledge and propose future directions to unravel ovarian structure toward therapeutic applications for ovarian disease and extending female reproductive lifespan.
Collapse
Affiliation(s)
| | - Diana J. Laird
- Department of Obstetrics, Gynecology & Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Soygur B, Jaszczak RG, Fries A, Nguyen DH, Malki S, Hu G, Demir N, Arora R, Laird DJ. Intercellular bridges coordinate the transition from pluripotency to meiosis in mouse fetal oocytes. SCIENCE ADVANCES 2021; 7:7/15/eabc6747. [PMID: 33827806 PMCID: PMC8026130 DOI: 10.1126/sciadv.abc6747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/18/2021] [Indexed: 05/14/2023]
Abstract
Meiosis is critical to generating oocytes and ensuring female fertility; however, the mechanisms regulating the switch from mitotic primordial germ cells to meiotic germ cells are poorly understood. Here, we implicate intercellular bridges (ICBs) in this state transition. We used three-dimensional in toto imaging to map meiotic initiation in the mouse fetal ovary and revealed a radial geometry of this transition that precedes the established anterior-posterior wave. Our studies reveal that appropriate timing of meiotic entry across the ovary and coordination of mitotic-meiotic transition within a cyst depend on the ICB component Tex14, which we show is required for functional cytoplasmic sharing. We find that Tex14 mutants more rapidly attenuate the pluripotency transcript Dppa3 upon meiotic initiation, and Dppa3 mutants undergo premature meiosis similar to Tex14 Together, these results lead to a model that ICBs coordinate and buffer the transition from pluripotency to meiosis through dilution of regulatory factors.
Collapse
Affiliation(s)
- B Soygur
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - R G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - A Fries
- Biological Imaging Development Center, University of California, San Francisco, San Francisco, CA, USA
| | - D H Nguyen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - S Malki
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - G Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - N Demir
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - R Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, The Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - D J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Fiorentino G, Parrilli A, Garagna S, Zuccotti M. Three-dimensional imaging and reconstruction of the whole ovary and testis: a new frontier for the reproductive scientist. Mol Hum Reprod 2021; 27:6129265. [PMID: 33544861 DOI: 10.1093/molehr/gaab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
The 3D functional reconstruction of a whole organ or organism down to the single cell level and to the subcellular components and molecules is a major future scientific challenge. The recent convergence of advanced imaging techniques with an impressively increased computing power allowed early attempts to translate and combine 2D images and functional data to obtain in-silico organ 3D models. This review first describes the experimental pipeline required for organ 3D reconstruction: from the collection of 2D serial images obtained with light, confocal, light-sheet microscopy or tomography, followed by their registration, segmentation and subsequent 3D rendering. Then, we summarise the results of investigations performed so far by applying these 3D image analyses to the study of the female and male mammalian gonads. These studies highlight the importance of working towards a 3D in-silico model of the ovary and testis as a tool to gain insights into their biology during the phases of differentiation or adulthood, in normal or pathological conditions. Furthermore, the use of 3D imaging approaches opens to key technical improvements, ranging from image acquisition to optimisation and development of new processing tools, and unfolds novel possibilities for multidisciplinary research.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Annapaola Parrilli
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
16
|
Place NJ, Prado AM, Faykoo-Martinez M, Brieño-Enriquez MA, Albertini DF, Holmes MM. Germ cell nests in adult ovaries and an unusually large ovarian reserve in the naked mole-rat. Reproduction 2021; 161:89-98. [PMID: 33151901 DOI: 10.1530/rep-20-0304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is renowned for its eusociality and exceptionally long lifespan (> 30 y) relative to its small body size (35-40 g). A NMR phenomenon that has received far less attention is that females show no decline in fertility or fecundity into their third decade of life. The age of onset of reproductive decline in many mammalian species is closely associated with the number of germ cells remaining at the age of sexual maturity. We quantified ovarian reserve size in NMRs at the youngest age (6 months) when subordinate females can begin to ovulate after removal from the queen's suppression. We then compared the NMR ovarian reserve size to values for 19 other mammalian species that were previously reported. The NMR ovarian reserve at 6 months of age is exceptionally large at 108,588 ± 69,890 primordial follicles, which is more than 10-fold larger than in mammals of a comparable size. We also observed germ cell nests in ovaries from 6-month-old NMRs, which is highly unusual since breakdown of germ cell nests and the formation of primordial follicles is generally complete by early postnatal life in other mammals. Additionally, we found germ cell nests in young adult NMRs between 1.25 and 3.75 years of age, in both reproductively activated and suppressed females. The unusually large NMR ovarian reserve provides one mechanism to account for this species' protracted fertility. Whether germ cell nests in adult ovaries contribute to the NMR's long reproductive lifespan remains to be determined.
