1
|
Dobariya KH, Goyal D, Kumar H. Molecular signature-based labeling techniques for vascular endothelial cells. Acta Histochem 2025; 127:152222. [PMID: 39644518 DOI: 10.1016/j.acthis.2024.152222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Vascular endothelial cells (VECs) play a crucial role in the development and maintenance of vascular biology specific to the tissue types. Molecular signature-based labeling and imaging of VECs help researchers understand potential mechanisms linking VECs to disease pathology, serving as valuable biomarkers in clinical settings and trials. Labeling techniques involve selectively tagging or marking VECs for visualization. Immunolabeled employs antibodies that specifically bind to VECs markers, while fluorescent tracers or dyes can directly label VECs for imaging. Some techniques use specific carbohydrate residues on cell surface, while others employ endothelial-specific promoters to express fluorescent proteins. Additionally, VEC can be labeled with contrast agents, radiolabeled tracers, and nanoparticles. The choice of labeling technique depends on study context, including whether it involves animal models, in vitro cell cultures, or clinical applications. Herein, we discussed the various labeling methods utilized to label VECs and the techniques to visualize them.
Collapse
Affiliation(s)
- Krutika H Dobariya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Divya Goyal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
2
|
Kandangwa P, Cheng K, Patel M, Sherwin SJ, de Silva R, Weinberg PD. Relative Residence Time Can Account for Half of the Anatomical Variation in Fatty Streak Prevalence Within the Right Coronary Artery. Ann Biomed Eng 2025; 53:144-157. [PMID: 39287909 PMCID: PMC11782302 DOI: 10.1007/s10439-024-03607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE The patchy anatomical distribution of atherosclerosis has been attributed to variation in haemodynamic wall shear stress (WSS). The consensus is that low WSS and a high Oscillatory Shear Index (OSI) trigger the disease. We found that atherosclerosis at aortic branch sites correlates threefold better with transverse WSS (transWSS), a metric which quantifies multidirectional near-wall flow. Coronary artery disease has greater clinical significance than aortic disease but computation of WSS metrics is complicated by the substantial vessel motion occurring during each cardiac cycle. Here we present the first comparison of the distribution of atherosclerosis with WSS metrics computed for moving coronary arteries. METHODS Maps of WSS metrics were computed using dynamic geometries reconstructed from angiograms of ten non-stenosed human right coronary arteries (RCAs). They were compared with maps of fatty streak prevalence derived from a previous study of 1852 RCAs. RESULTS Time average WSS (TAWSS), OSI, transWSS and the cross-flow index (CFI), a non-dimensional form of the transWSS, gave non-significant or significant but low spatial correlations with lesion prevalence. The highest correlation coefficient (0.71) was for the relative residence time (RRT), a metric that decreases with TAWSS and increases with OSI. The coefficient was not changed if RRT was calculated using CFI, which captures multidirectional WSS only, rather than OSI, which encompasses both multidirectional and oscillatory WSS. CONCLUSION Contrary to our earlier findings in the aorta, low WSS in combination with highly multidirectional flow correlates best with lesion location in the RCA, explaining approximately half of its anatomical variation.
Collapse
Affiliation(s)
- Pratik Kandangwa
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Kevin Cheng
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Miten Patel
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
- Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Spencer J Sherwin
- Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Ranil de Silva
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
- Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Luo X, Pang Z, Li J, Anh M, Kim BS, Gao G. Bioengineered human arterial equivalent and its applications from vascular graft to in vitro disease modeling. iScience 2024; 27:111215. [PMID: 39555400 PMCID: PMC11565542 DOI: 10.1016/j.isci.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Arterial disorders such as atherosclerosis, thrombosis, and aneurysm pose significant health risks, necessitating advanced interventions. Despite progress in artificial blood vessels and animal models aimed at understanding pathogenesis and developing therapies, limitations in graft functionality and species discrepancies restrict their clinical and research utility. Addressing these issues, bioengineered arterial equivalents (AEs) with enhanced vascular functions have been developed, incorporating innovative technologies that improve clinical outcomes and enhance disease progression modeling. This review offers a comprehensive overview of recent advancements in bioengineered AEs, systematically summarizing the bioengineered technologies used to construct these AEs, and discussing their implications for clinical application and pathogenesis understanding. Highlighting current breakthroughs and future perspectives, this review aims to inform and inspire ongoing research in the field, potentially transforming vascular medicine and offering new avenues for preclinical and clinical advances.
