1
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia identifies the structure and function of ciliopathy protein complexes. Dev Cell 2025; 60:965-978.e3. [PMID: 39674175 PMCID: PMC11945580 DOI: 10.1016/j.devcel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/04/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain a myriad of different proteins that assemble into an array of distinct machines, and understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry in Tetrahymena thermophila. From over 19,000 cross-links, we identified over 4,700 unique amino acid interactions among over 1,100 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the intraflagellar transport system, axonemal dynein arms, radial spokes, the 96-nm ruler, and microtubule inner proteins. Guided by this dataset, we used vertebrate multiciliated cells to reveal functional interactions among several poorly defined human ciliopathy proteins. This dataset provides a resource for studying the biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Fredrick AS, Claussen ER, Fischer SN, Balasanyants S, Rajaraman A, Rosner AC, Drew K. Identifying Ciliary Proteins in Mammalian Retinas using a Gentle Extraction Method. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001218. [PMID: 38947246 PMCID: PMC11211918 DOI: 10.17912/micropub.biology.001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Mutations in retinal primary cilia are responsible for human blindness but the mechanisms are not fully understood (Wheway et al., 2014). Characterizing the proteome of an organelle such as cilia, is a fruitful way to understand its function but methods often require considerable sample quantities. Here we develop a method to isolate the primary cilia of photoreceptor cells from bovine retinas. Through LC/MS/MS proteomics analysis we identify proteins enriched for cilia function including ciliopathy disease. This study shows our method can be used to isolate retinal primary cilia to obtain sufficient quantities of native protein samples.
Collapse
Affiliation(s)
- Adeline S. Fredrick
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Erin R. Claussen
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Samantha N. Fischer
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Samson Balasanyants
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Akshaya Rajaraman
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Andi C. Rosner
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Kevin Drew
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Earwood R, Ninomiya H, Wang H, Shimada IS, Stroud M, Perez D, Uuganbayar U, Yamada C, Akiyama-Miyoshi T, Stefanovic B, Kato Y. The binding of LARP6 and DNAAF6 in biomolecular condensates influences ciliogenesis of multiciliated cells. J Biol Chem 2024; 300:107373. [PMID: 38762183 PMCID: PMC11208920 DOI: 10.1016/j.jbc.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Motile cilia on the cell surface produce fluid flows in the body and abnormalities in motile cilia cause primary ciliary dyskinesia. Dynein axonemal assembly factor 6 (DNAAF6), a causative gene of primary ciliary dyskinesia, was isolated as an interacting protein with La ribonucleoprotein 6 (LARP6) that regulates ciliogenesis in multiciliated cells (MCCs). In MCCs of Xenopus embryos, LARP6 and DNAAF6 were colocalized in biomolecular condensates termed dynein axonemal particles and synergized to control ciliogenesis. Moreover, tubulin alpha 1c-like mRNA encoding α-tubulin protein, that is a major component of ciliary axoneme, was identified as a target mRNA regulated by binding LARP6. While DNAAF6 was necessary for high α-tubulin protein expression near the apical side of Xenopus MCCs during ciliogenesis, its mutant, which abolishes binding with LARP6, was unable to restore the expression of α-tubulin protein near the apical side of MCCs in Xenopus DNAAF6 morphant. These results indicated that the binding of LARP6 and DNAAF6 in dynein axonemal particles regulates highly expressed α-tubulin protein near the apical side of Xenopus MCCs during ciliogenesis.
Collapse
Affiliation(s)
- Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Hiromasa Ninomiya
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Hao Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Issei S Shimada
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Mia Stroud
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Diana Perez
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Udval Uuganbayar
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Chisato Yamada
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Toru Akiyama-Miyoshi
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA; Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan.