Collapse
Affiliation(s)
- Ned J Place
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Alexandra M Prado
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | | | - Miguel Angel Brieño-Enriquez
- Department of Obstetrics, Gynecology & Reproductive Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David F Albertini
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, Massachusetts, USA
| | - Melissa M Holmes
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
17
|
Spatial and temporal changes in follicle distribution in the human ovarian cortex. Reprod Biomed Online 2020; 42:375-383. [PMID: 33309389 DOI: 10.1016/j.rbmo.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
RESEARCH QUESTION How does follicle distribution evolve in the human ovarian cortex between the ages of 20 and 35 years? DESIGN Fragments of ovarian cortex from women undergoing unilateral oophorectomy for fertility preservation were obtained for quantitative histological assessment, including recording the two-dimensional coordinates of the follicles. Data were analysed using spatial statistical methods. RESULTS A total of 53 ovarian cortex tissue samples, containing 1-803 follicles each, were obtained from 14 women aged 20-35 years. Primordial and transitory follicles lay in a clustered manner in the human ovarian cortex, with an average cluster radius of around 270 µm (95% confidence interval 154-377 µm; n = 49). Follicle density declined with age (P = 0.006, n = 13), and the distance from the nearest neighbouring follicle increased (P = 0.004, n = 13). Cluster radius decreased with age (P = 0.02, n = 13), but the degree of clustering tended to increase (P = 0.11, n = 13). In the majority of the samples, follicles at different stages lay in different clusters (P < 0.05, n = 13). CONCLUSIONS This study shows that primordial and transitory follicles lie in different clusters in the human ovarian cortex. Spatio-temporal computer simulation suggests that interfollicular signals may hinder follicle loss and may therefore drive clustered follicle distribution. In clinical practice, the woman's age should be taken into account when assessing follicle density, as follicle distribution is increasingly clustered with advancing age.
Collapse
|
18
|
Fiorentino G, Parrilli A, Garagna S, Zuccotti M. Three-Dimensional Micro-Computed Tomography of the Adult Mouse Ovary. Front Cell Dev Biol 2020; 8:566152. [PMID: 33195196 PMCID: PMC7604317 DOI: 10.3389/fcell.2020.566152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
In the mouse ovary, folliculogenesis proceeds through eight main growth stages, from small primordial type 1 (T1) to fully grown antral T8 follicles. Most of our understanding of this process was obtained with approaches that disrupted the ovary three-dimensional (3D) integrity. Micro-Computed Tomography (microCT) allows the maintenance of the organ structure and a true in-silico 3D reconstruction, with cubic voxels and isotropic resolution, giving a precise spatial mapping of its functional units. Here, we developed a robust method that, by combining an optimized contrast procedure with microCT imaging of the tiny adult mouse ovary, allowed 3D mapping and counting of follicles, from pre-antral secondary T4 (53.2 ± 12.7 μm in diameter) to antral T8 (321.0 ± 21.3 μm) and corpora lutea, together with the major vasculature branches. Primordial and primary follicles (T1–T3) could not be observed. Our procedure highlighted, with unprecedent details, the main functional compartments of the growing follicle: granulosa, antrum, cumulus cells, zona pellucida, and oocyte with its nucleus. The results describe a homogeneous distribution of all follicle types between the ovary dorsal and ventral regions. Also, they show that each of the eight sectors, virtually segmented along the dorsal-ventral axis, houses an equal number of each follicle type. Altogether, these data suggest that follicle recruitment is homogeneously distributed all-over the ovarian surface. This topographic reconstruction builds sound bases for modeling follicles position and, prospectively, could contribute to our understanding of folliculogenesis dynamics, not only under normal conditions, but, importantly, during aging, in the presence of pathologies or after hormones or drugs administration.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Annapaola Parrilli
- Center for X-ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Sarma UC, Winship AL, Hutt KJ. Comparison of methods for quantifying primordial follicles in the mouse ovary. J Ovarian Res 2020; 13:121. [PMID: 33054849 PMCID: PMC7560236 DOI: 10.1186/s13048-020-00724-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Accurate evaluation of primordial follicle numbers in mouse ovaries is an essential endpoint for studies investigating how endogenous and exogenous insults, such as maternal aging and chemotherapy, impact the ovarian reserve. In this study, we compared and contrasted two methods for counting healthy primordial follicles following exposure to cyclophosphamide (75 mg/kg), a well-established model of follicle depletion. The first was the fractionator/optical dissector technique, an unbiased, assumption-free stereological approach for quantification of primordial follicle numbers. While accurate, highly reproducible and sensitive, this method relies on specialist microscopy equipment and software, requires specific fixation, embedding and sectioning parameters to be followed, and is largely a manual process that is tedious and time-consuming. The second method was the more widely used serial section and direct count approach, which is relatively quick and easy. We also compared the impacts of different fixatives, embedding material and section thickness on the overall results for each method. Results Direct counts resulted in primordial follicle numbers that were significantly lower than those obtained by stereology, irrespective of fixation and embedding material. When applied to formalin fixed tissue, the direct count method did not detect differences in follicle numbers between saline and cyclophosphamide treated groups to the same degree of sensitivity as the gold standard stereology method (referred to as the Reference standard). However, when Bouin’s fixative was used, direct counts and stereology were comparable in their ability to detect follicle depletion caused by cyclophosphamide. Conclusions This work indicates that the direct count method can produce similar results to stereology when Bouin’s fixative is used instead of formalin. The findings presented here will assist others to select the most appropriate experimental approach for accurate follicle enumeration, depending on whether the primary objective of the study is to determine absolute primordial follicle numbers or relative differences between groups.
