1
|
Uribe-Cardenas R, Boyke AE, Schwarz JT, Morgenstern PF, Greenfield JP, Schwartz TH, Rutka JT, Drake J, Hoffman CE. Utility of invasive electroencephalography in children 3 years old and younger with refractory epilepsy. J Neurosurg Pediatr 2020; 26:648-653. [PMID: 32947255 DOI: 10.3171/2020.6.peds19504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/01/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Early surgical intervention for pediatric refractory epilepsy is increasingly advocated as surgery has become safer and data have demonstrated improved outcomes with early seizure control. There is concern that the risks associated with staged invasive electroencephalography (EEG) in very young children outweigh the potential benefits. Here, the authors present a cohort of children with refractory epilepsy who were referred for invasive monitoring, and they evaluate the role and safety of staged invasive EEG in those 3 years old and younger. METHODS The authors conducted a retrospective review of children 3 years and younger with epilepsy, who had been managed surgically at two institutions between 2001 and 2015. A cohort of pediatric patients older than 3 years of age was used for comparison. Demographics, seizure etiology, surgical management, surgical complications, and adverse events were recorded. Statistical analysis was completed using Stata version 13. A p < 0.05 was considered statistically significant. Fisher's exact test was used to compare proportions. RESULTS Ninety-four patients (45 patients aged ≤ 3 [47.9%]) and 208 procedures were included for analysis. Eighty-six procedures (41.3%) were performed in children younger than 3 years versus 122 in the older cohort (58.7%). Forty-two patients underwent grid placement (14 patients aged ≤ 3 [33.3%]); 3 of them developed complications associated with the implant (3/42 [7.14%]), none of whom were among the younger cohort. Across all procedures, 11 complications occurred in the younger cohort versus 5 in the older patients (11/86 [12.8%] vs 5/122 [4.1%], p = 0.032). Two adverse events occurred in the younger group versus 1 in the older group (2/86 [2.32%] vs 1/122 [0.82%], p = 0.571). Following grid placement, 13/14 younger patients underwent guided resections compared to 20/28 older patients (92.9% vs 71.4%, p = 0.23). CONCLUSIONS While overall complication rates were higher in the younger cohort, subdural grid placement was not associated with an increased risk of surgical complications in that population. Invasive electrocorticography informs management in very young children with refractory, localization-related epilepsy and should therefore be used when clinically indicated.
Collapse
Affiliation(s)
- Rafael Uribe-Cardenas
- 1Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | | | - Justin T Schwarz
- 1Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | - Peter F Morgenstern
- 1Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | - Jeffrey P Greenfield
- 1Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | - Theodore H Schwartz
- 1Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | - James T Rutka
- 3Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Drake
- 3Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Caitlin E Hoffman
- 1Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York
| |
Collapse
|
2
|
Kloc ML, Velasquez F, Niedecker RW, Barry JM, Holmes GL. Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Brain Stimul 2020; 13:1535-1547. [PMID: 32871261 DOI: 10.1016/j.brs.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hippocampal oscillations play a critical role in the ontogeny of allocentric memory in rodents. During the critical period for memory development, hippocampal theta is the driving force behind the temporal coordination of neuronal ensembles underpinning spatial memory. While known that hippocampal oscillations are necessary for normal spatial cognition, whether disrupted hippocampal oscillatory activity during the critical period impairs long-term spatial memory is unknown. Here we investigated whether disruption of normal hippocampal rhythms during the critical period have enduring effects on allocentric memory in rodents. OBJECTIVE/HYPOTHESIS We hypothesized that disruption of hippocampal oscillations via artificial regulation of the medial septum during the critical period for memory development results in long-standing deficits in spatial cognition. METHODS After demonstrating that pan-neuronal medial septum (MS) optogenetic stimulation (465 nm activated) regulated hippocampal oscillations in weanling rats we used a random pattern of stimulation frequencies to disrupt hippocampal theta rhythms for either 1Hr or 5hr a day between postnatal (P) days 21-25. Non-stimulated and yellow light-stimulated (590 nm) rats served as controls. At P50-60 all rats were tested for spatial cognition in the active avoidance task. Rats were then sacrificed, and the MS and hippocampus assessed for cell loss. Power spectrum density of the MS and hippocampus, coherences and voltage correlations between MS and hippocampus were evaluated at baseline for a range of stimulation frequencies from 0.5 to 110 Hz and during disruptive hippocampal stimulation. Unpaired t-tests and ANOVA were used to compare oscillatory parameters, behavior and cell density in all animals. RESULTS Non-selective optogenetic stimulation of the MS in P21 rats resulted in precise regulation of hippocampal oscillations with 1:1 entrainment between stimulation frequency (0.5-110 Hz) and hippocampal local field potentials. Across bandwidths MS stimulation increased power, coherence and voltage correlation at all frequencies whereas the disruptive stimulation increased power and reduced coherence and voltage correlations with most statistical measures highly significant (p < 0.001, following correction for false detection). Rats receiving disruptive hippocampal stimulation during the critical period for memory development for either 1Hr or 5hr had marked impairment in spatial learning as measured in active avoidance test compared to non-stimulated or yellow light-control rats (p < 0.001). No cell loss was measured between the blue-stimulated and non-stimulated or yellow light-stimulated controls in either the MS or hippocampus. CONCLUSION The results demonstrated that robust regulation of hippocampal oscillations can be achieved with non-selective optogenetic stimulation of the MS in rat pups. A disruptive hippocampal stimulation protocol, which markedly increases power and reduces coherence and voltage correlations between the MS and hippocampus during the critical period of memory development, results in long-standing spatial cognitive deficits. This spatial cognitive impairment is not a result of optogenetic stimulation-induced cell loss.
