1
|
Lv JL, Zheng KY, Wang XY, Li MW. Advances in the extracellular signal-regulated kinase signaling pathway in silkworms, Bombyx mori (Lepidoptera). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22054. [PMID: 37700521 DOI: 10.1002/arch.22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Signaling pathways regulate the transmission of signals during organism growth and development, promoting the smooth and accurate completion of numerous physiological and biochemical reactions. The extracellular signal-regulated kinase (ERK) signaling pathway is an essential pathway involved in regulating various physiological processes, such as cell proliferation, differentiation, adhesion, migration, and more. This pathway also contributes to several important physiological processes in silkworms, including protein synthesis, reproduction, and immune defense against pathogens. Organizing related studies on the ERK signaling pathway in silkworms can provide a better understanding of its mechanism in Lepidopterans and develop a theoretical foundation for improving cocoon production and new strategies for pest biological control.
Collapse
Affiliation(s)
- Jun-Li Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs, Zhenjiang, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs, Zhenjiang, China
| |
Collapse
|
2
|
Huang Y, Zhen Y, Chen Y, Sui S, Zhang L. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: From molecular mechanisms to targeted therapy. Biochem Pharmacol 2023; 217:115842. [PMID: 37802240 DOI: 10.1016/j.bcp.2023.115842] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
RAS/RAF/MEK/ERK signaling pathway is one of the most important pathways of Mitogen-activated protein kinases (MAPK), which widely participate in regulating cell proliferation, differentiation, apoptosis and signaling transduction. Autophagy is an essential mechanism that maintains cellular homeostasis by degrading aged and damaged organelles. Recently, some studies revealed RAS/RAF/MEK/ERK signaling pathway is closely related to autophagy regulation and has a dual effect in tumor cells. However, the specific mechanism by which RAS/RAF/MEK/ERK signaling pathway participates in autophagy regulation is not fully understood. This article provides a comprehensive review of the research progress with regard to the RAS/RAF/MEK/ERK signaling pathway and autophagy, as well as their interplay in cancer therapy. The impact of small molecule inhibitors that target the RAS/RAF/MEK/ERK signaling pathway on autophagy is discussed in this study. The advantages and limitations of the clinical combination of these small molecule inhibitors with autophagy inhibitors are also explored. The findings from this study may provide additional perspectives for future cancer treatment strategies.
Collapse
Affiliation(s)
- Yunli Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongqi Zhen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaoguang Sui
- Emergency Department, The Second Hospital, Dalian Medical University, Dalian 116000, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
3
|
Su ZH, Lv JL, Ou Q, Zhao ZQ, Zheng KY, Zhang XY, Lai WQ, Wang XY, Deng MJ, Li MW. Uric acid metabolism promotes apoptosis against Bombyx mori nucleopolyhedrovirus in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2023; 32:558-574. [PMID: 37209025 DOI: 10.1111/imb.12850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
The white epidermis of silkworms is due to the accumulation of uric acid crystals. Abnormal silkworm uric acid metabolism decreases uric acid production, leading to a transparent or translucent phenotype. The oily silkworm op50 is a mutant strain with a highly transparent epidermis derived from the p50 strain. It shows more susceptibility to Bombyx mori nucleopolyhedrovirus (BmNPV) infection than the wild type; however, the underlying mechanism is unknown. This study analysed the changes in 34 metabolites in p50 and op50 at different times following BmNPV infection based on comparative metabolomics. The differential metabolites were mainly clustered in six metabolic pathways. Of these, the uric acid pathway was identified as critical for resistance in silkworms, as feeding with inosine significantly enhanced larval resistance compared to other metabolites and modulated other metabolic pathways. Additionally, the increased level of resistance to BmNPV in inosine-fed silkworms was associated with the regulation of apoptosis, which is mediated by the reactive oxygen species produced during uric acid synthesis. Furthermore, feeding the industrial strain Jingsong (JS) with inosine significantly increased the level of larval resistance to BmNPV, indicating its potential application in controlling the virus in sericulture. These results lay the foundation for clarifying the resistance mechanism of silkworms to BmNPV and provide new strategies and methods for the biological control of pests.