Collapse
Affiliation(s)
- Urooza C Sarma
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia
| | - Amy L Winship
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia
| | - Karla J Hutt
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
20
|
Vaz B, El Mansouri F, Liu X, Taketo T. Premature ovarian insufficiency in the XO female mouse on the C57BL/6J genetic background. Mol Hum Reprod 2020; 26:678-688. [PMID: 32634219 PMCID: PMC7473787 DOI: 10.1093/molehr/gaaa049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
In humans, all but 1% of monosomy 45.X embryos die in utero and those who reach term suffer from congenital abnormalities and infertility termed Turner's syndrome (TS). By contrast, XO female mice on various genetic backgrounds show much milder physical defects and normal fertility, diminishing their value as an animal model for studying the infertility of TS patients. In this article, we report that XO mice on the C57BL/6J (B6) genetic background showed early oocyte loss, infertility or subfertility and high embryonic lethality, suggesting that the effect of monosomy X in the female germline may be shared between mice and humans. First, we generated XO mice on either a mixed N2(C3H.B6) or B6 genetic background and compared the number of oocytes in neonatal ovaries; N2.XO females retained 45% of the number of oocytes in N2.XX females, whereas B6.XO females retained only 15% of that in B6.XX females. Second, while N2.XO females were as fertile as N2.XX females, both the frequency of delivery and the total number of pups delivered by B6.XO females were significantly lower than those by B6.XX females. Third, after mating with B6 males, both N2.XO and B6.XO females rarely produced XO pups carrying paternal X chromosomes, although a larger percentage of embryos was found to be XO before implantation. Furthermore, B6.XO females delivered 20% XO pups among female progeny after mating with C3H males. We conclude that the impact of monosomy X on female mouse fertility depends on the genetic background.
Collapse
Affiliation(s)
- B Vaz
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - F El Mansouri
- Department of Surgery, McGill University, Montreal, QC H4A3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
| | - X Liu
- Department of Surgery, McGill University, Montreal, QC H4A3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
| | - T Taketo
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
- Department of Surgery, McGill University, Montreal, QC H4A3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
21
|
Kawamura K. Rapamycin treatment maintains developmental potential of oocytes in mice and follicle reserve in human cortical fragments grafted into immune-deficient mice. Mol Cell Endocrinol 2020; 504:110694. [PMID: 31887337 DOI: 10.1016/j.mce.2019.110694] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/04/2023]
Abstract
The ovarian follicle pool size is limited; it decreases with age and following germ cell-damaging chemo- or radiation therapies. Due to a trend of delaying child-bearing age in the modern society, it is important to investigate the possibility to maintain the follicle reserve for middle-aged women and cancer-bearing patients subject to therapies. Earlier studies demonstrated the important role of the mammalian targets of the rapamycin (MTOR) signaling pathway in the activation of primordial follicles and suggested that treatment with the MTOR inhibitor rapamycin could maintain the follicle pool in rodents. Here, we confirmed the ability of rapamycin treatment for 3 weeks to suppress primordial follicle development and to maintain follicle pool size in mice. We further demonstrated that the developmental potential of oocytes was not affected by rapamycin treatment and the effect of rapamycin to decrease initial follicle recruitment is reversible. Using human ovarian cortical fragments grafted into immune-deficient mice, we demonstrated the ability of rapamycin to suppress follicle growth from the primordial stage. Our studies provide the basis for further studies on the possibility of using MTOR inhibitors to maintain follicle reserve in middle-aged women and cancer patients before/during germ cell-damaging therapies.
