1
|
Aranjuez GF, Patel O, Patel D, Jewett TJ. The N-terminus of the Chlamydia trachomatis effector Tarp engages the host Hippo pathway. Microbiol Spectr 2025; 13:e0259624. [PMID: 40062849 PMCID: PMC11960468 DOI: 10.1128/spectrum.02596-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate, intracellular Gram-negative bacteria and the leading bacterial sexually transmitted infection in the United States. Chlamydia manipulates the host cell biology using various secreted bacterial effectors during its intracellular development. The early effector translocated actin-recruiting phosphoprotein (Tarp), important for Chlamydia entry, has a well-characterized C-terminal region which can polymerize and bundle F-actin. In contrast, not much is known about the function of the N-terminus of Tarp (N-Tarp), though present in many Chlamydia spp. To address this, we use Drosophila melanogaster as an in vivo cell biology platform to study N-Tarp-host interactions. Transgenic expression of N-Tarp in Drosophila results in developmental phenotypes consistent with altered host Salvador-Warts-Hippo signaling, a conserved signaling cascade that regulates host cell proliferation and survival. We studied the N-Tarp function in larval imaginal wing discs, which are sensitive to perturbations in Hippo signaling. N-Tarp causes wing disc overgrowth and a concomitant increase in adult wing size, phenocopying overexpression of the Hippo co-activator Yorkie. N-Tarp also causes upregulation of Hippo target genes. Last, N-Tarp-induced phenotypes can be rescued by reducing the levels of Yorkie or the Hippo target genes CycE and Drosophila inhibitor of apoptosis 1 (Diap1). Thus, we provide evidence that the N-terminal region of the Chlamydia effector Tarp is sufficient to alter host Hippo signaling and acts upstream of the co-activator Yorkie. IMPORTANCE The survival of obligate intracellular bacteria like Chlamydia depends on the survival of the host cell itself. It is not surprising that Chlamydia-infected cells are resistant to cell death, though the exact molecular mechanism is largely unknown. Here, we establish that the N-terminal region of the well-known Ct early effector Tarp can alter Hippo signaling in vivo. Only recently implicated in Chlamydia infection, the Hippo pathway is known to promote cell survival. Our findings illuminate one possible mechanism for Chlamydia to promote host cell survival during infection. We further demonstrate the utility of Drosophila melanogaster as a tool in the study of effector function.
Collapse
Affiliation(s)
- George F. Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Om Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Dev Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J. Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Bednarski IA, Dróżdż I, Ciążyńska M, Wódz K, Narbutt J, Lesiak A. Ultraviolet B Exposure Does Not Influence the Expression of YAP mRNA in Human Epidermal Keratinocytes-Preliminary Study. Biomedicines 2025; 13:596. [PMID: 40149574 PMCID: PMC11940570 DOI: 10.3390/biomedicines13030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The causal relationship between exposure to ultraviolet radiation and the development of skin cancers requires constant research for possible orchestrating mechanisms. In recent years, the Hippo pathway, along with its effector protein YAP, became implicated in cutaneous carcinogenesis; however, Hippo pathway regulation by ultraviolet radiation has not been described thoroughly. In order to address this issue, we focused on how different doses of ultraviolet B affect Hippo signaling pathway components and its upstream regulators, JNK1/2 and ABL1, in human keratinocytes. Additionally, we decided to determine how silencing of YAP influences Hippo pathway component expression. Methods: Primary epidermal keratinocytes were irradiated using UVB lamps with increasing doses of ultraviolet B radiation (including 311 nm UVB). Real-time PCR was used to determine the mRNA levels of each investigated gene. The experiment was then performed after YAP silencing using siRNA transfection. Additionally, we determined the mRNA expression of Hippo pathway components in an A431 cSCC cell line. Results: We observed that YAP mRNA expression in the A431 cell line was insignificant in comparison to control, while in the case of LATS1/2, a significant increase was noted. UVB irradiation did not change the levels of YAP mRNA expression in human epidermal keratinocytes. LATS1, LATS2, ABL1 and MAP4K4 mRNA expression was significantly upregulated after UVB irradiation in non-YAP-silenced keratinocytes in a dose-dependent manner, while after YAP silencing, only LATS2 and ABL1 showed significant mRNA upregulation. The 311 nm UVB irradiation resulted in significant, dose-dependent mRNA upregulation in non-YAP-silenced keratinocytes for LATS1, ABL1 and MAP4K4. After YAP silencing, a significant change in mRNA expression was present only in the case of ABL1. Conclusions: YAP mRNA expression does not significantly increase after exposure to UVB; however, it upregulates the expression of its proven (LATS1/2, JNK1/2) regulators, suggesting that in real-life settings, UV-induced dysregulation of the Hippo pathway may not be limited to YAP.