Collapse
Affiliation(s)
- Xi Luo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zherui Pang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| | - Minjun Anh
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Niu K, Zhang C, Liu C, Wu W, Yan Y, Zheng A, Liu S, Shi Z, Yang M, Wang W, Xiao Q. An unexpected role of IL10 in mesoderm induction and differentiation from pluripotent stem cells: Implications in zebrafish angiogenic sprouting, vascular organoid development, and therapeutic angiogenesis. Eur J Cell Biol 2024; 103:151465. [PMID: 39471724 DOI: 10.1016/j.ejcb.2024.151465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
Mesoderm induction is a crucial step for vascular cell specification, vascular development and vasculogenesis. However, the cellular and molecular mechanisms underlying mesoderm induction remain elusive. In the present study, a chemically-defined differentiation protocol was used to induce mesoderm formation and generate functional vascular cells including smooth muscle cells (SMCs) and endothelial cells (ECs) from human induced pluripotent stem cells (hiPSCs). Zebrafish larvae were used to detect an in vivo function of interleukin 10 (IL10) in mesoderm formation and vascular development. A three dimensional approach was used to create hiPSC-derived blood vessel organoid (BVO) and explore a potential impact of IL10 on BVO formation. A murine model hind limb ischemia was applied to investigate a therapeutic potential of hiPSC-derived cells treated with or without IL10 during differentiation. We found that IL10 was significantly and specifically up-regulated during mesoderm stage of vascular differentiation. IL10 addition in mesoderm induction media dramatically increased mesoderm induction and vascular cell generation from hiPSCs, whereas an opposite effect was observed with IL10 inhibition. Mechanistic studies revealed that IL10 promotes mesoderm formation and vascular cell differentiation by activating signal transducer and activator of transcription 3 signal pathway. Functional studies with an in vivo model system confirmed that knockdown of IL10 using morpholino antisense oligonucleotides in zebrafish larvae caused defective mesoderm formation, angiogenic sprouting and vascular development. Additionally, our data also show IL10 promotes blood vessel organoid development and enhances vasculogenesis and angiogenesis. Importantly, we demonstrate that IL10 treatment during mesoderm induction stage enhances blood flow perfusion recovery and increases vasculogenesis and therapeutic angiogenesis after hind limb ischemia. Our data, therefore, demonstrate a regulatory role for IL10 in mesoderm formation from hiPSCs and during zebrafish vascular development, providing novel insights into mesoderm induction and vascular cell specifications.
Collapse
Affiliation(s)
- Kaiyuan Niu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London EC1M 6BQ, UK; Department of Otolaryngology, Head & Neck Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Chengxin Zhang
- Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Chenxin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wei Wu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PR China
| | - Ancheng Zheng
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Silin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Zhenning Shi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mei Yang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wen Wang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
5
|
Borda M, Sierra R, Cantero MJ, Gómez Bustillo S, Fiore EJ, Giardelli G, Martino Garcet M, Rebottaro ML, Bayo Fina JM, Schiavone M, Rubione J, García MG, Montaner A, Mazzolini GD, Aquino JB. The antifibrotic potential of IMT504: modulation of GLAST + Wnt1 + bone marrow stromal progenitors and hepatic microenvironment. Stem Cell Res Ther 2024; 15:278. [PMID: 39227908 PMCID: PMC11373403 DOI: 10.1186/s13287-024-03896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.
Collapse
Affiliation(s)
- Maximiliano Borda
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Romina Sierra
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María José Cantero
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Sofía Gómez Bustillo
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Esteban Juan Fiore
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Gianlucca Giardelli
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Matías Martino Garcet
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María Luz Rebottaro
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
| | - Juan Miguel Bayo Fina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Máximo Schiavone
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Julia Rubione
- Mechanisms and Therapeutic Innovation in Pain Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Mariana Gabriela García
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Guillermo Daniel Mazzolini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Jorge Benjamín Aquino
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina.