Collapse
Affiliation(s)
- Kazuhiro Kawamura
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
| |
Collapse
|
22
|
Terraciano PB, Garcez TA, Berger M, Durli I, Kuhl CP, Batista VDO, Schneider RDA, Festa J, Pilar E, Ferreira C, Passos EP, Lima EC. Ovarian tissue vitrification is more efficient than slow freezing to preserve ovarian stem cells in CF-1 mice. JBRA Assist Reprod 2020; 24:13-19. [PMID: 31689043 PMCID: PMC6993165 DOI: 10.5935/1518-0557.20190057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the efficacy of protocols for mice ovary cryopreservation to compare the differences in Mouse Vasa Homologue expression (a germline cell marker) and ovarian viability after vitrification or slow freezing. METHODS Female CF1 mice aged 40-45 days were randomly divided into three groups: Control, vitrification or slow freezing. Their ovaries were surgically removed, rinsed in saline solution and cryopreserved. For vitrification, we used a commercial protocol and for slow freeze, we used 1.5 M ethylene glycol (EG) as cryoprotectant. After that, the ovaries were processed for histological an immunohistochemical analysis, and counting of primordial, primary, pre-antral and antral follicles. RESULTS No significant difference was found in the proportion of high-quality primordial, primary and pre-antral follicles after thawing/warming in the slow freezing and vitrification groups. The immunohistochemistry for MVH antibody demonstrated that the slow freeze group had a higher number of unmarked cells (p=0.012), indicating a harmful effect on the MVH expression in the ovarian tissue, where the cell structure is complex. CONCLUSION Although both protocols indicated similar results in the histological analysis of follicular counts, the vitrification protocol was significantly better to preserve ovarian stem cells, an immature germ cell population. These cells are able to self-renew having regeneration potential, and may be effective for the treatment of ovarian failure and consequently infertility.
Collapse
Affiliation(s)
- Paula Barros Terraciano
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Tuane Alves Garcez
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil
| | - Markus Berger
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Isabel Durli
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Cristiana Palma Kuhl
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Vitória de Oliveira Batista
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil
| | - Raquel de Almeida Schneider
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Jaquelline Festa
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil
| | - Emily Pilar
- Centro de Pesquisa Experimental, Unidade de Patologia Experimental, Hospital de Clínicas de Porto Alegre, Brasil
| | - Charles Ferreira
- Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Eduardo Pandolfi Passos
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Elizabeth Cirne Lima
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil.,Departamento de Patologia Clínica, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brasil
| |
Collapse
|
23
|
McKey J, Cameron LA, Lewis D, Batchvarov IS, Capel B. Combined iDISCO and CUBIC tissue clearing and lightsheet microscopy for in toto analysis of the adult mouse ovary†. Biol Reprod 2020; 102:1080-1089. [PMID: 31965156 DOI: 10.1093/biolre/ioaa012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
At any given time, the ovary contains a number of follicles in distinct growth stages, each with a set of identifying characteristics. Although follicle counting and staging using histological stains on paraffin-embedded ovary sections has been the gold standard in assessing ovarian health in fertility studies, the final counts rely on extrapolation factors that diverge greatly among studies. These methods also limit our ability to investigate spatial aspects of ovary organization. Recent advances in optical tissue clearing and lightsheet microscopy have permitted comprehensive analysis of intact tissues. In this study, we set out to determine the best clearing and imaging methods to generate 3D images of the complete adult mouse ovary that could be used for accurate assessments of ovarian follicles. We found that a combination of iDISCO and CUBIC was the best method to clear the immunostained ovary. Using lightsheet microscopy, we generated 3D images of the intact ovary and performed qualitative assessments of follicles at all stages of development. This study is an important step toward developing quantitative computational models that allow rapid and accurate assessments of growing and quiescent primordial follicles, and to investigate the integrity of extrinsic ovarian components including vascular and neuronal networks.