Collapse
Affiliation(s)
- Zhi-Hao Su
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun-Li Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qi Ou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zi-Qin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiao-Ying Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wen-Qing Lai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Ming-Jie Deng
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| |
Collapse
|
4
|
Zhang Y, Pang Y, Zhang K, Song X, Gao J, Zhang S, Deng W. RNA polymerase I subunit RPA43 activates rRNA expression and cell proliferation but inhibits cell migration. Biochim Biophys Acta Gen Subj 2023:130411. [PMID: 37343605 DOI: 10.1016/j.bbagen.2023.130411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
The products synthesized by RNA polymerase I (Pol I) play fundamental roles in several cellular processes, including ribosomal biogenesis, protein synthesis, cell metabolism, and growth. Deregulation of Pol I products can cause various diseases such as ribosomopathies, leukaemia, and solid tumours. However, the detailed mechanism of Pol I-directed transcription remains elusive, and the roles of Pol I subunits in rRNA synthesis and cellular activities still need clarification. In this study, we found that RPA43 expression levels positively correlate with Pol I product accumulation and cell proliferation, indicating that RPA43 activates these processes. Unexpectedly, RPA43 depletion promoted HeLa cell migration, suggesting that RPA43 functions as a negative regulator in cell migration. Mechanistically, RPA43 positively modulates the recruitment of Pol I transcription machinery factors to the rDNA promoter by activating the transcription of the genes encoding Pol I transcription machinery factors. RPA43 inhibits cell migration by dampening the expression of c-JUN and Integrin. Collectively, we found that RPA43 plays opposite roles in cell proliferation and migration except for driving Pol I-dependent transcription. These findings provide novel insights into the regulatory mechanism of Pol I-mediated transcription and cell proliferation and a potential pathway to developing anti-cancer drugs using RPA43 as a target.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Yaoyu Pang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7GE, UK
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Junwei Gao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Shuting Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China.
| |
Collapse
|
5
|
Towarnicki SG, Youngson NA, Corley SM, St. John JC, Melvin RG, Turner N, Morris MJ, Ballard JWO. Ancestral dietary change alters the development of Drosophila larvae through MAPK signalling. Fly (Austin) 2022; 16:299-311. [PMID: 35765944 PMCID: PMC9354765 DOI: 10.1080/19336934.2022.2088032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies in a broad range of animal species have revealed phenotypes that are caused by ancestral life experiences, including stress and diet. Ancestral dietary macronutrient composition and quantity (over- and under-nutrition) have been shown to alter descendent growth, metabolism and behaviour. Molecules have been identified in gametes that are changed by ancestral diet and are required for transgenerational effects. However, there is less understanding of the developmental pathways altered by inherited molecules during the period between fertilization and adulthood. To investigate this non-genetic inheritance, we exposed great grand-parental and grand-parental generations to defined protein to carbohydrate (P:C) dietary ratios. Descendent developmental timing was consistently faster in the period between the embryonic and pupal stages when ancestors had a higher P:C ratio diet. Transcriptional analysis revealed extensive and long-lasting changes to the MAPK signalling pathway, which controls growth rate through the regulation of ribosomal RNA transcription. Pharmacological inhibition of both MAPK and rRNA pathways recapitulated the ancestral diet-induced developmental changes. This work provides insight into non-genetic inheritance between fertilization and adulthood.
Collapse
Affiliation(s)
- Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia,The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Susan M. Corley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Jus C. St. John
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Richard G. Melvin
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Nigel Turner
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Margaret J. Morris
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - J. William O. Ballard
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia,Department of Ecology, Environment and Evolution, School of Life Sciences, Victoria 3086, La Trobe University, Melbourne, VIC, Australia,CONTACT J. William O. Ballard Department of Environment and Genetics, SABE, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
6
|
Drum Z, Lanno S, Gregory SM, Shimshak S, Barr W, Gatesman A, Schadt M, Sanford J, Arkin A, Assignon B, Colorado S, Dalgarno C, Devanny T, Ghandour T, Griffin R, Hogan M, Horowitz E, McGhie E, Multer J, O'Halloran H, Ofori-Darko K, Pokushalov D, Richards N, Sagarin K, Taylor N, Thielking A, Towle P, Coolon J. Genomics analysis of Drosophila sechellia response to Morinda citrifolia fruit diet. G3 (BETHESDA, MD.) 2022; 12:jkac153. [PMID: 35736356 PMCID: PMC9526069 DOI: 10.1093/g3journal/jkac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
Drosophila sechellia is an island endemic host specialist that has evolved to consume the toxic fruit of Morinda citrifolia, also known as noni fruit. Recent studies by our group and others have examined genome-wide gene expression responses of fruit flies to individual highly abundant compounds found in noni responsible for the fruit's unique chemistry and toxicity. In order to relate these reductionist experiments to the gene expression responses to feeding on noni fruit itself, we fed rotten noni fruit to adult female D. sechellia and performed RNA-sequencing. Combining the reductionist and more wholistic approaches, we have identified candidate genes that may contribute to each individual compound and those that play a more general role in response to the fruit as a whole. Using the compound specific and general responses, we used transcription factor prediction analyses to identify the regulatory networks and specific regulators involved in the responses to each compound and the fruit itself. The identified genes and regulators represent the possible genetic mechanisms and biochemical pathways that contribute to toxin resistance and noni specialization in D. sechellia.