Collapse
Affiliation(s)
- Igor Aleksander Bednarski
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
- Department of Neurology, Medical University of Łódź, 90-419 Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, 92-213 Łódź, Poland;
| | - Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Medical University of Łódź, 93-513 Łódź, Poland;
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720 Brudzew, Poland;
| | - Joanna Narbutt
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| | - Aleksandra Lesiak
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| |
Collapse
|
3
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Shao A, Kissil JL, Fan CM. The L27 domain of MPP7 enhances TAZ-YY1 cooperation to renew muscle stem cells. EMBO Rep 2024; 25:5667-5686. [PMID: 39496834 PMCID: PMC11624273 DOI: 10.1038/s44319-024-00305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renew, to support a lifetime of regenerative capacity. Here we study the renewal of skeletal muscle stem cell (MuSC) during regeneration. The transcriptional co-factors TAZ/YAP (via the TEAD transcription factors) regulate cell cycle and growth while the transcription factor YY1 regulates metabolic programs for MuSC activation. We show that MPP7 and AMOT join TAZ and YY1 to regulate a selected number of common genes that harbor TEAD and YY1 binding sites. Among these common genes, Carm1 can direct MuSC renewal. We demonstrate that the L27 domain of MPP7 enhances the interaction as well as the transcriptional activity of TAZ and YY1, while AMOT acts as an intermediate to bridge them together. Furthermore, MPP7, TAZ and YY1 co-occupy the promoters of Carm1 and other common downstream genes. Our results define a renewal program comprised of two progenitor transcriptional programs, in which selected key genes are regulated by protein-protein interactions, dependent on promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Joseph L Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Lopez AD, Debnath T, Pinch M, Hansen IA. Phosphoproteomics analyses of Aedes aegypti fat body reveals blood meal-induced signaling and metabolic pathways. Heliyon 2024; 10:e40060. [PMID: 39634388 PMCID: PMC11615488 DOI: 10.1016/j.heliyon.2024.e40060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The mosquito fat body is the principal source of yolk protein precursors (YPP) during mosquito egg development in female Aedes aegypti. To better understand the metabolic and signaling pathways involved in mosquito reproduction, we investigated changes in the mosquito fat body phosphoproteome at multiple time points after a blood meal. Using LC/MS, we identified 3570 phosphorylated proteins containing 14,551 individual phosphorylation sites. We observed protein phosphorylation changes in cellular pathways required for vitellogenesis, as well as proteins involved in primary cellular functions. Specifically, after a blood meal, proteins involved in ribosome synthesis, transcription, translation, and autophagy showed dynamic changes in their phosphorylation patterns. Our results provide new insight into blood meal-induced fat body dynamics and reveal potential proteins that can be targeted for interference with mosquito reproduction. Considering the devastating impact of mosquitoes on human health, worldwide, new approaches to control mosquitoes are urgently needed.