Collapse
Affiliation(s)
- Jennifer McKey
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA and
| | - Lisa A Cameron
- Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | - Devon Lewis
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA and
| | - Iordan S Batchvarov
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA and
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA and
| |
Collapse
|
24
|
Interplay between Caspase 9 and X-linked Inhibitor of Apoptosis Protein (XIAP) in the oocyte elimination during fetal mouse development. Cell Death Dis 2019; 10:790. [PMID: 31624230 PMCID: PMC6797809 DOI: 10.1038/s41419-019-2019-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/07/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Mammalian female fertility is limited by the number and quality of oocytes in the ovarian reserve. The number of oocytes is finite since all germ cells cease proliferation to become oocytes in fetal life. Moreover, 70-80% of the initial oocyte population is eliminated during fetal and neonatal development, restricting the ovarian reserve. Why so many oocytes are lost during normal development remains an enigma. In Meiotic Prophase I (MPI), oocytes go through homologous chromosome synapsis and recombination, dependent on formation and subsequent repair of DNA double strand breaks (DSBs). The oocytes that have failed in DSB repair or synapsis get eliminated mainly in neonatal ovaries. However, a large oocyte population is eliminated before birth, and the cause or mechanism of this early oocyte loss is not well understood. In the current paper, we show that the oocyte loss in fetal ovaries was prevented by a deficiency of Caspase 9 (CASP9), which is the hub of the mitochondrial apoptotic pathway. Furthermore, CASP9 and its downstream effector Caspase 3 were counteracted by endogenous X-linked Inhibitor of Apoptosis (XIAP) to regulate the oocyte population; while XIAP overexpression mimicked CASP9 deficiency, XIAP deficiency accelerated oocyte loss. In the CASP9 deficiency, more oocytes were accumulated at the pachytene stage with multiple γH2AFX foci and high LINE1 expression levels, but with normal levels of synapsis and overall DSB repair. We conclude that the oocytes with LINE1 overexpression were preferentially eliminated by CASP9-dependent apoptosis in balance with XIAP during fetal ovarian development. When such oocytes were retained, however, they get eliminated by a CASP9-independent mechanism during neonatal development. Thus, the oocyte is equipped with multiple surveillance mechanisms during MPI progression to safe-guard the quality of oocytes in the ovarian reserve.
Collapse
|
25
|
DiTroia SP, Percharde M, Guerquin MJ, Wall E, Collignon E, Ebata KT, Mesh K, Mahesula S, Agathocleous M, Laird DJ, Livera G, Ramalho-Santos M. Maternal vitamin C regulates reprogramming of DNA methylation and germline development. Nature 2019; 573:271-275. [PMID: 31485074 PMCID: PMC8423347 DOI: 10.1038/s41586-019-1536-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Development is often assumed to be hardwired in the genome, but several lines of evidence indicate that it is susceptible to environmental modulation with potential long-term consequences, including in mammals1,2. The embryonic germline is of particular interest because of the potential for intergenerational epigenetic effects. The mammalian germline undergoes extensive DNA demethylation3-7 that occurs in large part by passive dilution of methylation over successive cell divisions, accompanied by active DNA demethylation by TET enzymes3,8-10. TET activity has been shown to be modulated by nutrients and metabolites, such as vitamin C11-15. Here we show that maternal vitamin C is required for proper DNA demethylation and the development of female fetal germ cells in a mouse model. Maternal vitamin C deficiency does not affect overall embryonic development but leads to reduced numbers of germ cells, delayed meiosis and reduced fecundity in adult offspring. The transcriptome of germ cells from vitamin-C-deficient embryos is remarkably similar to that of embryos carrying a null mutation in Tet1. Vitamin C deficiency leads to an aberrant DNA methylation profile that includes incomplete demethylation of key regulators of meiosis and transposable elements. These findings reveal that deficiency in vitamin C during gestation partially recapitulates loss of TET1, and provide a potential intergenerational mechanism for adjusting fecundity to environmental conditions.
Collapse
Affiliation(s)
- Stephanie P DiTroia
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Marie-Justine Guerquin
- UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Laboratory of Development of the Gonads, Fontenay aux Roses, France
| | - Estelle Wall
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Evelyne Collignon
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kevin T Ebata
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kathryn Mesh
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Swetha Mahesula
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana J Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Livera
- UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Laboratory of Development of the Gonads, Fontenay aux Roses, France
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Tri-ortho-cresyl phosphate (TOCP) induced ovarian failure in mice is related to the Hippo signaling pathway disruption. Reprod Toxicol 2019; 83:21-27. [DOI: 10.1016/j.reprotox.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 01/25/2023]
|
27
|
Aiken CE, Tarry-Adkins JL, Ozanne SE. Assaying Reproductive Capacity in Female Rodents. Methods Mol Biol 2019; 1916:157-166. [PMID: 30535693 DOI: 10.1007/978-1-4939-8994-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
It is an important part of many rodent studies to assess reproductive capacity in the female. Animal models that involve exposure to organic compounds, teratogenicity studies, or exposure to suboptimal environments during early development often result in deficits in female fertility. In addition to longitudinal physiology assays of fecundity, there are several molecular biology approaches to assessing female reproductive potential that can be performed to provide a "snapshot" of fertility potential at a single time-point. Here we describe some of the most useful ways to assess female reproductive capacity in rodents.