Collapse
Affiliation(s)
- Zachary Drum
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Stephen Lanno
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Sara M Gregory
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Serena Shimshak
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Will Barr
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Austin Gatesman
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Mark Schadt
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Jack Sanford
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Aaron Arkin
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Brynn Assignon
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Sofia Colorado
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Carol Dalgarno
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Trevor Devanny
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Tara Ghandour
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Rose Griffin
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Mia Hogan
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Erica Horowitz
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Emily McGhie
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Jake Multer
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Hannah O'Halloran
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Kofi Ofori-Darko
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Dmitry Pokushalov
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Nick Richards
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Kathleen Sagarin
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Nicholas Taylor
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Acadia Thielking
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Phie Towle
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | - Joseph Coolon
- Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| |
Collapse
|
7
|
Loganathan R, Levings DC, Kim JH, Wells MB, Chiu H, Wu Y, Slattery M, Andrew DJ. Ribbon boosts ribosomal protein gene expression to coordinate organ form and function. J Cell Biol 2022; 221:213030. [PMID: 35195669 PMCID: PMC9237840 DOI: 10.1083/jcb.202110073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cell growth is well defined for late (postembryonic) stages of development, but evidence for early (embryonic) cell growth during postmitotic morphogenesis is limited. Here, we report early cell growth as a key characteristic of tubulogenesis in the Drosophila embryonic salivary gland (SG) and trachea. A BTB/POZ domain nuclear factor, Ribbon (Rib), mediates this early cell growth. Rib binds the transcription start site of nearly every SG-expressed ribosomal protein gene (RPG) and is required for full expression of all RPGs tested. Rib binding to RPG promoters in vitro is weak and not sequence specific, suggesting that specificity is achieved through cofactor interactions. Accordingly, we demonstrate Rib’s ability to physically interact with each of the three known regulators of RPG transcription. Surprisingly, Rib-dependent early cell growth in another tubular organ, the embryonic trachea, is not mediated by direct RPG transcription. These findings support a model of early cell growth customized by transcriptional regulatory networks to coordinate organ form and function.
Collapse
Affiliation(s)
| | - Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Ji Hoon Kim
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Hannah Chiu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Yifan Wu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
8
|
Martínez Corrales G, Filer D, Wenz KC, Rogan A, Phillips G, Li M, Feseha Y, Broughton SJ, Alic N. Partial Inhibition of RNA Polymerase I Promotes Animal Health and Longevity. Cell Rep 2021; 30:1661-1669.e4. [PMID: 32049000 PMCID: PMC7013379 DOI: 10.1016/j.celrep.2020.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/12/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Health and survival in old age can be improved by changes in gene expression. RNA polymerase (Pol) I is the essential, conserved enzyme whose task is to generate the pre-ribosomal RNA (rRNA). We find that reducing the levels of Pol I activity is sufficient to extend lifespan in the fruit fly. This effect can be recapitulated by partial, adult-restricted inhibition, with both enterocytes and stem cells of the adult midgut emerging as important cell types. In stem cells, Pol I appears to act in the same longevity pathway as Pol III, implicating rRNA synthesis in these cells as the key lifespan determinant. Importantly, reduction in Pol I activity delays broad, age-related impairment and pathology, improving the function of diverse organ systems. Hence, our study shows that Pol I activity in the adult drives systemic, age-related decline in animal health and anticipates mortality. Partial inhibition of RNA polymerase I (Pol I) can extend lifespan in the fruit fly Reducing Pol I activity after development and only in the gut is sufficient Pol I activity affects aging from both post-mitotic and mitotically active cells Pol I activity affects the age-related decline in performance of multiple organs
Collapse
Affiliation(s)
- Guillermo Martínez Corrales
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Danny Filer
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Katharina C Wenz
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Abbie Rogan
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - George Phillips
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Mengjia Li
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Yodit Feseha
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ Lancaster, UK
| | - Nazif Alic
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK.
