1
|
Gurjar M, Amanipour R, Balendran V, Ghimire S, Demirhan MA, Flynn AJ, Seernaum N, Rose KP, Song Y, Hertzano R, Coate TM. EPHRIN-A1 and -A2 act as positive growth factors for developing spiral ganglion radial bundles. Dev Biol 2025; 524:176-189. [PMID: 40345476 DOI: 10.1016/j.ydbio.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
During the formation of the auditory system in mammals, spiral ganglion neurons (SGNs) form ribbon-type synapses with hair cells in the cochlea to establish the first "sensorineural" component of sound transduction. Ahead of synapse formation in the cochlea, the SGNs undergo migration and extension with developing Schwann and otic mesenchyme cells to form radial bundles, fasciculated groups of nerve fibers found between the SGN somata and hair cells. Thus far, reports have shown that Eph/Ephrin signaling is important for the formation of radial bundles. Here, we show that EPHRIN-A1 and -A2 are broadly expressed in the developing cochlea during periods of SGN peripheral axon extension. Confronting spiral ganglion explants with either EPHRIN-A1- or -A2-Fc in vitro promoted neurite extension and reduced fasciculation. EPHRIN-A1- or -A2-Fc treatments also led to increased levels of phosphorylated ERBB2 immunoreactivity in Schwann cells, suggesting a role for developing glia. Loss of Efna1 and Efna2 in mouse models led to approximately a 25 % reduction in SGN peripheral axon extension, an effect that was maintained into adulthood. Overall, the data presented here indicate that EPHRIN-A1 and -A2 are important for normal patterns of cochlear innervation in that they serve as positive growth factors for developing radial bundles, possibly by stimulating Schwann cells.
Collapse
Affiliation(s)
- Mansa Gurjar
- Department of Biology, Georgetown University, Washington DC, United States
| | - Reza Amanipour
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States; Neurotology Branch, National Institute on Deafness and Other Communication Disorders, Intramural Research Program, Bethesda, MD, United States
| | - Vinodh Balendran
- Department of Biology, Georgetown University, Washington DC, United States
| | - Satish Ghimire
- Department of Biology, Georgetown University, Washington DC, United States
| | | | - Alexander J Flynn
- Department of Biology, Georgetown University, Washington DC, United States
| | - Nidhee Seernaum
- Department of Biology, Georgetown University, Washington DC, United States
| | - Kevin P Rose
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States; Neurotology Branch, National Institute on Deafness and Other Communication Disorders, Intramural Research Program, Bethesda, MD, United States
| | - Yang Song
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ronna Hertzano
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States; Neurotology Branch, National Institute on Deafness and Other Communication Disorders, Intramural Research Program, Bethesda, MD, United States
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington DC, United States.
| |
Collapse
|
2
|
Thulasiram MR, Yamamoto R, Olszewski RT, Gu S, Morell RJ, Hoa M, Dabdoub A. Molecular differences between young and mature stria vascularis from organotypic explants and transcriptomics. iScience 2025; 28:111832. [PMID: 40028281 PMCID: PMC11869990 DOI: 10.1016/j.isci.2025.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/31/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
The stria vascularis (SV) is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and mature mice to create a platform for advancing SV research. We validated our model by demonstrating that the proliferative behavior of the SV in vitro mimics SV in vivo. We also provided evidence for pharmacological experimentation by investigating the role of Wnt/β-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and mature mouse SV and surrounding tissue and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss.