Collapse
Affiliation(s)
- Catherine E Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Jane L Tarry-Adkins
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
28
|
Hu LL, Su T, Luo RC, Zheng YH, Huang J, Zhong ZS, Nie J, Zheng LP. Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice. J Cell Physiol 2018; 234:1578-1587. [PMID: 30078193 DOI: 10.1002/jcp.27024] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
Clarifying the molecular mechanisms by which primordial follicles are initiated is crucial for the prevention and treatment of female infertility and ovarian dysfunction. The Hippo pathway has been proven to have a spatiotemporal correlation with the size of the primordial follicle pool in mice in our previous work. But the role and underlying mechanisms of the Hippo pathway in primordial follicle activation remain unclear. Here, the localization and expression of the core components were examined in primordial follicles before and after activation. And the effects of the Hippo pathway on primordial follicle activation were determined by genetically manipulating yes-associated protein 1 (Yap1), the key transcriptional effector. Furthermore, an AKT specific inhibitor (MK2206) was added to determine the interaction between the Hippo pathway and AKT, an important signaling regulator of ovarian function. Results showed that the core components of the Hippo pathway were localized in both primordial and primary follicles and the expression levels of them changed significantly during the initiation of primordial follicles. Yap1 knockdown suppressed primordial follicle activation, while its overexpression led to the opposite trend. MK2206 downregulated the ratio of P-MST/MST1 and upregulated the ratio of P-YAP1/YAP1 significantly, whereas Yap1-treatment had no influence on AKT. In addition, YAP1 upregulation partially rescued the suppression of the primordial follicle activation induced by MK2206. Our findings revealed that the Hippo-YAP1 regulates primordial follicular activation, which is mediated by AKT signaling in mice, thus providing direct and new evidence to highlight the role of Hippo signaling in regulating ovarian follicles development.
Collapse
Affiliation(s)
- Liao-Liao Hu
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Reproductive Physiology, Jiangxi Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Tie Su
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Reproductive Physiology, Jiangxi Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Rui-Chen Luo
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Reproductive Physiology, Jiangxi Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Yue-Hui Zheng
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Reproductive Physiology, Jiangxi Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Jian Huang
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Reproductive Physiology, Jiangxi Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Zhi-Sheng Zhong
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Nie
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li-Ping Zheng
- Department of Physiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Reproductive Physiology, Jiangxi Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| |
Collapse
|
29
|
Alves BG, Alves KA, Gastal GDA, Gastal MO, Figueiredo JR, Gastal EL. Spatial distribution of preantral follicles in the equine ovary. PLoS One 2018; 13:e0198108. [PMID: 29897931 PMCID: PMC5999074 DOI: 10.1371/journal.pone.0198108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
Comprehensive studies on spatial distribution of preantral follicles in the ovary are scarce. Considering that preantral follicles represent the main ovarian reserve, harvesting of these follicles is crucial for the development/use of assisted reproductive techniques. Therefore, knowledge on follicle spatial distribution can be helpful for targeting areas with richer number of preantral follicles through biopsy procedures. The aim of this study was to assess the distribution and localization of equine preantral follicles according to: (i) age, (ii) ovarian portion (lateral and intermediary) and region (dorsal and ventral), (iii) distance from the geometric center, and (iv) follicular class. Ovaries from young and old mares (n = 8) were harvested in a slaughterhouse and submitted to histological processing for further evaluation. For data analyses, a novel methodology was developed according to the geometric center of each histological section for a precise determination of preantral follicle distribution. Results indicated that (i) equine preantral follicles are clustered and located near to the ovarian geometric center, and that aging induced their dispersion through the ovarian cortex; (ii) the distance from the geometric center was shorter for developing follicles than primordial; and (iii) secondary follicles were more distant from the geometric center but closer to the ovulation fossa. In conclusion, the spatial distribution of preantral follicles was successfully determined in the equine ovary and was affected by age, region, and portion.
Collapse
Affiliation(s)
- Benner G. Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Kele A. Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Gustavo D. A. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Melba O. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - José R. Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Rinaldi VD, Bloom JC, Schimenti JC. Whole Mount Immunofluorescence and Follicle Quantification of Cultured Mouse Ovaries. J Vis Exp 2018. [PMID: 29782020 DOI: 10.3791/57593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Research in the field of mammalian reproductive biology often involves evaluating the overall health of ovaries and testes. Specifically, in females, ovarian fitness is often assessed by visualizing and quantifying follicles and oocytes. Because the ovary is an opaque three-dimensional tissue, traditional approaches require laboriously slicing the tissue into numerous serial sections in order to visualize cells throughout the entire organ. Furthermore, because quantification by this method typically entails scoring only a subset of the sections separated by the approximate diameter of an oocyte, it is prone to inaccuracy. Here, a protocol is described that instead utilizes whole organ tissue clearing and immunofluorescence staining of mouse ovaries to visualize follicles and oocytes. Compared to more traditional approaches, this protocol is advantageous for visualizing cells within the ovary for numerous reasons: 1) the ovary remains intact throughout sample preparation and processing; 2) small ovaries, which are difficult to section, can be examined with ease; 3) cellular quantification is more readily and accurately achieved; and 4) the whole organ imaged.