| |
Collapse
|
4
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Wang J, Liu J, Huang R, Chu T, Tang Q, Chen X. Proteomic Profiling of Messenger Ribonucleoproteins in Mouse Tissues Based on Formaldehyde Cross-Linking. J Proteome Res 2024; 23:1370-1378. [PMID: 38472149 DOI: 10.1021/acs.jproteome.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Messenger ribonucleoprotein particles (mRNPs) are vital for tissue-specific gene expression via mediating posttranscriptional regulations. However, proteomic profiling of proteins in mRNPs, i.e., mRNA-associated proteins (mRAPs), has been challenging at the tissue level. Herein, we report the development of formaldehyde cross-linking-based mRNA-associated protein profiling (FAXRAP), a chemical strategy that enables the identification of mRAPs in both cultured cells and intact mouse organs. Applying FAXRAP, tissue-specific mRAPs were systematically profiled in the mouse liver, kidney, heart, and brain. Furthermore, brain mRAPs in Parkinson's disease (PD) mouse model were investigated, which revealed a global decrease of mRNP assembly in the brain of mice with PD. We envision that FAXRAP will facilitate uncovering the posttranscriptional regulation networks in various biological systems.
Collapse
Affiliation(s)
- Jiankun Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Rongbing Huang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Tianyu Chu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Leggere JC, Hibbard JV, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and nonciliary phenotypes of IFT-A mutants. Mol Biol Cell 2024; 35:ar39. [PMID: 38170584 PMCID: PMC10916875 DOI: 10.1091/mbc.e23-03-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila. A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
Affiliation(s)
- Janelle C. Leggere
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Jaime V.K. Hibbard
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| |
Collapse
|
7
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548259. [PMID: 37781579 PMCID: PMC10541116 DOI: 10.1101/2023.07.09.548259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences McGill University, Québec, Canada
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
8
|
June V, Xu D, Papoulas O, Boutz D, Marcotte EM, Chen ZJ. Protein nonadditive expression and solubility contribute to heterosis in Arabidopsis hybrids and allotetraploids. FRONTIERS IN PLANT SCIENCE 2023; 14:1252564. [PMID: 37780492 PMCID: PMC10538547 DOI: 10.3389/fpls.2023.1252564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Hybrid vigor or heterosis has been widely applied in agriculture and extensively studied using genetic and gene expression approaches. However, the biochemical mechanism underlying heterosis remains elusive. One theory suggests that a decrease in protein aggregation may occur in hybrids due to the presence of protein variants between parental alleles, but it has not been experimentally tested. Here, we report comparative analysis of soluble and insoluble proteomes in Arabidopsis intraspecific and interspecific hybrids or allotetraploids formed between A. thaliana and A. arenosa. Both allotetraploids and intraspecific hybrids displayed nonadditive expression (unequal to the sum of the two parents) of the proteins, most of which were involved in biotic and abiotic stress responses. In the allotetraploids, homoeolog-expression bias was not observed among all proteins examined but accounted for 17-20% of the nonadditively expressed proteins, consistent with the transcriptome results. Among expression-biased homoeologs, there were more A. thaliana-biased than A. arenosa-biased homoeologs. Analysis of the insoluble and soluble proteomes revealed more soluble proteins in the hybrids than their parents but not in the allotetraploids. Most proteins in ribosomal biosynthesis and in the thylakoid lumen, membrane, and stroma were in the soluble fractions, indicating a role of protein stability in photosynthetic activities for promoting growth. Thus, nonadditive expression of stress-responsive proteins and increased solubility of photosynthetic proteins may contribute to heterosis in Arabidopsis hybrids and allotetraploids and possibly hybrid crops.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Dongqing Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Daniel Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Edward M. Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Z. Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Ma S, Yu H, Wang M, Cui T, Zhao Y, Zhang X, Wang C, Li M, Zhang L, Dong J. Natural product drupacine acting on a novel herbicidal target shikimate dehydrogenase. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105480. [PMID: 37532346 DOI: 10.1016/j.pestbp.2023.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023]
Abstract
Natural products are one of the important sources for the creation of new pesticides. Drupacine ((1R,11S,12S,13R,15S)-13-methoxy-5,7,21-trioxa-19-azahexacyclo[11.7.1.02,10.04,8.011,15.015,19]henicosa-2,4(8),9-trien-12-ol), isolated from Cephalotaxus sinensis (Chinese plum-yew), is a potent herbicidal compound containing an oxo-bridged oxygen bond structure. However, its molecular target still remains unknown. In this study, the targets of drupacine in Amaranthus retroflexus were identified by combining drug affinity responsive target stability (DARTS), cellular thermal shift assay coupled with mass spectrometry (CETSA MS), RNA-seq transcriptomic, and TMT proteomic analyses. Fifty-one and sixty-eight main binding proteins were identified by DARTS and CETSA MS, respectively, including nine co-existing binding proteins. In drupacine-treated A. retroflexus seedlings we identified 1389 up-regulated genes and 442 down-regulated genes, 34 up-regulated proteins, and 194 down-regulated proteins, respectively. Combining the symptoms and the biochemical profiles, Profilin, Shikimate dehydrogenase (SkDH), and Zeta-carotene desaturase were predicted to be the drupacine potential target proteins. At the same time, drupacine was found to bind SkDH stronger by molecular docking, and its inhibition on ArSkDH increased with the treatment concentration increase. Our results suggest that the molecular target of drupacine is SkDH, a new herbicide target, which lay a foundation for the rational design of herbicides based on new targets from natural products and enrich the target resources for developing green herbicides.