| |
Collapse
|
6
|
Lee H, Han DW, La H, Park C, Kang K, Kwon O, Uhm SJ, Song H, Do JT, Choi Y, Hong K. DOT1-like histone lysine methyltransferase is critical for adult vessel maintenance and functions. Anim Biosci 2024; 37:1635-1643. [PMID: 38665093 PMCID: PMC11366529 DOI: 10.5713/ab.23.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE Disruptor of telomeric silencing 1-like (DOT1L) is the only known histone H3K79 methyltransferase essential for the development of the embryonic cardiovascular system, including the heart, blood vessels, and lymphatic vessels, through transcriptional regulation. Our previous study demonstrated that Dot1l deletion results in aberrant lymphatic development and function. However, its precise function in the postnatal cardiovascular system remains unknown. METHODS Using conditional and inducible Dot1l knockout (KO) mice, along with a reporter strain carrying the Geo gene at the Dot1l locus, DOT1L expression and its function in the vascular system during postnatal life were investigated. To assess vessel morphology and vascular permeability, we administered Latex or Evans blue dye to KO mice. In addition, in vitro tube formation and cell migration assays were performed using DOT1L-depleted human umbilical vein endothelial cells (HUVECs). Changes in the expression of vascular genes in HUVECs were measured by quantitative polymerase chain reaction. RESULTS Our findings demonstrate that conditional Dot1l knockout in the Tg (Tie2-cre) strain results in abnormal blood vessel formation and lymphatic anomalies in the intestine. In a mouse model of Rosa26-creER-mediated inducible Dot1l knockout, we observed vascular phenotypes, including increased vascular permeability and brain hemorrhage, when DOT1L was deleted in adulthood. Additionally, DOT1L depletion in cultured HUVECs led to impaired cell migration and tube formation, likely due to altered gene transcription. These findings highlight the essential role of DOT1L in maintaining vascular integrity and function during embryonic development and postnatal life. CONCLUSION Our study revealed that DOT1L is required for the maintenance of adult vascular function through the regulation of gene expression.
Collapse
Affiliation(s)
- HeeJi Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020,
China
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kiye Kang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Ohbeom Kwon
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339,
Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
7
|
Iovino L, Krenning G, Hadland B. Editorial: Unconventional roles of endothelial cells. Front Cell Dev Biol 2024; 12:1439419. [PMID: 39040045 PMCID: PMC11260730 DOI: 10.3389/fcell.2024.1439419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
| | - Guido Krenning
- University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
8
|
Deng D, Zhang Y, Tang B, Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther 2024; 15:175. [PMID: 38886767 PMCID: PMC11184868 DOI: 10.1186/s13287-024-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cells (ECs) are widely used as donor cells in tissue engineering, organoid vascularization, and in vitro microvascular model development. ECs are invaluable tools for disease modeling and drug screening in fundamental research. When treating ischemic diseases, EC engraftment facilitates the restoration of damaged blood vessels, enhancing therapeutic outcomes. This article presents a comprehensive overview of the current sources of ECs, which encompass stem/progenitor cells, primary ECs, cell lineage conversion, and ECs derived from other cellular sources, provides insights into their characteristics, potential applications, discusses challenges, and explores strategies to mitigate these issues. The primary aim is to serve as a reference for selecting suitable EC sources for preclinical research and promote the translation of basic research into clinical applications.
Collapse
Affiliation(s)
- Dan Deng
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
9
|
Ramirez-Velandia F, Mensah E, Salih M, Wadhwa A, Young M, Muram S, Taussky P, Ogilvy CS. Endothelial Progenitor Cells: A Review of Molecular Mechanisms in the Pathogenesis and Endovascular Treatment of Intracranial Aneurysms. Neuromolecular Med 2024; 26:25. [PMID: 38886284 DOI: 10.1007/s12017-024-08791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
This comprehensive review explores the multifaceted role of endothelial progenitor cells (EPCs) in vascular diseases, focusing on their involvement in the pathogenesis and their contributions to enhancing the efficacy of endovascular treatments for intracranial aneurysms (IAs). Initially discovered as CD34+ bone marrow-derived cells implicated in angiogenesis, EPCs have been linked to vascular repair, vasculogenesis, and angiogenic microenvironments. The origin and differentiation of EPCs have been subject to debate, challenging the conventional notion of bone marrow origin. Quantification methods, including CD34+ , CD133+ , and various assays, reveal the influence of factors, like age, gender, and comorbidities on EPC levels. Cellular mechanisms highlight the interplay between bone marrow and angiogenic microenvironments, involving growth factors, matrix metalloproteinases, and signaling pathways, such as phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). In the context of the pathogenesis of IAs, EPCs play a role in maintaining vascular integrity by replacing injured and dysfunctional endothelial cells. Recent research has also suggested the therapeutic potential of EPCs after coil embolization and flow diversion, and this has led the development of device surface modifications aimed to enhance endothelialization. The comprehensive insights underscore the importance of further research on EPCs as both therapeutic targets and biomarkers in IAs.
