1
|
Zhu X, Zhao Y, Bai X, Dong Q, Tian C, Sun R, Yan C, Ruan J, Liu Z, Gao J. Small molecules direct the generation of ameloblast-like cells from human embryonic stem cells. Stem Cell Res Ther 2025; 16:173. [PMID: 40221796 PMCID: PMC11993985 DOI: 10.1186/s13287-025-04294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Ameloblasts present a promising avenue for the investigation of enamel and tooth regeneration. Previous protocols for directing the differentiation of human embryonic stem cells (hESCs) into dental epithelial (DE) cells involving the need for additional cells, conditional medium, and the use of costly cytokines. Importantly, ameloblasts have not been generated from hESCs in previous studies. Hence, we aimed to identify defined differentiation conditions that would solely utilize small molecules to achieve the production of ameloblasts. METHODS We developed a three-step strategy entailing the progression of hESCs through non-neural ectoderm (NNE) and DE to generate functional ameloblasts in vitro. Initially, the NNE fate was induced from hESCs using a 6-day differentiation protocol with 1 µmol/L Retinoic acid (RA). Subsequently, the NNE lineage was differentiated into DE by employing a combination of 1 µmol/L LDN193189 (a BMP signaling inhibitor) and 1 µmol/L XAV939 (a WNT signaling inhibitor). In the final phase, 3 µmol/L CHIR99021 (a WNT signaling activator) and 2 µmol/L DAPT (a NOTCH signaling inhibitor) were utilized to achieve the fate of ameloblasts from DE cells. Three-dimensional cultures were investigated to enhance the ameloblast differentiation ability of the induced DE cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence were conducted to assess the expression of lineage-specific markers. Alizarin Red S (ARS) staining was performed to evaluate the formation of mineralization nodules. RESULTS The application of RA facilitated the efficient generation of NNE within a six-day period. Subsequently, upon stimulation with LDN193189 and XAV939, a notable emergence of DE cells was observed on the eighth days. By the tenth day, ameloblast-like cells derived from hESCs were generated. Upon cultivation in spheroids, these cells exhibited elevated levels of ameloblast markers AMBN and AMELX expression, suggesting that spheroid culture augments the differentiation of ameloblasts. CONCLUSION We established an efficient small molecule-based method to differentiate hESCs into ameloblast-like cells through the concerted modulation of RA, BMP, WNT, and NOTCH signaling pathways, potentially advancing research in enamel and tooth regeneration.
Collapse
Affiliation(s)
- Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - YiMeng Zhao
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xiaofan Bai
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Qiannan Dong
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Chunli Tian
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Ruilin Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Congjuan Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
2
|
Wang S, Jiang D, Xiao Y, Qin Q, Zhang H, Ye L, Jin J, Jiang X, Guo Q. Human Pituitary Organoids: Transcriptional Landscape Deciphered by scRNA-Seq and Stereo-Seq, with Insights into SOX3's Role in Pituitary Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414230. [PMID: 39951008 PMCID: PMC11984888 DOI: 10.1002/advs.202414230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/03/2025] [Indexed: 04/12/2025]
Abstract
The 3D human pituitary organoid represents a promising laboratory model for investigating human pituitary diseases. Nonetheless, this technology is still in its nascent stage, with uncertainties regarding the cellular composition, intercellular interactions, and spatial distribution of the human pituitary organoids. To address these gaps, the culture conditions are systematically adjusted and the efficiency of induced pluripotent stem cells' (iPSCs') differentiation into pituitary organoids is successfully improved, achieving results comparable to or exceeding those of previous studies. Additionally, single-cell RNA-sequencing (scRNA-seq) and stereomics sequencing (Stereo-seq) are performed on the pituitary organoids for the first time, and unveil the diverse cell clusters, intricate intercellular interactions, and spatial information within the organoids. Furthermore, the SOX3 gene interference impedes the iPSCs' differentiation into pituitary organoids, thereby highlighting the potential of pituitary organoids as an ideal experimental model. Altogether, the research provides an optimized protocol for the human pituitary organoid culture and a valuable transcriptomic dataset for future explorations, laying the foundation for subsequent research in the field of pituitary organoids or pituitary diseases.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Deyue Jiang
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Yan Xiao
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences27 Taiping Road of Haidian DistrictBeijing100850China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences27 Taiping Road of Haidian DistrictBeijing100850China
| | - Lingtong Ye
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Jide Jin
- Beijing Institute of Radiation Medicine27 Taiping Road of Haidian DistrictBeijing100850China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences27 Taiping Road of Haidian DistrictBeijing100850China
| | - Qinghua Guo
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| |
Collapse
|
3
|
Zhu X, Li Y, Dong Q, Tian C, Gong J, Bai X, Ruan J, Gao J. Small Molecules Promote the Rapid Generation of Dental Epithelial Cells from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:4138. [PMID: 38673725 PMCID: PMC11049943 DOI: 10.3390/ijms25084138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.
Collapse
Affiliation(s)
- Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Chunli Tian
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jing Gong
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Xiaofan Bai
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| |
Collapse
|