Collapse
Affiliation(s)
- Shujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Hualong Yu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingyu Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tingru Cui
- Baoding Meteorological Bureau, Baoding 071000, China
| | - Yujing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Caixia Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mengmeng Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
10
|
Leggere JC, Hibbard JVK, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and non-ciliary phenotypes of IFT-A mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531778. [PMID: 36945534 PMCID: PMC10028850 DOI: 10.1101/2023.03.08.531778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila . A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
|
11
|
Hibbard JVK, Vázquez N, Wallingford JB. Cilia proteins getting to work - how do they commute from the cytoplasm to the base of cilia? J Cell Sci 2022; 135:jcs259444. [PMID: 36073764 PMCID: PMC9482345 DOI: 10.1242/jcs.259444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are multifunctional organelles that originated with the last eukaryotic common ancestor and play central roles in the life cycles of diverse organisms. The motile flagella that move single cells like sperm or unicellular organisms, the motile cilia on animal multiciliated cells that generate fluid flow in organs, and the immotile primary cilia that decorate nearly all cells in animals share many protein components in common, yet each also requires specialized proteins to perform their specialized functions. Despite a now-advanced understanding of how such proteins are transported within cilia, we still know very little about how they are transported from their sites of synthesis through the cytoplasm to the ciliary base. Here, we review the literature concerning this underappreciated topic in ciliary cell biology. We discuss both general mechanisms, as well as specific examples of motor-driven active transport and passive transport via diffusion-and-capture. We then provide deeper discussion of specific, illustrative examples, such as the diverse array of protein subunits that together comprise the intraflagellar transport (IFT) system and the multi-protein axonemal dynein motors that drive beating of motile cilia. We hope this Review will spur further work, shedding light not only on ciliogenesis and ciliary signaling, but also on intracellular transport in general.
Collapse
Affiliation(s)
| | | | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
12
|
Huebner RJ, Weng S, Lee C, Sarıkaya S, Papoulas O, Cox RM, Marcotte EM, Wallingford JB. ARVCF catenin controls force production during vertebrate convergent extension. Dev Cell 2022; 57:1119-1131.e5. [PMID: 35476939 DOI: 10.1016/j.devcel.2022.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
The design of an animal's body plan is encoded in the genome, and the execution of this program is a mechanical progression involving coordinated movement of proteins, cells, and whole tissues. Thus, a challenge to understanding morphogenesis is connecting events that occur across various length scales. Here, we describe how a poorly characterized adhesion effector, Arvcf catenin, controls Xenopus head-to-tail axis extension. We find that Arvcf is required for axis extension within the intact organism but not within isolated tissues. We show that the organism-scale phenotype results from a defect in tissue-scale force production. Finally, we determine that the force defect results from the dampening of the pulsatile recruitment of cell adhesion and cytoskeletal proteins to membranes. These results provide a comprehensive understanding of Arvcf function during axis extension and produce an insight into how a cellular-scale defect in adhesion results in an organism-scale failure of development.