Collapse
Affiliation(s)
| | | | - Matthew Pinch
- New Mexico State University, Las Cruces, NM, 88003, USA
- The University of Texas at El Paso, El Paso, TX, 79968, USA
| | | |
Collapse
|
6
|
Ehlen QT, Jahn J, Rizk RC, Best TM. Comparative Analysis of Osteoarthritis Therapeutics: A Justification for Harnessing Retrospective Strategies via an Inverted Pyramid Model Approach. Biomedicines 2024; 12:2469. [PMID: 39595035 PMCID: PMC11592385 DOI: 10.3390/biomedicines12112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
In this review, we seek to explore two distinct approaches to the clinical management of OA: a prospective approach, addressing primarily one's genetic predisposition to OA and generating early intervention options, and the retrospective approach, aimed at halting or reversing OA progression post-symptom onset. The clinical management of OA remains challenging, largely due to the limited availability of preventative treatments and failure of existing therapies to modify or reverse the underlying pathophysiology. The prospective approach involves the identification of genetic markers associated with OA and utilizes in vitro and in vivo models to characterize the underlying disease mechanism. Further, this approach focuses on identifying genetic predispositions and unique molecular subtypes of OA to develop individualized treatment plans based on patient genotypes. While the current literature investigating this strategy has been notable, this approach faces substantial challenges, such as extensive time burdens and utilization of extensive genetic testing that may not be economically feasible. Additionally, there is questionable justification for such extensive investigations, given OA's relatively low mortality rates and burden when contrasted with diseases like specific forms of cancer, which rely heavily on the prospective approach. Alternatively, the retrospective approach primarily focuses on intervention following symptom onset and aims to utilize novel therapeutics to slow or reverse the inflammatory cascade typically seen in disease progression. These treatments, like Hippo pathway inhibitors, have shown initial promise in halting OA progression and alleviating OA symptomology by modulating cellular processes to preserve articular cartilage. In comparison to the prospective approach, the retrospective strategy is likely more cost-effective, more widely applicable, and does not necessitate thorough and invasive genetic screening. However, this approach must still be weighed against the typical natural history of disease progression, which frequently results in total knee arthroplasty and unacceptable outcomes for 15-20% of patients. From a comparative analysis of these two approaches, this review argues that the retrospective strategy, with ideally lower time and economic burden and greater accessibility, offers a more reasonable and effective solution in the context of OA management. Using a similar approach to other management of chronic diseases, we suggest an "Inverted Pyramid" model algorithm, a structured research and development regimen that prioritizes generating widely effective therapies first, with subsequent refinement of treatments based on the development of patient resistance to these therapies. We argue that this strategy may reduce the need for total knee arthroplasty while improving patient outcomes and accessibility.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
| | - Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
| | - Ryan C. Rizk
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
- Department of Orthopedics, University of Miami, Miami, FL 33124, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33124, USA
| |
Collapse
|
7
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
8
|
Aranjuez GF, Patel O, Patel D, Jewett TJ. The N-terminus of the Chlamydia trachomatis effector Tarp engages the host Hippo pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612603. [PMID: 39314337 PMCID: PMC11419093 DOI: 10.1101/2024.09.12.612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chlamydia trachomatis is an obligate, intracellular Gram-negative bacteria and the leading bacterial STI in the United States. Chlamydia's developmental cycle involves host cell entry, replication within a parasitophorous vacuole called an inclusion, and induction of host cell lysis to release new infectious particles. During development, Chlamydia manipulates the host cell biology using various secreted bacterial effectors. The early effector Tarp is important for Chlamydia entry via its well-characterized C-terminal region which can polymerize and bundle F-actin. In contrast, not much is known about the function of Tarp's N-terminus (N-Tarp), though this N-terminal region is present in many Chlamydia species. To address this, we use Drosophila melanogaster as an in vivo cell biology platform to study N-Tarp-host interactions. Drosophila development is well-characterized such that developmental phenotypes can be traced back to the perturbed molecular pathway. Transgenic expression of N-Tarp in Drosophila tissues results in phenotypes consistent with altered host Hippo signaling. The Salvador-Warts-Hippo pathway is a conserved signaling cascade that regulates host cell proliferation and survival during normal animal development. We studied N-Tarp function in larval imaginal wing discs, which are sensitive to perturbations in Hippo signaling. N-Tarp causes wing disc overgrowth and a concomitant increase in adult wing size, phenocopying overexpression of the Hippo co-activator Yorkie. N-Tarp also causes upregulation of Hippo target genes. Last, N-Tarp-induced phenotypes can be rescued by reducing the levels of Yorkie, or the Hippo target genes CycE and Diap1. Thus, we provide the first evidence that the N-terminal region of the Chlamydia effector Tarp is sufficient to alter host Hippo signaling and acts upstream of the co-activator Yorkie. Chlamydia alters host cell apoptosis during infection, though the exact mechanism remains unknown. Our findings implicate the N-terminal region of Tarp as a way to manipulate the host Hippo signaling pathway, which directly influences cell survival.