| |
Collapse
|
9
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 643] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
10
|
Chen J, Stark LA. Insights into the Relationship between Nucleolar Stress and the NF-κB Pathway. Trends Genet 2019; 35:768-780. [PMID: 31434627 DOI: 10.1016/j.tig.2019.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The nuclear organelle the nucleolus and the transcription factor nuclear factor of κ-light-chain-enhancer of activated B cells (NF-κB) are both central to the control of cellular homeostasis, dysregulated in common diseases and implicated in the ageing process. Until recently, it was believed that they acted independently to regulate homeostasis in health and disease. However, there is an emerging body of evidence suggesting that nucleoli and NF-κB signalling converge at multiple levels. Here we will review current understanding of this crosstalk. We will discuss activation of the NF-κB pathway by nucleolar stress and induction of apoptosis by nucleolar sequestration of NF-κB/RelA. We will also discuss the role of TIF-IA, COMMD1, and nucleophosmin, which are key players in this crosstalk, and the therapeutic relevance, particularly with respect to the antitumour effects of aspirin.
Collapse
Affiliation(s)
- Jingyu Chen
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - Lesley A Stark
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|
11
|
Bughio F, Maggert KA. The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance. Chromosome Res 2018; 27:19-30. [PMID: 30511202 DOI: 10.1007/s10577-018-9591-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Abstract
Our goal is to draw a line-hypothetical in its totality but experimentally supported at each individual step-connecting the ribosomal DNA and the phenomenon of transgenerational epigenetic inheritance of induced phenotypes. The reasonableness of this hypothesis is offset by its implication, that many (or most) (or all) of the cases of induced-and-inherited phenotypes that are seen to persist for generations are instead unmapped induced polymorphisms in the ribosomal DNA, and thus are the consequence of the peculiar and enduringly fascinating genetics of the highly transcribed repeat DNA structure at that locus.
Collapse
Affiliation(s)
- Farah Bughio
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Keith A Maggert
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
12
|
Madak JT, Bankhead A, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther 2018; 195:111-131. [PMID: 30347213 DOI: 10.1016/j.pharmthera.2018.10.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identified as a hallmark of cancer, metabolic reprogramming allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. Rapidly growing cells depend on sufficient concentrations of nucleotides to sustain proliferation. One enzyme essential for the de novo biosynthesis of pyrimidine-based nucleotides is dihydroorotate dehydrogenase (DHODH), a known therapeutic target for multiple diseases. Brequinar, leflunomide, and teriflunomide, all of which are potent DHODH inhibitors, have been clinically evaluated but failed to receive FDA approval for the treatment of cancer. Inhibition of DHODH depletes intracellular pyrimidine nucleotide pools and results in cell cycle arrest in S-phase, sensitization to current chemotherapies, and differentiation in neural crest cells and acute myeloid leukemia (AML). Furthermore, DHODH is a synthetic lethal susceptibility in several oncogenic backgrounds. Therefore, DHODH-targeted therapy has potential value as part of a combination therapy for the treatment of cancer. In this review, we focus on the de novo pyrimidine biosynthesis pathway as a target for cancer therapy, and in particular, DHODH. In the first part, we provide a comprehensive overview of this pathway and its regulation in cancer. We further describe the relevance of DHODH as a target for cancer therapy using bioinformatic analyses. We then explore the preclinical and clinical results of pharmacological strategies to target the de novo pyrimidine biosynthesis pathway, with an emphasis on DHODH. Finally, we discuss potential strategies to harness DHODH as a target for the treatment of cancer.
Collapse
Affiliation(s)
- Joseph T Madak
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christine R Cuthbertson
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| | - Nouri Neamati
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|