Collapse
Affiliation(s)
| | - Jordana C Bloom
- Department of Molecular Biology and Genetics, Cornell University
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell University; Department of Molecular Biology and Genetics, Cornell University
| |
Collapse
|
31
|
CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions. Sci Rep 2017; 7:44810. [PMID: 28333125 PMCID: PMC5363086 DOI: 10.1038/srep44810] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
Optimal distribution of heterogeneous organelles and cell types within an organ is essential for physiological processes. Unique for the ovary, hormonally regulated folliculogenesis, ovulation, luteal formation/regression and associated vasculature changes lead to tissue remodeling during each reproductive cycle. Using the CLARITY approach and marker immunostaining, we identified individual follicles and corpora lutea in intact ovaries. Monitoring lifetime changes in follicle populations showed age-dependent decreases in total follicles and percentages of advanced follicles. Follicle development from primordial to preovulatory stage was characterized by 3 × 105-fold increases in volume, decreases in roundness, and decreased clustering of same stage follicles. Construction of follicle-vasculature relationship maps indicated age- and gonadotropin-dependent increases in vasculature and branching surrounding follicles. Heterozygous mutant mice with deletion of hypoxia-response element in the vascular endothelial growth factor A (VEGFA) promoter showed defective ovarian vasculature and decreased ovulatory responses. Unilateral intrabursal injection of axitinib, an inhibitor of VEGF receptors, retarded neo-angiogenesis that was associated with defective ovulation in treated ovaries. Our approach uncovers unique features of ovarian architecture and essential roles of vasculature in organizing follicles to allow future studies on normal and diseased human ovaries. Similar approaches could also reveal roles of neo-angiogenesis during embryonic development and tumorigenesis.
Collapse
|
32
|
Arora R, Fries A, Oelerich K, Marchuk K, Sabeur K, Giudice LC, Laird DJ. Insights from imaging the implanting embryo and the uterine environment in three dimensions. Development 2016; 143:4749-4754. [PMID: 27836961 DOI: 10.1242/dev.144386] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022]
Abstract
Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo.
Collapse
Affiliation(s)
- Ripla Arora
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adam Fries
- Biological Imaging Development Center, University of California, San Francisco, CA 94143, USA
| | - Karina Oelerich
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kyle Marchuk
- Biological Imaging Development Center, University of California, San Francisco, CA 94143, USA
| | - Khalida Sabeur
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana J Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA .,Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Arora R, Abby E, Ross ADJ, Cantu AV, Kissner MD, Castro V, Ho HYH, Livera G, Laird DJ. Meiotic onset is reliant on spatial distribution but independent of germ cell number in the mouse ovary. J Cell Sci 2016; 129:2493-9. [PMID: 27199373 DOI: 10.1242/jcs.189910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
Mouse ovarian germ cells enter meiosis in a wave that propagates from anterior to posterior, but little is known about contribution of germ cells to initiation or propagation of meiosis. In a Ror2 mutant with diminished germ cell number and migration, we find that overall timing of meiotic initiation is delayed at the population level. We use chemotherapeutic depletion to exclude a profoundly reduced number of germ cells as a cause for meiotic delay. We rule out sex reversal or failure to specify somatic support cells as contributors to the meiotic phenotype. Instead, we find that anomalies in the distribution of germ cells as well as gonad shape in mutants contribute to aberrant initiation of meiosis. Our analysis supports a model of meiotic initiation via diffusible signal(s), excludes a role for germ cells in commencing the meiotic wave and furnishes the first phenotypic demonstration of the wave of meiotic entry. Finally, our studies underscore the importance of considering germ cell migration defects while studying meiosis to discern secondary effects resulting from positioning versus primary meiotic entry phenotypes.