Collapse
Affiliation(s)
- George F Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Om Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Dev Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Travis J Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| |
Collapse
|
9
|
Phillips JE, Zheng Y, Pan D. Assembling a Hippo: the evolutionary emergence of an animal developmental signaling pathway. Trends Biochem Sci 2024; 49:681-692. [PMID: 38729842 PMCID: PMC11316659 DOI: 10.1016/j.tibs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function of the Hippo pathway in cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Hannan A, Wang Q, Wu Y, Makrides N, Qu X, Mao J, Que J, Cardoso W, Zhang X. Crk mediates Csk-Hippo signaling independently of Yap tyrosine phosphorylation to induce cell extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601065. [PMID: 39005335 PMCID: PMC11244872 DOI: 10.1101/2024.06.27.601065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Src family kinases (SFKs), including Src, Fyn and Yes, play important roles in development and cancer. Despite being first discovered as the Yes-associated protein, the regulation of Yap by SFKs remains poorly understood. Here, through single-cell analysis and genetic lineage tracing, we show that the pan-epithelial ablation of C-terminal Src kinase (Csk) in the lacrimal gland unleashes broad Src signaling but specifically causes extrusion and apoptosis of acinar progenitors at a time when they are shielded by myoepithelial cells from the basement membrane. Csk mutants can be phenocopied by constitutively active Yap and rescued by deleting Yap or Taz, indicating a significant functional overlap between Src and Yap signaling. Although Src-induced tyrosine phosphorylation has long been believed to regulate Yap activity, we find that mutating these tyrosine residues in both Yap and Taz fails to perturb mouse development or alleviate the Csk lacrimal gland phenotype. In contrast, Yap loses Hippo signaling-dependent serine phosphorylation and translocates into the nucleus in Csk mutants. Further chemical genetics studies demonstrate that acute inhibition of Csk enhances Crk/CrkL phosphorylation and Rac1 activity, whereas removing Crk/CrkL or Rac1/Rap1 ameliorates the Csk mutant phenotype. These results show that Src controls Hippo-Yap signaling through the Crk/CrkL-Rac/Rap axis to promote cell extrusion.
Collapse
Affiliation(s)
- Abdul Hannan
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jianwen Que
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Wellington Cardoso
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Columbia Center for Human Development, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Cano-Martínez A, Rubio-Ruiz ME, Guarner-Lans V. Homeostasis and evolution in relation to regeneration and repair. J Physiol 2024; 602:2627-2648. [PMID: 38781025 DOI: 10.1113/jp284426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Homeostasis constitutes a key concept in physiology and refers to self-regulating processes that maintain internal stability when adjusting to changing external conditions. It diminishes internal entropy constituting a driving force behind evolution. Natural selection might act on homeostatic regulatory mechanisms and control mechanisms including homeodynamics, allostasis, hormesis and homeorhesis, where different stable stationary states are reached. Regeneration is under homeostatic control through hormesis. Damage to tissues initiates a response to restore the impaired equilibrium caused by mild stress using cell proliferation, cell differentiation and cell death to recover structure and function. Repair is a homeorhetic change leading to a new stable stationary state with decreased functionality and fibrotic scarring without reconstruction of the 3-D pattern. Mechanisms determining entrance of the tissue or organ to regeneration or repair include the balance between innate and adaptive immune cells in relation to cell plasticity and stromal stem cell responses, and redox balance. The regenerative and reparative capacities vary in different species, distinct tissues and organs, and at different stages of development including ageing. Many cell signals and pathways play crucial roles determining regeneration or repair by regulating protein synthesis, cellular growth, inflammation, proliferation, autophagy, lysosomal function, metabolism and metalloproteinase cell signalling. Attempts to favour the entrance of damaged tissues to regeneration in those with low proliferative rates have been made; however, there are evolutionary constraint mechanisms leading to poor proliferation of stem cells in unfavourable environments or tumour development. More research is required to better understand the regulatory processes of these mechanisms.
Collapse
Affiliation(s)
- Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, México, México
| | | | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, México, México
| |
Collapse
|
12
|
Moon D, Padanilam BJ, Park KM, Kim J. Loss of SAV1 in Kidney Proximal Tubule Induces Maladaptive Repair after Ischemia and Reperfusion Injury. Int J Mol Sci 2024; 25:4610. [PMID: 38731829 PMCID: PMC11083677 DOI: 10.3390/ijms25094610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.
Collapse
Affiliation(s)
- Daeun Moon
- Department of Anatomy, Jeju National University College of Medicine, Jeju 63243, Republic of Korea;
| | - Babu J. Padanilam
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kwon Moo Park
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Jinu Kim
- Department of Anatomy, Jeju National University College of Medicine, Jeju 63243, Republic of Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
13
|
Phillips JE, Pan D. The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals. eLife 2024; 12:RP90818. [PMID: 38517944 PMCID: PMC10959527 DOI: 10.7554/elife.90818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
14
|
Attrill H, Antonazzo G, Goodman JL, Thurmond J, Strelets VB, Brown NH, the FlyBase Consortium. A new experimental evidence-weighted signaling pathway resource in FlyBase. Development 2024; 151:dev202255. [PMID: 38230566 PMCID: PMC10911275 DOI: 10.1242/dev.202255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Research in model organisms is central to the characterization of signaling pathways in multicellular organisms. Here, we present the comprehensive and systematic curation of 17 Drosophila signaling pathways using the Gene Ontology framework to establish a dynamic resource that has been incorporated into FlyBase, providing visualization and data integration tools to aid research projects. By restricting to experimental evidence reported in the research literature and quantifying the amount of such evidence for each gene in a pathway, we captured the landscape of empirical knowledge of signaling pathways in Drosophila.