Collapse
Affiliation(s)
- Matsya Ruppari Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ryosuke Yamamoto
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto, ON M4N 3M5, Canada
| | - Rafal T. Olszewski
- Auditory Development and Restoration Program, NIDCD Otolaryngology-Surgeon-Scientist Program, NIDCD Neurotology Branch, Division of Intramural Research, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, NIDCD Otolaryngology-Surgeon-Scientist Program, NIDCD Neurotology Branch, Division of Intramural Research, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert J. Morell
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, NIDCD Otolaryngology-Surgeon-Scientist Program, NIDCD Neurotology Branch, Division of Intramural Research, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto, ON M4N 3M5, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Thulasiram MR, Yamamoto R, Olszewski RT, Gu S, Morell RJ, Hoa M, Dabdoub A. Molecular differences between neonatal and adult stria vascularis from organotypic explants and transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590986. [PMID: 38712156 PMCID: PMC11071502 DOI: 10.1101/2024.04.24.590986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Summary The stria vascularis (SV), part of the blood-labyrinth barrier, is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and adult mice to create a robust platform for SV research. We validated our model by demonstrating that the proliferative behaviour of the SV in vitro mimics SV in vivo, providing a representative model and advancing high-throughput SV research. We also provided evidence for pharmacological intervention in our system by investigating the role of Wnt/β-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and adult mouse SV and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss. Significance Hearing loss impairs our ability to communicate with people and interact with our environment. This can lead to social isolation, depression, cognitive deficits, and dementia. Inner ear degeneration is a primary cause of hearing loss, and our study provides an in depth look at one of the major sites of inner ear degeneration: the stria vascularis. The stria vascularis and associated blood-labyrinth barrier maintain the functional integrity of the auditory system, yet it is relatively understudied. By developing a new in vitro model for the young and adult stria vascularis and using single cell RNA sequencing, our study provides a novel approach to studying this tissue, contributing new insights and widespread implications for auditory neuroscience and regenerative medicine. Highlights - We established an organotypic explant system of the neonatal and adult stria vascularis with an intact blood-labyrinth barrier. - Proliferation of the stria vascularis decreases with age in vitro , modelling its proliferative behaviour in vivo . - Pharmacological studies using our in vitro SV model open possibilities for testing injury paradigms and therapeutic interventions. - Inhibition of Wnt signalling decreases proliferation in neonatal stria vascularis.- We identified key genes and transcription factors unique to developing and mature SV cell types using single cell RNA sequencing.
Collapse
|
4
|
Meng Y, Lv T, Zhang J, Shen W, Li L, Li Y, Liu X, Lei X, Lin X, Xu H, Meng A, Jia S. Temporospatial inhibition of Erk signaling is required for lymphatic valve formation. Signal Transduct Target Ther 2023; 8:342. [PMID: 37691058 PMCID: PMC10493226 DOI: 10.1038/s41392-023-01571-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
Intraluminal lymphatic valves (LVs) and lymphovenous valves (LVVs) are critical to ensure the unidirectional flow of lymphatic fluid. Morphological abnormalities in these valves always cause lymph or blood reflux, and result in lymphedema. However, the underlying molecular mechanism of valve development remains poorly understood. We here report the implication of Efnb2-Ephb4-Rasa1 regulated Erk signaling axis in lymphatic valve development with identification of two new valve structures. Dynamic monitoring of phospho-Erk activity indicated that Erk signaling is spatiotemporally inhibited in some lymphatic endothelial cells (LECs) during the valve cell specification. Inhibition of Erk signaling via simultaneous depletion of zygotic erk1 and erk2 or treatment with MEK inhibitor selumetinib causes lymphatic vessel hypoplasia and lymphatic valve hyperplasia, suggesting opposite roles of Erk signaling during these two processes. ephb4b mutants, efnb2a;efnb2b or rasa1a;rasa1b double mutants all have defective LVs and LVVs and exhibit blood reflux into lymphatic vessels with an edema phenotype. Importantly, the valve defects in ephb4b or rasa1a;rasa1b mutants are mitigated with high-level gata2 expression in the presence of MEK inhibitors. Therefore, Efnb2-Ephb4 signaling acts to suppress Erk activation in valve-forming cells to promote valve specification upstream of Rasa1. Not only do our findings reveal a molecular mechanism of lymphatic valve formation, but also provide a basis for the treatment of lymphatic disorders.
Collapse
Affiliation(s)
- Yaping Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tong Lv
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junfeng Zhang
- Guangzhou Laboratory, Guangzhou, 510320, Guangdong Province, China
| | - Weimin Shen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lifang Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaqi Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xing Lei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuguang Lin
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanfang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou Laboratory, Guangzhou, 510320, Guangdong Province, China.