Collapse
Affiliation(s)
- Felipe Ramirez-Velandia
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mensah
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Mira Salih
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Aryan Wadhwa
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Michael Young
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Sandeep Muram
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Philipp Taussky
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher S Ogilvy
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Shi X, Simms KJ, Ewing TJ, Lin YP, Chen YL, Melvan JN, Siggins RW, Zhang P. The bone marrow endothelial progenitor cell response to septic infection. Front Immunol 2024; 15:1368099. [PMID: 38665923 PMCID: PMC11044677 DOI: 10.3389/fimmu.2024.1368099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Department of Surgery, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Kevin J. Simms
- Department of Integrative Medical Sciences, Department of Surgery, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Thomas J. Ewing
- West Clinical Laboratory, Lakeland Regional Health Medical Center, Lakeland, FL, United States
| | | | - Yi-Ling Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - John N. Melvan
- Memorial Cardiac and Vascular Institute, Memorial Healthcare System, Hollywood, FL, United States
| | - Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ping Zhang
- Department of Integrative Medical Sciences, Department of Surgery, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
11
|
Aurigemma I, Lanzetta O, Cirino A, Allegretti S, Lania G, Ferrentino R, Poondi Krishnan V, Angelini C, Illingworth E, Baldini A. Endothelial gene regulatory elements associated with cardiopharyngeal lineage differentiation. Commun Biol 2024; 7:351. [PMID: 38514806 PMCID: PMC10957928 DOI: 10.1038/s42003-024-06017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Endothelial cells (EC) differentiate from multiple sources, including the cardiopharyngeal mesoderm, which gives rise also to cardiac and branchiomeric muscles. The enhancers activated during endothelial differentiation within the cardiopharyngeal mesoderm are not completely known. Here, we use a cardiogenic mesoderm differentiation model that activates an endothelial transcription program to identify endothelial regulatory elements activated in early cardiogenic mesoderm. Integrating chromatin remodeling and gene expression data with available single-cell RNA-seq data from mouse embryos, we identify 101 putative regulatory elements of EC genes. We then apply a machine-learning strategy, trained on validated enhancers, to predict enhancers. Using this computational assay, we determine that 50% of these sequences are likely enhancers, some of which are already reported. We also identify a smaller set of regulatory elements of well-known EC genes and validate them using genetic and epigenetic perturbation. Finally, we integrate multiple data sources and computational tools to search for transcriptional factor binding motifs. In conclusion, we show EC regulatory sequences with a high likelihood to be enhancers, and we validate a subset of them using computational and cell culture models. Motif analyses show that the core EC transcription factors GATA/ETS/FOS is a likely driver of EC regulation in cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Ilaria Aurigemma
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Olga Lanzetta
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Andrea Cirino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Sara Allegretti
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Ferrentino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Claudia Angelini
- Istituto Applicazioni del Calcolo, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Elizabeth Illingworth
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Antonio Baldini
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
12
|
Altabas V, Marinković Radošević J, Špoljarec L, Uremović S, Bulum T. The Impact of Modern Anti-Diabetic Treatment on Endothelial Progenitor Cells. Biomedicines 2023; 11:3051. [PMID: 38002051 PMCID: PMC10669792 DOI: 10.3390/biomedicines11113051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is one of the leading chronic diseases globally with a significant impact on mortality. This condition is associated with chronic microvascular and macrovascular complications caused by vascular damage. Recently, endothelial progenitor cells (EPCs) raised interest due to their regenerative properties. EPCs are mononuclear cells that are derived from different tissues. Circulating EPCs contribute to regenerating the vessel's intima and restoring vascular function. The ability of EPCs to repair vascular damage depends on their number and functionality. Diabetic patients have a decreased circulating EPC count and impaired EPC function. This may at least partially explain the increased risk of diabetic complications, including the increased cardiovascular risk in these patients. Recent studies have confirmed that many currently available drugs with proven cardiovascular benefits have beneficial effects on EPC count and function. Among these drugs are also medications used to treat different types of diabetes. This manuscript aims to critically review currently available evidence about the ways anti-diabetic treatment affects EPC biology and to provide a broader context considering cardiovascular complications. The therapies that will be discussed include lifestyle adjustments, metformin, sulphonylureas, gut glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor analogs, sodium-glucose transporter 2 inhibitors, and insulin.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Marinković Radošević
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | - Lucija Špoljarec
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | | | - Tomislav Bulum
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
14
|
Yoo H, La H, Park C, Yoo S, Lee H, Song H, Do JT, Choi Y, Hong K. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023; 11:1176115. [PMID: 37397258 PMCID: PMC10311421 DOI: 10.3389/fcell.2023.1176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.