Collapse
Affiliation(s)
- Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Giulia Antonazzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Joshua L. Goodman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jim Thurmond
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Nicholas H. Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | |
Collapse
|
15
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Shao A, Kissil JL, Fan CM. The L27 Domain of MPP7 enhances TAZ-YY1 Cooperation to Renew Muscle Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565166. [PMID: 37961392 PMCID: PMC10635061 DOI: 10.1101/2023.11.01.565166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph L. Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
17
|
Song S, Ma X. E2 enzyme Bruce negatively regulates Hippo signaling through POSH-mediated expanded degradation. Cell Death Dis 2023; 14:602. [PMID: 37699871 PMCID: PMC10497580 DOI: 10.1038/s41419-023-06130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
The Hippo pathway is a master regulator of organ growth, stem cell renewal, and tumorigenesis, its activation is tightly controlled by various post-translational modifications, including ubiquitination. While several E3 ubiquitin ligases have been identified as regulators of Hippo pathway, the corresponding E2 ubiquitin-conjugating enzymes (E2s) remain unknown. Here, we performed a screen in Drosophila to identify E2s involved in regulating wing overgrowth caused by the overexpression of Crumbs (Crb) intracellular domain and identified Bruce as a critical regulator. Loss of Bruce downregulates Hippo target gene expression and suppresses Hippo signaling inactivation induced tissue growth. Unexpectedly, our genetic data indicate that Bruce acts upstream of Expanded (Ex) but in parallel with the canonical Hippo (Hpo) -Warts (Wts) cascade to regulate Yorkie (Yki), the downstream effector of Hippo pathway. Mechanistically, Bruce synergizes with E3 ligase POSH to regulate growth and ubiquitination-mediated Ex degradation. Moreover, we demonstrate that Bruce is required for Hippo-mediated malignant tumor progression. Altogether, our findings unveil Bruce as a crucial E2 enzyme that bridges the signal from the cell surface to regulate Hippo pathway activation in Drosophila.
Collapse
Affiliation(s)
- Sha Song
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Xianjue Ma
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
18
|
Cui J, Wang Y, Tian X, Miao Y, Ma L, Zhang C, Xu X, Wang J, Fang W, Zhang X. LPCAT3 Is Transcriptionally Regulated by YAP/ZEB/EP300 and Collaborates with ACSL4 and YAP to Determine Ferroptosis Sensitivity. Antioxid Redox Signal 2023; 39:491-511. [PMID: 37166352 DOI: 10.1089/ars.2023.0237] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aims: Lipid peroxidation occurring in lung adenocarcinoma (LUAD) cells leads to ferroptosis. Lysophosphatidylcholine acyl-transferase 3 (LPCAT3) plays a key role in providing raw materials for lipid peroxidation by promoting esterification of polyunsaturated fatty acids to phospholipids. Whether LPCAT3 determines ferroptosis sensitivity and the mechanism by which its expression is regulated in LUAD has not been reported. Results: LPCAT3 and acyl-coenzyme A (CoA) synthetase long-chain family member (ACSL)4 levels were positively associated with ferroptosis sensitivity in LUAD cell lines. Overexpression of LPCAT3 and ACSL4 sensitized LUAD cells to ferroptosis, while LPCAT3 and ACSL4 knockout showed the opposite effect. Zinc-finger E-box-binding (ZEB) was shown to directly bind the LPCAT3 promoter to stimulate its transcription in a Yes-associated protein (YAP)-dependent manner. An interaction between YAP and ZEB was also observed. E1A-binding protein p300 (EP300) simultaneously bound with YAP and ZEB, and induced H3K27Ac for LPCAT3 transcription. This mechanism was verified in primary LUAD cell and xenograft models. The ACSL4, LPCAT3, and YAP combination can jointly determine LUAD ferroptosis sensitivity. Innovation: The binding site of ZEB exists in the -1600 to -1401 nt region of LPCAT3 promoter, which promotes LPCAT3 transcription after ZEB binding. ZEB and YAP bind, and the ZEB zinc-finger cluster domain and YAP WW domain are crucial for their binding. EP300 may bind with YAP via its Bromo domain and with ZEB via its CBP/p300-HAT domain. In addition, the combination of ACSL4, LPCAT3, and YAP to determine ferroptosis sensitivity of LUAD cells is better than prostaglandin-endoperoxide synthase 2 (PTGS2), transferrin receptor (TFRC), or NADPH oxidase 1 (NOX1). Conclusion: LPCAT3 transcription is regulated by YAP, ZEB, and EP300. LUAD ferroptosis sensitivity can be determined by the combination of ACSL4, LPCAT3, and YAP. Antioxid. Redox Signal. 39, 491-511.