Collapse
Affiliation(s)
- Robert J Huebner
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Shinuo Weng
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Sena Sarıkaya
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Rachael M Cox
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Hao K, Chen Y, Yan X, Zhu X. Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nat Commun 2021; 12:6971. [PMID: 34848703 PMCID: PMC8632896 DOI: 10.1038/s41467-021-27298-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Cilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.
Collapse
Affiliation(s)
- Kai Hao
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yawen Chen
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
| |
Collapse
|
14
|
Haward F, Maslon MM, Yeyati PL, Bellora N, Hansen JN, Aitken S, Lawson J, von Kriegsheim A, Wachten D, Mill P, Adams IR, Caceres JF. Nucleo-cytoplasmic shuttling of splicing factor SRSF1 is required for development and cilia function. eLife 2021; 10:e65104. [PMID: 34338635 PMCID: PMC8352595 DOI: 10.7554/elife.65104] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Shuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus, and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells and tissues derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.
Collapse
Affiliation(s)
- Fiona Haward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Patricia L Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Nicolas Bellora
- Institute of Nuclear Technologies for Health (Intecnus), National Scientific and Technical Research Council (CONICET)BarilocheArgentina
| | - Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jennifer Lawson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research United Kingdom Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Javier F Caceres
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
15
|
Devitt CC, Lee C, Cox RM, Papoulas O, Alvarado J, Shekhar S, Marcotte EM, Wallingford JB. Twinfilin1 controls lamellipodial protrusive activity and actin turnover during vertebrate gastrulation. J Cell Sci 2021; 134:jcs254011. [PMID: 34060614 PMCID: PMC8325956 DOI: 10.1242/jcs.254011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
The dynamic control of the actin cytoskeleton is a key aspect of essentially all animal cell movements. Experiments in single migrating cells and in vitro systems have provided an exceptionally deep understanding of actin dynamics. However, we still know relatively little of how these systems are tuned in cell-type-specific ways, for example in the context of collective cell movements that sculpt the early embryo. Here, we provide an analysis of the actin-severing and depolymerization machinery during vertebrate gastrulation, with a focus on Twinfilin1 (Twf1) in Xenopus. We find that Twf1 is essential for convergent extension, and loss of Twf1 results in a disruption of lamellipodial dynamics and polarity. Moreover, Twf1 loss results in a failure to assemble polarized cytoplasmic actin cables, which are essential for convergent extension. These data provide an in vivo complement to our more-extensive understanding of Twf1 action in vitro and provide new links between the core machinery of actin regulation and the specialized cell behaviors of embryonic morphogenesis.
Collapse
Affiliation(s)
- Caitlin C. Devitt
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Rachael M. Cox
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - José Alvarado
- Department of Physics, University of Texas, Austin, TX 78712, USA
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
16
|
Skinnider MA, Foster LJ. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments. Nat Methods 2021; 18:806-815. [PMID: 34211188 DOI: 10.1038/s41592-021-01194-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Co-fractionation mass spectrometry (CF-MS) has emerged as a powerful technique for interactome mapping. However, there is little consensus on optimal strategies for the design of CF-MS experiments or their computational analysis. Here, we reanalyzed a total of 206 CF-MS experiments to generate a uniformly processed resource containing over 11 million measurements of protein abundance. We used this resource to benchmark experimental designs for CF-MS studies and systematically optimize computational approaches to network inference. We then applied this optimized methodology to reconstruct a draft-quality human interactome by CF-MS and predict over 700,000 protein-protein interactions across 27 eukaryotic species or clades. Our work defines new resources to illuminate proteome organization over evolutionary timescales and establishes best practices for the design and analysis of CF-MS studies.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Baxi AB, Pade LR, Nemes P. Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis. Curr Top Dev Biol 2021; 145:205-231. [PMID: 34074530 PMCID: PMC8314003 DOI: 10.1016/bs.ctdb.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The South African clawed frog (Xenopus laevis), a prominent vertebrate model in cell and developmental biology, has been instrumental in studying molecular mechanisms of neural development and disease. Recently, high-resolution mass spectrometry (HRMS), a bioanalytical technology, has expanded the molecular toolbox of protein detection and characterization (proteomics). This chapter overviews the characteristics, advantages, and challenges of this biological model and technology. Discussions are offered on their combined use to aid studies on cell differentiation and development of neural tissues. Finally, the emerging integration of proteomics and other 'omic technologies is reflected on to generate new knowledge, drive and test new hypotheses, and ultimately, advance the understanding of neural development during states of health and disease.