Collapse
|
15
|
Rothzerg E, Erber WN, Gibbons CLMH, Wood D, Xu J. Osteohematology: To be or Notch to be. J Cell Physiol 2023. [PMID: 37269472 DOI: 10.1002/jcp.31042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/08/2023] [Accepted: 05/06/2023] [Indexed: 06/05/2023]
Abstract
Osteohematology is an emerging research field that studies the crosstalk between hematopoietic and bone stromal cells, to elucidate the mechanisms of hematological and skeletal malignancies and diseases. The Notch is an evolutionary conserved developmental signaling pathway, with critical roles in embryonic development by controlling cell proliferation and differentiation. However, the Notch pathway is also critically involved in cancer initiation and progression, such as osteosarcoma, leukemia, and multiple myeloma. The Notch-mediated malignant cells dysregulate bone and bone marrow cells in the tumour microenvironment, resulting in disorders ranging from osteoporosis to bone marrow dysfunction. To date, the complex interplay of Notch signaling molecules in hematopoietic and bone stromal cells is still poorly understood. In this mini-review, we summarize the crosstalk between cells in bone and bone marrow and their influence under the Notch signaling pathway in physiological conditions and in tumour microenvironment.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Christopher L M H Gibbons
- Orthopaedics Oncology, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| | - David Wood
- Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
16
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
17
|
Endothelial Cells Promote Migration of Mesenchymal Stem Cells via PDGF-BB/PDGFRβ-Src-Akt in the Context of Inflammatory Microenvironment upon Bone Defect. Stem Cells Int 2022; 2022:2401693. [PMID: 36193255 PMCID: PMC9526552 DOI: 10.1155/2022/2401693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Homing of mesenchymal stem cells (MSCs) to the defect site is indispensable for bone repair. Local endothelial cells (ECs) can recruit MSCs; however, the mechanism remains unclear, especially in the context of the inflammatory microenvironment. This study was aimed to investigate the role of ECs in MSCs migration during the inflammatory phase of bone repair. The inflammatory microenvironment was mimicked in vitro via adding a cytokine set (IL-1β, IL-6, and TNF-α) to the culture medium of ECs. The production of PDGF-BB from ECs was measured by ELISA. Transwell and wound healing assays were employed to assess MSCs migration toward ECs and evaluate the implication of PDGF-BB/PDGFRβ. A series of shRNA and pathway inhibitors were used to screen signal molecules downstream of PDGF-BB/PDGFRβ. Then, mouse models of femoral defects were fabricated and DBM scaffolds were implanted. GFP+ MSCs were injected via tail vein, and the relevance of PDGF-BB/PDGFRβ, as well as screened signal molecules, in cell homing was further verified during the early phase of bone repair. In the mimicked inflammatory microenvironment, MSCs migration toward ECs was significantly promoted, which could be abrogated by pdgfrb knockout in MSCs. Inhibition of Src or Akt led to negative effects analogous to pdgfrb knockout. Blockade of JNK, MEK, and p38 MAPK had no impact. Meanwhile, the secretion of PDGF-BB from ECs was evidently motivated by the inflammatory microenvironment. Adding recombinant PDGF-BB protein to the culture medium of ECs phenocopied the inflammatory microenvironment with regard to attracting MSCs, which was abolished by pdgfb, src, or akt in MSCs. Moreover, pdgfb knockout suppressed the expression and phosphorylation of Src and Akt in migrating MSCs. Src knockout impaired Akt expression but not vice versa. In vivo, reduced infiltration of CD31+ ECs was correlated with diminished PDGF-BB in local defect sites, and silencing pdgfb, src, or akt in MSCs markedly hampered cell homing. Together, these findings suggest that in the inflammatory microenvironment, MSCs migrate toward ECs via PDGF-BB/PDGFRβ and the downstream Src-Akt signal pathway.
Collapse
|
18
|
Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing. J Mol Med (Berl) 2022; 100:485-498. [PMID: 34997250 DOI: 10.1007/s00109-021-02172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Collapse
|
19
|
Endothelial Heterogeneity in Development and Wound Healing. Cells 2021; 10:cells10092338. [PMID: 34571987 PMCID: PMC8469713 DOI: 10.3390/cells10092338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
The vasculature is comprised of endothelial cells that are heterogeneous in nature. From tissue resident progenitors to mature differentiated endothelial cells, the diversity of these populations allows for the formation, maintenance, and regeneration of the vascular system in development and disease, particularly during situations of wound healing. Additionally, the de-differentiation and plasticity of different endothelial cells, especially their capacity to undergo endothelial to mesenchymal transition, has also garnered significant interest due to its implication in disease progression, with emphasis on scarring and fibrosis. In this review, we will pinpoint the seminal discoveries defining the phenotype and mechanisms of endothelial heterogeneity in development and disease, with a specific focus only on wound healing.
Collapse
|