Collapse
Affiliation(s)
- Jiangtao Cui
- Department of Thoracic Surgery and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikun Wang
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Tian
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yayou Miao
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congcong Zhang
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Fang
- Department of Thoracic Surgery and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Chen X, Adhikary G, Ma E, Newland JJ, Naselsky W, Xu W, Eckert RL. Sulforaphane inhibits CD44v6/YAP1/TEAD signaling to suppress the cancer phenotype. Mol Carcinog 2023; 62:236-248. [PMID: 36285644 PMCID: PMC9851963 DOI: 10.1002/mc.23479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
Sulforaphane (SFN) is a promising cancer prevention and treatment agent that strongly suppresses the cutaneous squamous cell carcinoma (CSCC) cell cancer phenotype. We previously showed that yes-associated protein 1 (YAP1)/TEAD signaling is a key procancer stimulator of the aggressive CSCC cell cancer phenotype. However, SFN-responsive upstream regulators of YAP1/TEAD signaling are not well characterized and so there is a pressing need to identify these factors. We show that CD44v6 knockdown reduces YAP1/TEAD-dependent transcription and target gene expression, and that this is associated with reduced spheroid formation, invasion and migration. CD44v6 knockout cell lines also display reduced YAP1/TEAD activity and target gene expression and attenuated spheroid formation, invasion, migration and tumor formation. An important finding is that SFN treatment suppresses CD44v6 level leading to a reduction in YAP1/TEAD signaling and marker gene expression. Sox2 level and epithelial-mesenchymal transition (EMT) are also reduced. Forced expression of constitutive active YAP1 in CD44v6 knockdown cells partially restores the aggressive cancer phenotype. These important findings suggest that CD44v6 drives YAP1/TEAD signaling to enhance the CSCC cell cancer phenotype and that SFN treatment reduces CD44v6 level/function which, in turn, reduces YAP1/TEAD signaling leading to reduced stemness, EMT and tumor growth.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Emily Ma
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - John J. Newland
- Department of Surgery Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Warren Naselsky
- Department of Surgery Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Damkham N, Issaragrisil S, Lorthongpanich C. Role of YAP as a Mechanosensing Molecule in Stem Cells and Stem Cell-Derived Hematopoietic Cells. Int J Mol Sci 2022; 23:14634. [PMID: 36498961 PMCID: PMC9737411 DOI: 10.3390/ijms232314634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are transcriptional coactivators in the Hippo signaling pathway. Both are well-known regulators of cell proliferation and organ size control, and they have significant roles in promoting cell proliferation and differentiation. The roles of YAP and TAZ in stem cell pluripotency and differentiation have been extensively studied. However, the upstream mediators of YAP and TAZ are not well understood. Recently, a novel role of YAP in mechanosensing and mechanotransduction has been reported. The present review updates information on the regulation of YAP by mechanical cues such as extracellular matrix stiffness, fluid shear stress, and actin cytoskeleton tension in stem cell behaviors and differentiation. The review explores mesenchymal stem cell fate decisions, pluripotent stem cells (PSCs), self-renewal, pluripotency, and differentiation to blood products. Understanding how cells sense their microenvironment or niche and mimic those microenvironments in vitro could improve the efficiency of producing stem cell products and the efficacy of the products.
Collapse
Affiliation(s)
- Nattaya Damkham
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok 10310, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
21
|
De Robertis EM. The impact of developmental biology in the last 100 years. Dev Biol 2022; 489:118-121. [PMID: 35716718 DOI: 10.1016/j.ydbio.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|