Collapse
Affiliation(s)
- Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Rhys W Niedecker
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
3
|
Jenny B, Smoll N, El Hassani Y, Momjian S, Pollo C, Korff CM, Seeck M, Schaller K. Pediatric epilepsy surgery: could age be a predictor of outcomes? J Neurosurg Pediatr 2016; 18:235-41. [PMID: 27128787 DOI: 10.3171/2015.10.peds14413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Like adults, many children suffering from intractable seizures benefit from surgical therapy. Although various reports indicate that early intervention may avoid severe developmental consequences often associated with intractable epilepsy, surgery is still considered a last option for many children. In this retrospective study, the authors aimed to determine whether pediatric epilepsy surgery, in particular during the first years of life, relates to measurable benefits. METHODS Data from 78 patients (age range 5 months to 17 years) who underwent epilepsy surgery at the Geneva and Lausanne University Hospitals between 1997 and 2012 were reviewed retrospectively. Patients were dichotomized into 2 groups: infants (≤ 3 years of age, n = 19), and children/adolescents (4-17 years of age, n = 59). Compared with children/adolescents, infants more often had a diagnosis of dysplasia (37% vs 10%, respectively; p < 0.05, chi-square test). RESULTS The overall seizure-free rate was 76.9%, with 89.5% in infants and 72.9% in the children/adolescents group. Infants were 2.76 times as likely to achieve seizure-free status as children/adolescents. Postoperative antiepileptic medication was reduced in 67.9% of patients. Only 11.4% of the patients were taking more than 2 antiepileptic drugs after surgery, compared with 43% before surgery (p < 0.0001). The overall complication rate was 15.1% (6.4% transient hemiparesis), and no major complications or deaths occurred. CONCLUSIONS The data show a high seizure-free rate in children ≤ 3 years of age, despite a higher occurrence of dysplastic, potentially ill-defined lesions. Pediatric patients undergoing epilepsy surgery can expect a significant reduction in their need for medication. Given the excellent results in the infant group, prospective studies are warranted to determine whether age ≤ 3 years is a predictor for excellent surgical outcome.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Christian M Korff
- Child and Adolescents, Pediatric Neurology, University Hospital Geneva, Switzerland; and
| | | | | |
Collapse
|
4
|
Miller SL, Aroniadou-Anderjaska V, Figueiredo TH, Prager EM, Almeida-Suhett CP, Apland JP, Braga MFM. A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists. Toxicol Appl Pharmacol 2015; 284:204-16. [PMID: 25689173 DOI: 10.1016/j.taap.2015.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/30/2015] [Accepted: 02/07/2015] [Indexed: 12/27/2022]
Abstract
Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD50 of 62μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS) at 2mg/kg, administered 20 min after soman exposure (1.2×LD50), terminated seizures. ATS at 0.5mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1h post-exposure, prevents brain pathology and behavioral deficits.
Collapse
Affiliation(s)
- Steven L Miller
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Eric M Prager
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Camila P Almeida-Suhett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - James P Apland
- Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
5
|
Wasterlain CG, Gloss DS, Niquet J, Wasterlain AS. Epileptogenesis in the developing brain. HANDBOOK OF CLINICAL NEUROLOGY 2013; 111:427-39. [PMID: 23622191 DOI: 10.1016/b978-0-444-52891-9.00046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neonatal brain has poorly developed GABAergic circuits, and in many of them GABA is excitatory, favoring ictogenicity. Frequently repeated experimental seizures impair brain development in an age-dependent manner. At critical ages, they delay developmental milestones, permanently lower seizure thresholds, and can cause very specific cognitive and learning deficits, such as the permanent impairment of neuronal spatial maps. Some types of experimental status epilepticus cause neuronal necrosis and apoptosis, and are followed by chronic epilepsy with spontaneous recurrent seizures, others appear relatively benign, so that seizure-induced neuronal injury and epileptogenesis are highly age-, seizure model-, and species-dependent. Experimental febrile seizures can be epileptogenic, and hyperthermia aggravates both neuronal injury and epileptogenicity. Antiepileptic drugs, the mainstay of treatment, have major risks of their own, and can, at therapeutic or near-therapeutic doses, trigger neuronal apoptosis, which is also age-, drug-, cell type-, and species-dependent. The relevance of these experimental results to human disease is still uncertain, but while their brains are quite different, the basic biology of neurons in rodents and humans is strikingly similar. Further research is needed to elucidate the molecular mechanisms of epileptogenesis and of seizure- or drug-induced neuronal injury, in order to prevent their long-term consequences.
Collapse
Affiliation(s)
- Claude G Wasterlain
- Department of Neurology, VA Greater Los Angeles Health Care System, and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
6
|
Bortolatto CF, Jesse CR, Wilhelm EA, Nogueira CW. Selective blockade of A2A receptor protects against neurotoxicity induced by kainic acid in young rats. Fundam Clin Pharmacol 2011; 26:495-502. [DOI: 10.1111/j.1472-8206.2011.00952.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Karunanithi S, van Swinderen B. Slamdance: seizing a fly model for epilepsy. J Neurophysiol 2011; 106:15-7. [PMID: 21562202 DOI: 10.1152/jn.00382.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
|