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Zong YJ, Liu XZ, Tu L, Sun Y. Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43. Int J Mol Sci 2023; 24:10349. [PMID: 37373495 DOI: 10.3390/ijms241210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
6
|
Defourny J, Thiry M. Recent insights into gap junction biogenesis in the cochlea. Dev Dyn 2023; 252:239-246. [PMID: 36106826 DOI: 10.1002/dvdy.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022] Open
Abstract
In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Stepwise fate conversion of supporting cells to sensory hair cells in the chick auditory epithelium. iScience 2023; 26:106046. [PMID: 36818302 PMCID: PMC9932131 DOI: 10.1016/j.isci.2023.106046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor β receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Collapse
|
8
|
Krasewicz J, Yu WM. Eph and ephrin signaling in the development of the central auditory system. Dev Dyn 2023; 252:10-26. [PMID: 35705527 PMCID: PMC9751234 DOI: 10.1002/dvdy.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.
Collapse
Affiliation(s)
| | - Wei-Ming Yu
- Correspondence: Wei-Ming Yu, Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, LSB 226, Chicago, IL 60660, , Tel: +1-773-508-3325, Fax: +1-773-508-3646
| |
Collapse
|
9
|
Chromosome-level genome and population genomics reveal evolutionary characteristics and conservation status of Chinese indigenous geese. Commun Biol 2022; 5:1191. [DOI: 10.1038/s42003-022-04125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractGeese are herbivorous birds that play an essential role in the agricultural economy. We construct the chromosome-level genome of a Chinese indigenous goose (the Xingguo gray goose, XGG; Anser cygnoides) and analyze the adaptation of fat storage capacity in the goose liver during the evolution of Anatidae. Genomic resequencing of 994 geese is used to investigate the genetic relationships of geese, which supports the dual origin of geese (Anser cygnoides and Anser anser). Chinese indigenous geese show higher genetic diversity than European geese, and a scientific conservation program can be established to preserve genetic variation for each breed. We also find that a 14-bp insertion in endothelin receptor B subtype 2 (EDNRB2) that determines the white plumage of Chinese domestic geese is a natural mutation, and the linkaged alleles rapidly increase in frequency as a result of genetic hitchhiking, leading to the formation of completely different haplotypes of white geese under strong artificial selection. These genomic resources and our findings will facilitate marker-assisted breeding of geese and provide a foundation for further research on geese genetics and evolution.
Collapse
|
10
|
Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, Pavlinkova G, Adameyko I, Hadjab S, Lallemend F. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun 2022; 13:3878. [PMID: 35790771 PMCID: PMC9256748 DOI: 10.1038/s41467-022-31580-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
Collapse
Affiliation(s)
- Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Phoebe Uhl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Iva Filova
- Institute of Biotechnology CAS, 25250, Vestec, Czech Republic
| | | | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Ming-Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Al-Mathkour MM, Dwead AM, Alp E, Boston AM, Cinar B. The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility. Sci Rep 2022; 12:3840. [PMID: 35264657 PMCID: PMC8907295 DOI: 10.1038/s41598-022-07790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.
Collapse
Affiliation(s)
- Marwah M Al-Mathkour
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Abdulrahman M Dwead
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Esma Alp
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Ava M Boston
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Bekir Cinar
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Murugan S, Cheng C. Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis. Front Cell Dev Biol 2022; 10:852236. [PMID: 35295853 PMCID: PMC8918484 DOI: 10.3389/fcell.2022.852236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
The eye lens is responsible for fine focusing of light onto the retina, and its function relies on tissue transparency and biomechanical properties. Recent studies have demonstrated the importance of Eph-ephrin signaling for the maintenance of life-long lens homeostasis. The binding of Eph receptor tyrosine kinases to ephrin ligands leads to a bidirectional signaling pathway that controls many cellular processes. In particular, dysfunction of the receptor EphA2 or the ligand ephrin-A5 lead to a variety of congenital and age-related cataracts, defined as any opacity in the lens, in human patients. In addition, a wealth of animal studies reveal the unique and overlapping functions of EphA2 and ephrin-A5 in lens cell shape, cell organization and patterning, and overall tissue optical and biomechanical properties. Significant differences in lens phenotypes of mouse models with disrupted EphA2 or ephrin-A5 signaling indicate that genetic modifiers likely affect cataract phenotypes and progression, suggesting a possible reason for the variability of human cataracts due to Eph-ephrin dysfunction. This review summarizes the roles of EphA2 and ephrin-A5 in the lens and suggests future avenues of study.