Collapse
Affiliation(s)
- Aparna B Baxi
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
18
|
McWhite CD, Papoulas O, Drew K, Dang V, Leggere JC, Sae-Lee W, Marcotte EM. Co-fractionation/mass spectrometry to identify protein complexes. STAR Protoc 2021; 2:100370. [PMID: 33748783 PMCID: PMC7960544 DOI: 10.1016/j.xpro.2021.100370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Co-fractionation/mass spectrometry (CF/MS) is a flexible and powerful method to detect physical associations of proteins. CF/MS can be applied to any tissue or organism without the need for protein-specific antibodies or epitope tags. Here, we outline two alternate protocols for MS preparation of samples (containing low or high salt) and a computational pipeline (cfmsflow) that together allow the successful application of this approach. These protocols are based on CF/MS of over 16 diverse organisms including plants and animals. For complete details on the use and execution of this protocol, please refer to McWhite et al. (2020). Co-fractionation/mass spectrometry (CF/MS) detects native protein associations Experimental methods for mass spec preparation of 96-well native fractions Computational pipeline to generate protein interaction maps from CF/MS data
Collapse
Affiliation(s)
- Claire D McWhite
- Department of Molecular Biosciences and the Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences and the Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Molecular Biosciences and the Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Vy Dang
- Department of Molecular Biosciences and the Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences and the Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Wisath Sae-Lee
- Department of Molecular Biosciences and the Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences and the Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
19
|
Floyd BM, Drew K, Marcotte EM. Systematic Identification of Protein Phosphorylation-Mediated Interactions. J Proteome Res 2021; 20:1359-1370. [PMID: 33476154 DOI: 10.1021/acs.jproteome.0c00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is a key regulatory mechanism involved in nearly every eukaryotic cellular process. Increasingly sensitive mass spectrometry approaches have identified hundreds of thousands of phosphorylation sites, but the functions of a vast majority of these sites remain unknown, with fewer than 5% of sites currently assigned a function. To increase our understanding of functional protein phosphorylation we developed an approach (phospho-DIFFRAC) for identifying the phosphorylation-dependence of protein assemblies in a systematic manner. A combination of nonspecific protein phosphatase treatment, size-exclusion chromatography, and mass spectrometry allowed us to identify changes in protein interactions after the removal of phosphate modifications. With this approach we were able to identify 316 proteins involved in phosphorylation-sensitive interactions. We recovered known phosphorylation-dependent interactors such as the FACT complex and spliceosome, as well as identified novel interactions such as the tripeptidyl peptidase TPP2 and the supraspliceosome component ZRANB2. More generally, we find phosphorylation-dependent interactors to be strongly enriched for RNA-binding proteins, providing new insight into the role of phosphorylation in RNA binding. By searching directly for phosphorylated amino acid residues in mass spectrometry data, we identified the likely regulatory phosphosites on ZRANB2 and FACT complex subunit SSRP1. This study provides both a method and resource for obtaining a better understanding of the role of phosphorylation in native macromolecular assemblies. All mass spectrometry data are available through PRIDE (accession #PXD021422).
Collapse
Affiliation(s)
- Brendan M Floyd
- Department of Molecular Biosciences Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kevin Drew
- Department of Molecular Biosciences Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Lee C, Cox RM, Papoulas O, Horani A, Drew K, Devitt CC, Brody SL, Marcotte EM, Wallingford JB. Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. eLife 2020; 9:e58662. [PMID: 33263282 PMCID: PMC7785291 DOI: 10.7554/elife.58662] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Rachael M Cox
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Amjad Horani
- Department of Pediatrics, Washington University School of MedicineSt. LouisUnited States
| | - Kevin Drew
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Caitlin C Devitt
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Steven L Brody
- Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|