Collapse
Affiliation(s)
- Ripla Arora
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Emilie Abby
- University Paris Diderot, Sorbonne Paris Cite, Laboratory of Development of the Gonads; CEA, DSV, iRCM, SCSR, LDG; INSERM, Unit of Genetic Stability, Stem cells and Radiation, UMR-967; University Paris-Sud, Fontenay-aux-Roses F-92265, France
| | - Adam D J Ross
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Andrea V Cantu
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Michael D Kissner
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Vianca Castro
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, 4422 Tupper Hall, Davis, CA 95616, USA
| | - Gabriel Livera
- University Paris Diderot, Sorbonne Paris Cite, Laboratory of Development of the Gonads; CEA, DSV, iRCM, SCSR, LDG; INSERM, Unit of Genetic Stability, Stem cells and Radiation, UMR-967; University Paris-Sud, Fontenay-aux-Roses F-92265, France
| | - Diana J Laird
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Gaytan F, Morales C, Leon S, Garcia-Galiano D, Roa J, Tena-Sempere M. Crowding and Follicular Fate: Spatial Determinants of Follicular Reserve and Activation of Follicular Growth in the Mammalian Ovary. PLoS One 2015; 10:e0144099. [PMID: 26642206 PMCID: PMC4671646 DOI: 10.1371/journal.pone.0144099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023] Open
Abstract
Initiation of growth of resting ovarian follicles is a key phenomenon for providing an adequate number of mature oocytes in each ovulation, while preventing premature exhaustion of primordial follicle reserve during the reproductive lifespan. Resting follicle dynamics strongly suggest that primordial follicles are under constant inhibitory influences, by mechanisms and factors whose nature remains ill defined. In this work, we aimed to assess the influence of spatial determinants, with special attention to clustering patterns and crowding, on the fate of early follicles in the adult mouse and human ovary. To this end, detailed histological and morphometric analyses, targeting resting and early growing follicles, were conducted in ovaries from mice, either wild type (WT) or genetically modified to lack kisspeptin receptor expression (Kiss1r KO), and healthy adult women. Kiss1r KO mice were studied as model of persistent hypogonadotropism and anovulation. Different qualitative and quantitative indices of the patterns of spatial distribution of resting and early growing follicles in the mouse and human ovary, including the Morisita’s index of clustering, were obtained. Our results show that resting primordial follicles display a clear-cut clustered pattern of spatial distribution in adult mouse and human ovaries, and that resting follicle aggrupation is inversely correlated with the proportion of follicles initiating growth and entering into the growing pool. As a whole, our data suggest that resting follicle crowding, defined by changes in density and clustered pattern of distribution, is a major determinant of follicular activation and the fate of ovarian reserve. Uneven follicle crowding would constitute the structural counterpart of the major humoral regulators of early follicular growth, with potential implications in ovarian ageing and pathophysiology.
Collapse
Affiliation(s)
- Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
- * E-mail: (FG); (MT-S)
| | | | - Silvia Leon
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
| | - David Garcia-Galiano
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
| | - Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
- FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
- * E-mail: (FG); (MT-S)
| |
Collapse
|
35
|
Malki S, Tharp ME, Bortvin A. A Whole-Mount Approach for Accurate Quantitative and Spatial Assessment of Fetal Oocyte Dynamics in Mice. Biol Reprod 2015; 93:113. [PMID: 26423126 DOI: 10.1095/biolreprod.115.132118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/23/2015] [Indexed: 11/01/2022] Open
Abstract
Depletion of oocytes from the embryonic ovary is a key feature of mammalian oogenesis; however, the rational and molecular bases for this phenomenon remain poorly understood. Presently in the field, the most systematic analysis used to understand the effect of a given molecular pathway on fetal oocyte attrition is to count the number of oocytes in ovaries at different stages of development. This analysis is commonly done using a sampling method based on sectioning of the ovary, a technique that includes many laborious steps culminating in an inaccurate estimate of oocyte number contained within that ovary. This inability to generate data that are directly comparable between labs hinders the field and raises questions about the timing and rate of oocyte depletion. Therefore, we set out to implement a robust method that can be easily used by most research laboratories to study the dynamics of oogenesis during fetal mouse ovary development in both normal and experimental conditions. Here we describe an approach to accurately count the total number of oocytes in embryonic ovaries. This method is based on whole-mount immunofluorescence, tissue clearing with sucrose and ScaleA2 reagent, and automatic detection and counting of germ cells in intact ovaries using confocal microscopy and three-dimensional software analyses. We demonstrate the power of the method by assessing variation of fetal oocyte numbers between left and right ovaries and between litters of mice. Finally, we anticipate that the method could be adopted to the analysis of substages of meiotic prophase I and ovarian somatic cells.
Collapse
Affiliation(s)
- Safia Malki
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Marla E Tharp
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| |
Collapse
|
36
|
Suzuki H, Kanai-Azuma M, Kanai Y. From Sex Determination to Initial Folliculogenesis in Mammalian Ovaries: Morphogenetic Waves along the Anteroposterior and Dorsoventral Axes. Sex Dev 2015; 9:190-204. [DOI: 10.1159/000440689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
|