Collapse
|
13
|
Wang YC, Zheng WL, Yu W, Quan RL, Zhao YJ. Erythropoietin-producing hepatocyte kinase receptor A1 facilitating the prgression of SGC-7901 cells and its transplanted tumor by increasing the expression of interleukin-6 and vascular endothelial growth factor in tumor microenvironment. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221125612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives Many researches showed that Erythropoietin-producing hepatocyte kinase receptor A1 (EphA1) can promote the occurrence and development of malignant tumors and may be related to tumor microenvironment. But most of them are phenomenon studies, and there are few in-depth and complete mechanism studies. This study aims to understand how EphA1 promotes the progression of malignant tumors by regulating tumor microenvironment (focusing on Interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF)) from two experimental dimensions of in vitro and in vivo by using genetic engineering technology. Material and Methods We used genetic engineering technology to enhance and knock down EphA1 gene expression in SGC-7901 cells, respectively, and analyzed its influence on cell function and the expression levels of VEGF and IL-6 in cells. Subsequently, we constructed human EphA1 gene overexpression, EphA1 gene silencing, and normal expression of human EphA1 gene subcutaneous transplanted tumor models of SGC-7901 cells nude mice, and analyzed the differences in tumor development and the changes in the expression levels of VEGF and ILl-6 in tumor tissues. Results After EphA1 gene expression was enhanced, the proliferation, invasion and migration of SGC-7901 cells were enhanced, and apoptosis was weakened, and the expression levels of VEGF and IL-6 were increased. While the opposite results were found when EphA1 gene expression were knocked down. Meanwhile, tumor formation time and growth rate of subcutaneous transplantation in nude mice were advanced and the expression levels of VEGF and IL-6 in tumor tissues were increased when EphA1 gene expression were overexpressed by genetic engineering technology. Similarly, the opposite effect occurred in transplanted tumor model when EphA1 gene was silenced. Conclusion Our study showed that EphA1 can up-regulating VEGF and IL-6 expression, thereby enhancing the inflammatory environment and angiogenesis in the tumor microenvironment, and this helps to promote the progression of SGC-7901 cells and its transplanted tumor.
Collapse
Affiliation(s)
- Yong-Cang Wang
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, P.R. China
| | - Wen-Lin Zheng
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, P.R. China
| | - Wei Yu
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, P.R. China
| | - Rui-Liang Quan
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, P.R. China
| | - Ya-Jun Zhao
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, P.R. China
| |
Collapse
|
14
|
Herrera-Vargas AK, García-Rodríguez E, Olea-Flores M, Mendoza-Catalán MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev 2021; 62:23-41. [PMID: 34736827 DOI: 10.1016/j.cytogfr.2021.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.
Collapse
Affiliation(s)
- Ana K Herrera-Vargas
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO, 39090, Mexico.
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO 39087, Mexico.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
15
|
Hoshino N, Altarshan Y, Alzein A, Fernando AM, Nguyen HT, Majewski EF, Chen VCF, William Rochlin M, Yu WM. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. J Comp Neurol 2021; 529:3633-3654. [PMID: 34235739 PMCID: PMC8490280 DOI: 10.1002/cne.25213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023]
Abstract
Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation. Ephrin-A3 forward signaling is sufficient to repel auditory nerve fibers in a developmental stage-dependent manner. In mice lacking ephrin-A3, the tonotopic map is degraded and isofrequency bands of neuronal activation upon pure tone exposure become imprecise in the anteroventral cochlear nucleus. Ephrin-A3 mutant mice also exhibit a delayed second wave in auditory brainstem responses upon sound stimuli and impaired detection of sound frequency changes. Our findings establish an essential role for ephrin-A3 in forming precise tonotopy in the auditory brainstem to ensure accurate sound discrimination.
Collapse
Affiliation(s)
- Natalia Hoshino
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Yazan Altarshan
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Ahmad Alzein
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Amali M. Fernando
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Hieu T. Nguyen
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Emma F. Majewski
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW We review recent progress in the characterization of spiral ganglion neurons (SGNs), the afferent neurons that transmit sound information from mechanosensory hair cells in the inner ear to the central nervous system. RECENT FINDINGS Single-cell ribonucleic acid sequencing studies of murine SGNs have demonstrated that SGNs consist of molecularly distinct subtypes. The molecularly defined SGN subtypes likely correspond to SGN subtypes previously identified on the basis of physiological properties, although this has not been experimentally demonstrated. Subtype maturation is completed postnatally in an activity-dependent manner and is impaired in several models of hearing loss. SUMMARY The recent molecular studies open new avenues to rigorously test whether SGN subtypes are important for the encoding of different sound features and if they show differential vulnerability to genetic factors and environmental insults. This could have important implications for the development of therapeutic strategies to treat hearing loss.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
17
|
Defourny J, Audouard C, Davy A, Thiry M. Efnb2 haploinsufficiency induces early gap junction plaque disassembly and endocytosis in the cochlea. Brain Res Bull 2021; 174:153-160. [PMID: 34139316 DOI: 10.1016/j.brainresbull.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022]
Abstract
Chromosome 13q deletions encompassing EFNB2, which encodes the transmembrane protein ephrin-B2, are likely to cause syndromic forms of sensorineural hearing loss of unclear origin. Thus, unravelling the pathogenic mechanisms could help to improve therapeutic strategies. In the cochlea, adjacent non-sensory epithelial cells are connected via gap junction channels, the activity of which is critical to maintain cochlear homeostasis. Here we show that ephrin-B2 promotes the assembly of connexin 30 (Cx30) gap junction plaques (GJPs) between adjacent non-sensory Deiters' cells. An in situ proximity ligation assay revealed that ephrin-B2 preferentially interacts with Cx30 in the periphery of the GJPs, i.e. where newly synthesized connexin hemichannels accrue to the GJP. Moreover, we observed that heterozygous mice encoding an Efnb2 null allele display excessive clathrin-mediated internalization of Cx30 GJPs in early postnatal stages. Finally, an in vitro organotypic assay revealed that ectopic activation of ephrin-B2 reverse signalling promotes the internalization of Cx30 GJPs. These data argue in favor of a cell-autonomous, Eph receptor-independent role of ephrin-B2 in the assembly of Cx30 GJPs. According to recent observations, early GJP degradation could certainly play a role in the pathogenic process leading to progressive sensorineural hearing loss due to Efnb2/EFNB2 haploinsufficiency.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, CHU B36, 4000, Liège, Belgium.
| | - Christophe Audouard
- Center for Developmental Biology, Center for Integrative Biology, University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Center for Developmental Biology, Center for Integrative Biology, University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, CHU B36, 4000, Liège, Belgium
| |
Collapse
|
18
|
Balendran V, Skidmore JM, Ritter KE, Gao J, Cimerman J, Beyer LA, Hurd EA, Raphael Y, Martin DM. Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning. Dev Biol 2021; 477:11-21. [PMID: 34004180 DOI: 10.1016/j.ydbio.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.
Collapse
Affiliation(s)
- Vinodh Balendran
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | | | - K Elaine Ritter
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jingxia Gao
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jelka Cimerman
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | | | - Yehoash Raphael
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donna M Martin
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA; Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA; Human Genetics, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Wang X, Sun J, Wang Z, Li C, Mao B. EphA7 is required for otic epithelial homeostasis by modulating Claudin6 in Xenopus. Biochem Biophys Res Commun 2020; 526:375-380. [PMID: 32222280 DOI: 10.1016/j.bbrc.2020.03.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Receptor tyrosine kinase EphA7 is specifically expressed in otic region in Xenopus early development. However, its role in otocyst development remains unknown. Knockdown of EphA7 by a specific morpholino oligonucleotide (MO) reduced the size of the otocyst and triggered otic epithelial cell extrusion. Interestingly, EphA7 depletion attenuated the membrane level of the tight junction protein Claudin6 (CLDN6). Utilizing the Cldn6 MO, we further confirmed that CLDN6 attenuation also led to otic epithelial cell extrusion. Our work suggested that EphA7 modulates the otic epithelial homeostasis through stabilizing the CLDN6 membrane level.
Collapse
Affiliation(s)
- Xiaolei Wang
- Medical College, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jian Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA
| | - Zhaobao Wang
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China; Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|